Salivary pH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System
Abstract
:1. Introduction
- (a)
- «in any post-assemblies which are inserted into pierced ears and other pierced parts of the human body unless the rate of nickel release from such post-assemblies is less than 0.2 μg/cm2/week (migration limit)»;
- (b)
- «in articles intended to come into direct and prolonged contact with the skin (…) if the rate of nickel release from the parts of these articles coming into direct and prolonged contact with the skin is greater than 0.5 μg/cm2/week»;
- (c)
- «in articles referred to in point (b) where these have a non-nickel coating unless such coating is sufficient to ensure that the rate of nickel release from those parts of such articles coming into direct and prolonged contact with the skin will not exceed 0.5 μg/cm2/week for a period of at least two years of normal use of the article».
2. Materials and Methods
2.1. Materials
2.1.1. Orthodontic Components
2.1.2. a-C:H Coatings
2.2. Corrosion Tests
2.3. Characterization Procedure
3. Results and Discussion
3.1. Orthodontic Components
- The increased rate of metallic element release is evident in the decreasing pH of the saliva;
- Ni is released in a higher rate than Cr for all orthodontic components;
- Ni release during the sampling period is significantly higher for brackets in comparison to tubes and bands at pH = 2.3.
3.2. Sputtered a-C:H Coatings
3.2.1. Characterization Post-Deposition
3.2.2. Characterization Post-Corrosion Tests
- Release rates increased with decreasing pH values of the saliva;
- Release rates decreased with increasing immersion times;
- Ni release rates were higher than those of Cr for both reference SS310 and a-C:5H samples.
- «Anodic site formation is the first stage in pitting where the passive protective layer on the surface of the metal is destroyed. The destruction of the protective film may be done chemically or mechanically.
- 2.
- The continuous dissolution of metal results to the accumulation of outrageous positive ions (M+) at the anodic zone. This is a self-stimulating and self-propagating process. Neutralization of charges is sustained by the negative ions (anions), like chloride which comes from the electrolyte (using seawater as sample).
- 3.
- Repassivation is prevented by the presence of hydrogen ion and chloride content. This process produces free acid while the value of pH at the base of the pit is significantly decreased (1.5–1.0).
- 4.
- The rate of migration of chloride ion increases with dissolution rate at the anode. This makes the reaction to be time dependent and leading to the formation of more M+Cl– and the hydrolysis of H+Cl–.
- 5.
- This process go on till the point of perforation of the metal. This is an autocatalytic process which advances with time leading to more metal dissolution.
- 6.
- The metal finally perforate thereby causes the termination of the process.»
- Brackets released substantially more Fe, Ni, and Cr than any other studied samples;
- Both uncoated and a-C:H-coated SS310 samples released significantly less Cr and Fe than real orthodontic components; and
- Ni release rates were lower from tubes and bands than from SS310 and a-C:5H samples at day 7 (less than 50%) but similar (a-C:5H) or higher (SS310) at day 30.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Comission Regulation (EC) 1907/2006 of the European Parliament and of the Council of 18 December 2006-REACH. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907&from=en. (accessed on 25 August 2021).
