Tailoring Mesoporous Silicon Surface to Form a Versatile Template for Nanoparticle Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology
3.2. Surface Wettability
3.3. Optical Properties
3.4. Reactive Ion Etching (RIE) Etched Porous Silicon Templates for the Nanoparticles’ Deposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jane, A.; Dronov, R.; Hodges, A.; Voelcker, N.H. Porous silicon biosensors on the advance. Trends Biotechnol. 2009, 27, 230–239. [Google Scholar] [CrossRef]
- Canham, L. Handbook of Porous Silicon; Springer International Publishing: Berlin, Germany, 2018; Volume 1–2, ISBN 9783319713816. [Google Scholar]
- Redko, S.V.; Bondarenko, V.P.; Petrovich, V.A.; Kotov, D.A.; Chubenko, E.B.; Sherstnyov, A.I. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon. Semiconductors 2016, 50, 372–376. [Google Scholar] [CrossRef]
- Mariani, S.; Pino, L.; Strambini, L.M.; Tedeschi, L.; Barillaro, G. 10 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors. ACS Sens. 2016, 1, 1471–1479. [Google Scholar] [CrossRef]
- Mariani, S.; Strambini, L.M.; Barillaro, G. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers. ACS Sens. 2018, 3, 595–605. [Google Scholar] [CrossRef]
- Chamard, V.; Dolino, G.; Muller, F. Origin of a parasitic surface film on p+ type porous silicon. J. Appl. Phys. 1998, 84, 6659–6666. [Google Scholar] [CrossRef]
- Harraz, F.A.; El-Sheikh, S.M.; Sakka, T.; Ogata, Y.H. Cylindrical pore arrays in silicon with intermediate nano-sizes: A template for nanofabrication and multilayer applications. Electrochim. Acta 2008, 53, 6444–6451. [Google Scholar] [CrossRef]
- Sciacca, B.; Secret, E.; Pace, S.; Gonzalez, P.; Geobaldo, F.; Quignard, F.; Cunin, F. Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J. Mater. Chem. 2011, 21, 2294–2302. [Google Scholar] [CrossRef]
- Errien, N.; Vellutini, L.; Louarn, G.; Froyer, G. Surface characterization of porous silicon after pore opening processes inducing chemical modifications. Appl. Surf. Sci. 2007, 253, 7265–7271. [Google Scholar] [CrossRef]
- Korotcenkov, G. Porous Silicon: From Formation to Application: Formation and Properties, Volume One; Korotcenkov, G., Ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9780429076503. [Google Scholar]
- Torres-Costa, V.; Martín-Palma, R.J. Application of nanostructured porous silicon in the field of optics. A review. J. Mater. Sci. 2010, 45, 2823–2838. [Google Scholar] [CrossRef]
- ImageJ Software. Available online: https://imagej.nih.gov/ij/index.html (accessed on 4 June 2021).
- Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 2014, 26, 2836–2846. [Google Scholar] [CrossRef]
- Juodenas, M.; Tamulevičius, T.; Henzie, J.; Erts, D.; Tamulevičius, S. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra. ACS Nano 2019, 13, 9038–9047. [Google Scholar] [CrossRef]
- Juodėnas, M.; Peckus, D.; Tamulevičius, T.; Yamauchi, Y.; Tamulevičius, S.; Henzie, J. Effect of Ag Nanocube Optomechanical Modes on Plasmonic Surface Lattice Resonances. ACS Photonics 2020. [Google Scholar] [CrossRef]
- Zhao, M.; McCormack, A.; Keswani, M. The formation mechanism of gradient porous Si in a contactless electrochemical process. J. Mater. Chem. C 2016, 4, 4204–4210. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.; Isa, L.; Wolf, H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter 2018, 14, 2978–2995. [Google Scholar] [CrossRef]
- Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir 2007, 23, 11513–11521. [Google Scholar] [CrossRef]
- Kang, J.; Park, C.G.; Lee, S.H.; Cho, C.; Choi, D.G.; Lee, J.Y. Fabrication of high aspect ratio nanogrid transparent electrodes: Via capillary assembly of Ag nanoparticles. Nanoscale 2016, 8, 11217–11223. [Google Scholar] [CrossRef]
