Chitosan-Based Antimicrobial Coating for Improving Postharvest Shelf Life of Pineapple
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Preparation of Coating Formulation
2.3. Application of the Prepared Coating Formulation on Pineapple Fruits
2.4. Physicochemical and Sensory Analysis of Coated/Treated Pineapple Fruits
2.4.1. Weight Loss
2.4.2. Total Soluble Solids (TSS) Content, Titratable Acidity (TA), and Maturity Index (TSS/TA)
2.4.3. Determination of Decay Index (DI)
2.4.4. Evaluation of Sensory Attributes
2.4.5. Change in Visual Appearance of the Treated Pineapple
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss of Treated Pineapple Fruits
3.2. Total Soluble Solids (TSS) of the Treated Pineapple
3.3. Titratable Acidity (TA) and Maturity Index of the Treated Pineapple
3.4. Decay Index
3.5. Sensory Qualities
3.6. Visual Observation of the Treated Pineapple Fruits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leading Countries in Pineapple Production Worldwide in 2019. Available online: https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/ (accessed on 4 November 2021).
- Farid Hossain, M. Nutritional value and medicinal benefits of pineapple. Int. J. Nutr. Food Sci. 2015, 4, 84–88. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res. Int. 2020, 137, 109675. [Google Scholar] [CrossRef] [PubMed]
- Paull, R.E.; Chen, N.J. Chapter 17.4—Tropical fruits: Pineapples. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.I., Beaudry, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 381–388. [Google Scholar]
- Montero-Calderón, M.; Rojas-Graü, M.A.; Martín-Belloso, O. Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus). Postharvest Biol. Technol. 2008, 50, 182–189. [Google Scholar] [CrossRef]
- Budu, A.S.; Joyce, D.C. Effect of modified atmosphere packaging on the quality of minimally processed pineapple cv. ‘Smooth Cayenne’ fruit. J. Hortic. Sci. Biotechnol. 2015, 80, 193–198. [Google Scholar] [CrossRef]
- Li, X.; Zhu, X.; Wang, H.; Lin, X.; Lin, H.; Chen, W. Postharvest application of wax controls pineapple fruit ripening and improves fruit quality. Postharvest Biol. Technol. 2018, 136, 99–110. [Google Scholar] [CrossRef]
- Lu, X.; Sun, D.; Li, Y.; Shi, W.; Sun, G. Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Sci. Hortic. 2011, 130, 97–101. [Google Scholar] [CrossRef]
- Sayyari, M.; Babalar, M.; Kalantari, S.; Serrano, M.; Valero, D. Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biol. Technol. 2009, 53, 152–154. [Google Scholar] [CrossRef]
- Youryon, P.; Supapvanich, S.; Kongtrakool, P.; Wongs-Aree, C. Calcium chloride and calcium gluconate peduncle infiltrations alleviate the internal browning of Queen pineapple in refrigerated storage. Hortic. Environ. Biotechnol. 2018, 59, 205–213. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, H.; Guo, X.; Bi, X.; Liu, X.; Xu, Q.; Wang, Q.; Li, W.; Li, X.; Shui, Y.; et al. Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Sci. Hortic. 2020, 263, 109135. [Google Scholar] [CrossRef]