- Proffit, W.R.; Fields, H.W.; Sarver, D.M.; Ackerman, J.L. Contemporary orthodontic appliances. In Contemporary Orthodontics; Elsevier: Amsterdam, The Netherlands, 2012; pp. 347–389. ISBN 978032308317. [Google Scholar]
- Abdallah, M.-N.; Lou, T.; Retrouvey, J.-M.; Suri, S. Biomaterials used in orthodontics: Brackets, archwires, and clear aligners. In Advanced Dental Biomaterials; Khurshid, Z., Najeeb, S., Zafar, M.S., Sefat, F.B.T.-A.D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 541–579. ISBN 978-0-08-102476-8. [Google Scholar]
- Tsichlaki, A.; Chin, S.Y.; Pandis, N.; Fleming, P.S. How long does treatment with fixed orthodontic appliances last? A systematic review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 308–318. [Google Scholar] [CrossRef]
- Chaturvedi, T.P.; Upadhayay, S.N. An overview of orthodontic material degradation in oral cavity. Indian J. Dent. Res. 2010, 21, 275–284. [Google Scholar] [CrossRef] [PubMed]
- House, K.; Sernetz, F.; Dymock, D.; Sandy, J.R.; Ireland, A.J. Corrosion of orthodontic appliances-should we care? Am. J. Orthod. Dentofac. Orthop. 2008, 133, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Athanasiou, A.E. In vivo aging of orthodontic alloys: Implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod. 2002, 72, 222–237. [Google Scholar] [PubMed]
- Dwivedi, A.; Tikku, T.; Khanna, R.; Maurya, R.P.; Verma, G.; Murthy, R.C. Release of nickel and chromium ions in the saliva of patients with fixed orthodontic appliance: An in-vivo study. Natl. J. Maxillofac. Surg. 2015, 6, 62–66. [Google Scholar] [CrossRef]
- Mystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; Dąbrowski, J.R.; Bucki, R. The role of oral cavity biofilm on metallic biomaterial surface destruction–corrosion and friction aspects. Int. J. Mol. Sci. 2018, 19, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.E.; Lyons, K.M.; Kieser, J.A.; Waddell, N.J. Diurnal variation of intraoral pH and temperature. BDJ Open 2017, 3, 17015. [Google Scholar] [CrossRef] [Green Version]
- Sandin, B.; Chorot, P. Changes in skin, salivary, and urinary pH as indicators of anxiety level in humans. Psychophysiology 1985, 22, 226–230. [Google Scholar] [CrossRef] [PubMed]
- IARC (International Agency for Research on Cancer). Nickel and nickel compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 2011, 100, 169–218. [Google Scholar] [CrossRef]
- Agarwal, P.; Upadhyay, U.; Tandon, R.; Kumar, S. Nickel allergy and orthodontics. Asian J. Oral Heal. Allied Sci. 2011, 1, 61–63. [Google Scholar]
- Martín-Cameán, A.; Jos, Á.; Mellado-García, P.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M. In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review. Environ. Toxicol. Pharmacol. 2015, 40, 86–113. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, C.L.; Vincent, S.K.; Barker, B.F. Allergic reaction to orthodontic wire: Report of case. J. Am. Dent. Assoc. 1989, 118, 449–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolokitha, O.E.; Chatzistavrou, E. A severe reaction to Ni-containing orthodontic appliances. Angle Orthod. 2009, 79, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Ellis, P.E.; Benson, P.E. Potential Hazards of orthodontic treatment—What your patient should know. Dent. Update 2002, 29, 492–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.S. Current products and practice: Aesthetic orthodontic brackets. J. Orthod. 2005, 32, 146–163. [Google Scholar] [CrossRef] [PubMed]
- Arango, S.; Peláez-Vargas, A.; García, C. Coating and surface treatments on orthodontic metallic materials. Coatings 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Vetter, J. 60years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [Google Scholar] [CrossRef]