- Spencer, S.J.; Andrews, G.T.; Deacon, C.G. Contact angle of ethanol-water solutions on crystalline and mesoporous silicon. Semicond. Sci. Technol. 2013, 28. [Google Scholar] [CrossRef]
- Muñoz, E.C.; Díaz, C.; Navarrete, E.; Henríquez, R.; Schrebler, R.; Córdova, R.; Marotti, R.; Heyser, C. Characterization of surface changes on silicon and porous silicon after interaction with hydroxyl radicals. Arab. J. Chem. 2019, 12, 5125–5133. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.; Wang, J.; Yang, L.; Sun, Q.; Li, Z. Surface wettability of oxygen plasma treated porous silicon. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Dattilo, D.; Armelao, L.; Maggini, M.; Fois, G.; Mistura, G. Wetting behavior of porous silicon surfaces functionalized with a fulleropyrrolidine. Langmuir 2006, 22, 8764–8769. [Google Scholar] [CrossRef]
- Lammel, G.; Schweizer, S.; Schiesser, S.; Renaud, P. Tunable optical filter of porous silicon as key component for a MEMS spectrometer. J. Microelectromech. Syst. 2002, 11, 815–828. [Google Scholar] [CrossRef]
- Paes, T.F.; Beloto, A.F.; Galvão, E.C.D.S.; Berni, L.A. Simple method for measuring the porosity, thickness and refractive index of porous silicon, based on the Fabry-Pérot interference spectrum. Rev. Bras. Apl. Vácuo 2017, 35, 117. [Google Scholar] [CrossRef]
- Maniya, N.H.; Patel, S.R.; Murthy, Z.V.P. Electrochemical preparation of microstructured porous silicon layers for drug delivery applications. Superlattices Microstruct. 2013, 55, 144–150. [Google Scholar] [CrossRef]
- Sohn, H. Refractive Index of Porous Silicon Refractive Index of Porous Silicon. In Handbook of Porous Silicon; Canham, L., Ed.; Springer: Cham, Switzerland, 2018; pp. 241–352. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C.; Tiwari, V.S.; Anis, H. Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409. [Google Scholar] [CrossRef]
- Casadei, A.; Pecora, E.F.; Trevino, J.; Forestiere, C.; Rüffer, D.; Russo-Averchi, E.; Matteini, F.; Tutuncuoglu, G.; Heiss, M.; Fontcuberta I Morral, A.; et al. Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. Nano Lett. 2014, 14, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
HF Conc. | Current Density (mA/cm2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | 140 | 200 | ||
5 wt.% | initial | 3.21 | 2.48 | 1.39 | 1.20 | - | - | - | - |
RIE-treated | 3.35 | 2.50 | 1.41 | 1.57 | - | - | - | - | |
10 wt.% | initial | 3.24 | 3.14 | 2.99 | 2.73 | 2.40 | 2.13 | 2.10 | 2.01 |
RIE-treated | - | 3.17 | 2.97 | 2.87 | 2.72 | 2.20 | 2.17 | 2.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khinevich, N.; Juodėnas, M.; Tamulevičienė, A.; Bandarenka, H.; Tamulevičius, S. Tailoring Mesoporous Silicon Surface to Form a Versatile Template for Nanoparticle Deposition. Coatings 2021, 11, 699. https://doi.org/10.3390/coatings11060699
Khinevich N, Juodėnas M, Tamulevičienė A, Bandarenka H, Tamulevičius S. Tailoring Mesoporous Silicon Surface to Form a Versatile Template for Nanoparticle Deposition. Coatings. 2021; 11(6):699. https://doi.org/10.3390/coatings11060699
Chicago/Turabian StyleKhinevich, Nadzeya, Mindaugas Juodėnas, Asta Tamulevičienė, Hanna Bandarenka, and Sigitas Tamulevičius. 2021. "Tailoring Mesoporous Silicon Surface to Form a Versatile Template for Nanoparticle Deposition" Coatings 11, no. 6: 699. https://doi.org/10.3390/coatings11060699
APA StyleKhinevich, N., Juodėnas, M., Tamulevičienė, A., Bandarenka, H., & Tamulevičius, S. (2021). Tailoring Mesoporous Silicon Surface to Form a Versatile Template for Nanoparticle Deposition. Coatings, 11(6), 699. https://doi.org/10.3390/coatings11060699