- Riaz, A.; Aadil, R.M.; Amoussa, A.M.O.; Bashari, M.; Abid, M.; Hashim, M.M. Application of chitosan-based apple peel polyphenols edible coating on the preservation of strawberry (Fragaria ananassa cv Hongyan) fruit. J. Food Process. Preserv. 2020, 45, e15018. [Google Scholar] [CrossRef]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S. Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2020, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef] [Green Version]
- Salehi, F. Edible coating of fruits and vegetables using natural gums: A review. Int. J. Fruit Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Kumar, S.; Mudai, A.; Roy, B.; Basumatary, I.B.; Mukherjee, A.; Dutta, J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 2020, 9, 1143. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mitra, A.; Halder, D. Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT 2017, 75, 293–300. [Google Scholar] [CrossRef]
- Kumar, S.; Boro, J.C.; Ray, D.; Mukherjee, A.; Dutta, J. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon 2019, 5, e01867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Mula, H.M.; Serrano, M.; Valero, D. Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess Technol. 2012, 5, 2990–2997. [Google Scholar] [CrossRef]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. [Google Scholar] [CrossRef]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Kumar, S.; Shukla, A.; Baul, P.P.; Mitra, A.; Halder, D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life 2018, 16, 178–184. [Google Scholar] [CrossRef]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Boudouaia, N.; Bengharez, Z.; Jellali, S. Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: Application for eriochrome black T removal from aqueous solutions. Appl. Water Sci. 2019, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Ye, F.; Mazinani, B.; Dobretsov, S.; Dutta, J. Chitosan nanocomposite coatings containing chemically resistant ZnO–SnOx core–shell nanoparticles for photocatalytic antifouling. Int. J. Mol. Sci. 2021, 22, 4513. [Google Scholar] [CrossRef]
- Nair, M.S.; Saxena, A.; Kaur, C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem. 2018, 240, 245–252. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, D.; Belwal, T.; Li, L.; Chen, H.; Xu, T.; Luo, Z. Effect of nano-SiOx/chitosan complex coating on the physicochemical characteristics and preservation performance of green tomato. Molecules 2019, 24, 4552. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng. 2013, 118, 125–131. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Pavinatto, A.; de Almeida Mattos, A.V.; Malpass, A.C.G.; Okura, M.H.; Balogh, D.T.; Sanfelice, R.C. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int. J. Biol. Macromol. 2020, 151, 1004–1011. [Google Scholar] [CrossRef]
- Goudarzi, M.; Fazeli, M.; Azad, M.; Seyedjavadi, S.S.; Mousavi, R. Aloe vera Gel: Effective therapeutic agent against multidrug-resistant pseudomonas aeruginosa isolates recovered from burn wound infections. Chemother. Res. Pract. 2015, 2015, 639806. [Google Scholar] [CrossRef] [Green Version]
- Hassanpour, H. Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT—Food Sci. Technol. 2015, 60, 495–501. [Google Scholar] [CrossRef]