- Zahid, R.; Masjuki, H.H.; Varman, M.; Kalam, M.A.; Mufti, R.A.; Zulkifli, N.W.B.M.; Gulzar, M.; Azman, S.S.B.N. Influence of intrinsic and extrinsic conditions on the tribological characteristics of diamond-like carbon coatings: A review. J. Mater. Res. 2016, 31, 1814–1836. [Google Scholar] [CrossRef]
- Ohgoe, Y.; Hirakuri, K.K.; Saitoh, H.; Nakahigashi, T.; Ohtake, N.; Hirata, A.; Kanda, K.; Hiratsuka, M.; Fukui, Y. Classification of DLC films in terms of biological response. Surf. Coat. Technol. 2012, 207, 350–354. [Google Scholar] [CrossRef]
- Casiraghi, C.; Ferrari, A.C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 2005, 72, 085401. [Google Scholar] [CrossRef] [Green Version]
- Hauert, R.; Thorwarth, K.; Thorwarth, G. An overview on diamond-like carbon coatings in medical applications. Surf. Coat. Technol. 2013, 233, 119–130. [Google Scholar] [CrossRef]
- Love, C.A.; Cook, R.B.; Harvey, T.J.; Dearnley, P.A.; Wood, R.J.K. Diamond like carbon coatings for potential application in biological implants—A review. Tribol. Int. 2013, 63, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Kang, T.; Huang, S.-Y.; Huang, J.-J.; Li, Q.-H.; Diao, D.-F.; Duan, Y.-Z. The effects of diamond-like carbon films on fretting wear behavior of orthodontic archwire-bracket contacts. J. Nanosci. Nanotechnol. 2015, 15, 4641–4647. [Google Scholar] [CrossRef]
- Muguruma, T.; Iijima, M.; Kawaguchi, M.; Mizoguchi, I. Effects of sp2/sp3 ratio and hydrogen content on in vitro bending and frictional performance of DLC-coated orthodontic stainless steels. Coatings 2018, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Akaike, S.; Kobayashi, D.; Aono, Y.; Hiratsuka, M.; Hirata, A.; Hayakawa, T.; Nakamura, Y. Relationship between static friction and surface wettability of orthodontic brackets coated with diamond-like carbon (DLC), fluorine- or silicone-doped DLC coatings. Diam. Relat. Mater. 2016, 61, 109–114. [Google Scholar] [CrossRef]
- Fróis, A.; Aleixo, A.S.; Evaristo, M.; Santos, A.C.; Louro, C.S. Can a-C:H-sputtered coatings be extended to orthodontics? Coatings 2021, 11, 832. [Google Scholar] [CrossRef]
- ISO 10271:2001-Dental Metallic Materials-Corrosion Test Methods; ISO (International Organization for Standardization): Geneva, Switzerland, 2001.
- Frois, A.; Cunha, L.; Louro, C.S. Functionalization of Orthodontic Alloys with DLC Coatings. In Proceedings of the 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG); IEEE: Lisbon, Portugal, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Madamba, D. The Effect of Surface Treatment on Nickel Leaching from Nitinol. Master’s Theses, ProQuest Dissertations Publishing, Ann Arbor, MI, USA, 2013. [Google Scholar] [CrossRef]
- Schwan, J.; Ulrich, S.; Batori, V.; Ehrhardt, H.; Silva, S.R.P. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 1996, 80, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Stan, G.E.; Marcov, D.A.; Popa, A.C.; Husanu, M.A. Polymer-like and diamond-like carbon coatings prepared by RF-PECVD for biomedical applications. Dig. J. Nanomater. Biostructures 2010, 5, 705–718. [Google Scholar]
- Ryaguzov, A.P.; Yermekov, G.A.; Nurmamytov, T.E.; Nemkayeva, R.R.; Guseinov, N.R.; Aliaskarov, R.K. Visible Raman spectroscopy of carbon films synthesized by ion-plasma sputtering of graphite. J. Mater. Res. 2016, 31, 127–136. [Google Scholar] [CrossRef]
- Singha, A.; Ghosh, A.; Roy, A.; Ray, N.R. Quantitative analysis of hydrogenated diamondlike carbon films by visible Raman spectroscopy. J. Appl. Phys. 2006, 100, 044910. [Google Scholar] [CrossRef] [Green Version]
- Kuhta, M.; Pavlin, D.; Slaj, M.; Varga, S.; Lapter-Varga, M.; Slaj, M. Type of archwire and level of acidity: Effects on the release of metal ions from orthodontic appliances. Angle Orthod. 2009, 79, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, R.D.; Bishara, S.E.; Quinn, J.K. Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 8–14. [Google Scholar] [CrossRef]
- Wendl, B.; Wiltsche, H.; Lankmayr, E.; Winsauer, H.; Walter, A.; Muchitsch, A.; Jakse, N.; Wendl, M.; Wendl, T. Metal release profiles of orthodontic bands, brackets, and wires: An in vitro study. J. Orofac. Orthop. Fortschr. Der Kieferorthopädie 2017, 78, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Pound, B.G. Passive films on metallic biomaterials under simulated physiological conditions. J. Biomed. Mater. Res. Part A 2014, 102, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, Y.S.; Odnevall Wallinder, I. Metal release from stainless steel in biological environments: A review. Biointerphases 2016, 11, 018901. [Google Scholar] [CrossRef] [Green Version]
- Mikulewicz, M.; Chojnacka, K. Release of metal ions from orthodontic appliances by in vitro studies: A systematic literature review. Biol. Trace Elem. Res. 2011, 139, 241–256. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Cacciafesta, V.; Maffia, E.; Scribante, A.; Alberti, G.; Biesuz, R.; Klersy, C. Nickel release from new conventional stainless steel, recycled, and nickel-free orthodontic brackets: An in vitro study. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 809–815. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Cacciafesta, V.; Maffia, E.; Massironi, S.; Scribante, A.; Alberti, G.; Biesuz, R.; Klersy, C. Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets. Angle Orthod. 2009, 79, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F. Orthodontic wires and its corrosion—The specific case of stainless steel and beta-titanium. J. Dent. Sci. 2015, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Castro, S.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Reis Campos, J.C.; Pollmann, C. Orthodontic stainless steel wire and nickel release. In Proceedings of the Biodental Engineering V-Proceedings of the 5th International Conference on Biodental Engineering, Porto, Portugal, 22–23 June 2018; pp. 113–114. [Google Scholar]
- Kao, C.-T.; Huang, T.-H. Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different electrolyte solutions. Eur. J. Orthod. 2010, 32, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattabiraman, V.; Pai, S.; Kumari, S.; Nelivigi, N.; Sood, R.; Kumar, S. Welding of attachments in orthodontics: Technique recommendations based on a literature search. J. Indian Orthod. Soc. 2014, 48, 42–46. [Google Scholar] [CrossRef]
- Jacoby, L.S.; Junior, V.D.S.R.; Campos, M.; de Menezes, L.M. Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 957–963. [Google Scholar] [CrossRef]
- Freitas, M.P.M.; Oshima, H.M.S.; Menezes, L.M.; Machado, D.C.; Viezzer, C. Cytotoxicity of silver solder employed in orthodontics. Angle Orthod. 2009, 79, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Grimsdottir, M.R.; Gjerdet, N.R.; Hensten-Pettersen, A. Composition and in vitro corrosion of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 1992, 101, 525–532. [Google Scholar] [CrossRef]
- Berge, M.; Gjerdet, N.R.; Erichsen, E.S. Corrosion of silver soldered orthodontic wires. Acta Odontol. Scand. 1982, 40, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- De Souza, R.M.; De Menezes, L.M. Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod. 2008, 78, 345–350. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K.; Woźniak, B.; Downarowicz, P. Release of metal ions from orthodontic appliances: An in vitro study. Biol. Trace Elem. Res. 2012, 146, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staffolani, N.; Damiani, F.; Lilli, C.; Guerra, M.; Staffolani, N.J.; Beicastro, S.; Locci, P. Ion release from orthodontic appliances. J. Dent. 1999, 27, 449–454. [Google Scholar] [CrossRef]