- Misir, J.; Brishti, F.H.; Hoque, M.M. Aloe vera gel as a novel edible coating for fresh fruits: A review. Am. J. Food Sci. Technol. 2014, 2, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Al-Naamani, L.; Dutta, J.; Dobretsov, S. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (abelmoschus esculentus). Nanomaterials 2018, 8, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Chen, H.; Sun, Z.; Yang, H. Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Sci. Hortic. 2019, 244, 157–164. [Google Scholar] [CrossRef]
- Sanuja, S.; Agalya, A.; Umapathy, M.J. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol. 2015, 74, 76–84. [Google Scholar] [CrossRef]
- Batista Silva, W.; Cosme Silva, G.M.; Santana, D.B.; Salvador, A.R.; Medeiros, D.B.; Belghith, I.; da Silva, N.M.; Cordeiro, M.H.M.; Misobutsi, G.P. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem. 2018, 242, 232–238. [Google Scholar] [CrossRef]
- Rohani, M.; Zaipun, M.; Norhayati, M. Effect of modified atmosphere on the storage life and quality of Eksotika papaya. J. Trop. Agric. Food Sci. 1997, 25, 103–114. [Google Scholar]
- Elsabee, M.Z. Chitosan-Based Edible Films. In Polysaccharides: Bioactivity and Biotechnology; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer International Publishing: Cham, Switerland, 2015; pp. 829–870. [Google Scholar]
- Abakar, H.O.M.; Bakhiet, S.E.; Abadi, R.S.M. Antimicrobial activity and minimum inhibitory concentration of Aloe vera sap and leaves using different extracts. J. Pharmacogn. Phytochem. 2017, 6, 298–303. [Google Scholar]
- Kaushik, M.; Niranjan, R.; Thangam, R.; Madhan, B.; Pandiyarasan, V.; Ramachandran, C.; Oh, D.-H.; Venkatasubbu, G.D. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 2019, 479, 1169–1177. [Google Scholar] [CrossRef]
- Lallo da Silva, B.; Abucafy, M.P.; Berbel Manaia, E.; Oshiro Junior, J.A.; Chiari-Andreo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, G.; Dantas, R.; Sousa, A.; Soares, L.; Raylson, D.; Rosana, S.; Lima, R.; Rejane, M.; Beaudry, R.; Silva, S. Impact of cassava starch-alginate based coatings added with ascorbic acid and elicitor on quality and sensory attributes during pineapple storage. Afr. J. Agric. Res. 2017, 12, 664–673. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Lalremruata; Hazarika, T.; Nautiyal, B.P. Effect of post-harvest treatments on quality and shelf life of pineapple (Ananas comosus [L.] Merr. 'Giant Kew') fruits at ambient storage condition. Int. J. Bio-Resour. Stress Manag. 2015, 6, 490–496. [Google Scholar] [CrossRef]
Coating Formulation | CH% (w/v) | AVG% (w/w) | ZnO NPs% (w/w) |
---|---|---|---|
CH | 1 | 0 | 0 |
CH/AVG-25 | 1 | 25 | 0 |
CH/AVG-50 | 1 | 50 | 0 |
CH/AVG-25/ZnO-1 | 1 | 25 | 1 |
CH/AVG-50/ZnO-1 | 1 | 50 | 1 |
Treatments | Decay Index (DI) | |||
---|---|---|---|---|
– | Day-0 | Day-5 | Day-10 | Day-15 |
Control | 0 aA | 0 aA | 0.50 ± 0.12 bB | 1.33 ± 0.2 cC |
CH only | 0 aA | 0 aA | 0.25 ± 0.07 bAB | 0.66 ± 0.11 bBC |
CH/AVG-25 | 0 aA | 0 aA | 0 aA | 1.00 ± 0.10 bC |
CH/AVG-50 | 0 aA | 0 aA | 0 aA | 0 aA |
CH/AV-25%/ZnO-1 | 0 aA | 0 aA | 0.50 ± 0.15 bB | 0.66 ± 0.04 bBC |
CH/AVG-50%/ZnO-1 | 0 aA | 0 aA | 0 aA | 0.33 ± 0.09 bB |
Parameter | Storage Period (Days) | Treatments | |||||
---|---|---|---|---|---|---|---|
Control | CH Only | CH/AV-25 | CH/AV-50 | CH/AV-25/ZnO-1 | CH/AV-50/ZnO-1 | ||
Sweetness | 0 | 5.72 ± 0.17 aA | 5.72 ± 0.17 aA | 5.72 ± 0.17 aA | 5.72 ± 0.17 aA | 5.72 ± 0.17 aA | 5.72 ± 0.17 aA |
5 | 5.81 ± 0.25 aAB | 6.07 ± 0.22 aA | 6.52 ± 0.20 aB | 6.07 ± 0.12 aA | 5.93 ± 0.18 aA | 6.01 ± 0.16 aA | |
10 | 6.51 ± 0.17 abB | 6.20 ± 0.21 aA | 7.32 ± 0.09 bC | 6.40 ± 0.12 abA | 6.63± 0.13 abB | 7.24 ± 0.20 bB | |
15 | 6.54 ± 0.18 aB | 7.11 ± 0.12 abB | 7.51 ± 0.20 bC | 7.53 ± 0.15 bB | 6.87 ± 0.13 abB | 7.16 ± 0.22 abB | |
Taste | 0 | 5.80 ± 0.11 aA | 5.80 ± 0.11 aA | 5.80 ± 0.11 aA | 5.80 ± 0.11 aA | 5.80 ± 0.11 aA | 5.80 ± 0.11 aA |
5 | 5.72 ± 0.09 aA | 6.57 ± 0.13 bB | 6.13 ± 0.07 aA | 5.74 ± 0.09 aA | 5.86 ± 0.14 aA | 5.83 ± 0.12 aA | |
10 | 5.13 ± 0.12 aB | 5.67 ± 0.07 aA | 7.01 ± 0.09 cB | 6.21 ± 0.07 bA | 6.59 ± 0.08 bcB | 7.75 ± 0.04 dB | |
15 | 4.29 ± 0.12 aC | 5.05 ± 0.09 bC | 5.73 ± 0.12 cA | 6.13 ± 0.13 cA | 6.22 ± 0.14 cA | 6.23 ± 0.06 cA | |
Odor | 0 | 5.60 ± 0.16 aA | 5.60 ± 0.16 aA | 5.60 ± 0.16 aA | 5.60 ± 0.16 aA | 5.60 ± 0.16 aA | 5.60 ± 0.16 aA |
5 | 5.57 ± 0.09 aA | 5.82 ± 0.11 aA | 5.75 ± 0.18 aA | 5.83 ± 0.14 aA | 5.85 ± 0.16 aA | 5.67 ± 0.14 aA | |
10 | 5.43 ± 0.18 aA | 6.58 ± 0.13 bB | 6.23 ± 0.13 abA | 6.33 ± 0.11 bA | 6.28 ± 0.10 abA | 6.21 ± 0.13 abA | |
15 | 3.76 ± 0.16 aB | 5.06 ± 0.09 bA | 5.32 ± 0.12 bA | 6.26 ± 0.11 cA | 6.25± 0.14 cA | 6.47 ± 0.08 cB | |
Visual appearance | 0 | 9.00 ± 0.08 aA | 9.00 ± 0.08 aA | 9.00 ± 0.08 aA | 9.00 ± 0.08 aA | 9.00 ± 0.08 aA | 9.00 ± 0.08 aA |
5 | 8.25 ± 0.05 aB | 8.07 ± 0.07 aB | 8.16 ± 0.05 aB | 8.13 ± 0.04 aB | 7.84 ± 0.06 aB | 7.81 ± 0.08 bB | |
10 | 6.51 ± 0.09 aC | 7.21 ± 0.14 bC | 7.63 ± 0.09 bcC | 7.84 ± 0.04 cC | 7.66 ± 0.05 bcB | 7.8 ± 0.04 cB | |
15 | 4.24 ± 0.10 aD | 5.16 ± 0.12 bD | 6.20 ± 0.15 cD | 7.24 ± 0.06 dD | 7.63 ± 0.10 dB | 7.55 ± 0.07 dB | |
Overall acceptance | 0 | 7.80 ± 0.10 aA | 7.80 ± 0.10 aA | 7.80 ± 0.10 aA | 7.80 ± 0.10 aA | 7.80 ± 0.10 aA | 7.80 ± 0.10 aA |
5 | 8.18 ± 0.14 aA | 7.83 ± 0.21 aA | 8.18 ± 0.11 aA | 8.15 ± 0.12 aA | 7.90 ± 0.14 aA | 7.95 ± 0.05 aA | |
10 | 5.72 ± 0.12 aB | 6.23 ± 0.22 aB | 6.47 ± 0.11 bB | 6.83 ± 0.15 bcB | 7.25 ± 0.13 cA | 7.25 ± 0.12 cA | |
15 | 4.13 ± 0.11 aC | 5.65 ± 0.06 bB | 6.77 ± 0.12 cB | 7.22 ± 0.08 cB | 7.30 ± 0.11 cA | 7.54 ± 0.18 cA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S.; Dutta, J. Chitosan-Based Antimicrobial Coating for Improving Postharvest Shelf Life of Pineapple. Coatings 2021, 11, 1366. https://doi.org/10.3390/coatings11111366
Basumatary IB, Mukherjee A, Katiyar V, Kumar S, Dutta J. Chitosan-Based Antimicrobial Coating for Improving Postharvest Shelf Life of Pineapple. Coatings. 2021; 11(11):1366. https://doi.org/10.3390/coatings11111366
Chicago/Turabian StyleBasumatary, Indra Bhusan, Avik Mukherjee, Vimal Katiyar, Santosh Kumar, and Joydeep Dutta. 2021. "Chitosan-Based Antimicrobial Coating for Improving Postharvest Shelf Life of Pineapple" Coatings 11, no. 11: 1366. https://doi.org/10.3390/coatings11111366
APA StyleBasumatary, I. B., Mukherjee, A., Katiyar, V., Kumar, S., & Dutta, J. (2021). Chitosan-Based Antimicrobial Coating for Improving Postharvest Shelf Life of Pineapple. Coatings, 11(11), 1366. https://doi.org/10.3390/coatings11111366