- Hwang, C.J.; Shin, J.S.; Cha, J.Y. Metal release from simulated fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 383–391. [Google Scholar] [CrossRef]
- Hussain, H.D.; Ajith, S.D.; Goel, P. Nickel release from stainless steel and nickel titanium archwires—An in vitro study. J. Oral Biol. Craniofacial Res. 2016, 6, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Haddad, A.C.S.S.; Tortamano, A.; de Souza, A.L.; de Oliveira, P.V. An in vitro comparison of nickel and chromium release from brackets. Braz. Oral Res. 2009, 23, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Ibáñez, R.; Lara-Carrillo, E.; Morales-Luckie, R.A.; Romero-Guzmán, E.T.; Toral-Rizo, V.H.; Ramírez-Cardona, M.; García-Hernández, V.; Medina-Solís, C.E. Evaluation of the release of nickel and titanium under orthodontic treatment. Sci. Rep. 2020, 10, 22280. [Google Scholar] [CrossRef] [PubMed]
- Hatem, A.; Lin, J.; Wei, R.; Torres, R.D.; Laurindo, C.; Soares, P. Tribocorrosion behavior of DLC-coated Ti-6Al-4V alloy deposited by PIID and PEMS + PIID techniques for biomedical applications. Surf. Coat. Technol. 2017, 332, 223–232. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, X.; Lee, P.; Wei, R. Thick diamond like carbon coatings deposited by deep oscillation magnetron sputtering. Surf. Coat. Technol. 2017, 315, 294–302. [Google Scholar] [CrossRef]
- Keunecke, M.; Weigel, K.; Bewilogua, K.; Cremer, R.; Fuss, H.-G. Preparation and comparison of a-C:H coatings using reactive sputter techniques. Thin Solid Film. 2009, 518, 1465–1469. [Google Scholar] [CrossRef]
- Chowdhury, S.; Laugier, M.T.; Rahman, I.Z. Characterization of DLC coatings deposited by rf magnetron sputtering. J. Mater. Process. Technol. 2004, 153–154, 804–810. [Google Scholar] [CrossRef]
- Louro, C.; Moura, C.W.; Carvalho, N.; Stueber, M.; Cavaleiro, A. Thermal stability in oxidative and protective environments of a-C:H cap layer on a functional gradient coating. Diam. Relat. Mater. 2011, 20, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wei, X.; Lin, Y.; Wang, F. A ternary phase diagram for amorphous carbon. Carbon 2015, 94, 202–213. [Google Scholar] [CrossRef]
- Buijnsters, J.G.; Gago, R.; Jiménez, I.; Camero, M.; Agulló-Rueda, F.; Gómez-Aleixandre, C. Hydrogen quantification in hydrogenated amorphous carbon films by infrared, Raman, and x-ray absorption near edge spectroscopies. J. Appl. Phys. 2009, 105, 093510. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.U.; Mayan Kutty, P.C.; Siddiqi, N.A.; Andijani, I.N.; Ahmed, S. The influence of pH and chloride concentration on the corrosion behaviour of AISI 316L steel in aqueous solutions. Corros. Sci. 1992, 33, 1809–1827. [Google Scholar] [CrossRef]
- Akpanyung, K.; Loto, R. Pitting corrosion evaluation: A review. J. Phys. Conf. Ser. 2019, 1378, 022088. [Google Scholar] [CrossRef]
- Chen, J.S.; Lau, S.P.; Sun, Z.; Chen, G.Y.; Li, Y.J.; Tay, B.K.; Chai, J.W. Metal-containing amorphous carbon films for hydrophobic application. Thin Solid Film. 2001, 398–399, 110–115. [Google Scholar] [CrossRef]
- Sun, L.; Guo, P.; Li, X.; Wang, A. Comparative study on structure and wetting properties of diamond-like carbon films by W and Cu doping. Diam. Relat. Mater. 2017, 73, 278–284. [Google Scholar] [CrossRef]
- Gotzmann, G.; Beckmann, J.; Wetzel, C.; Scholz, B.; Herrmann, U.; Neunzehn, J. Electron-beam modification of DLC coatings for biomedical applications. Surf. Coat. Technol. 2017, 311, 248–256. [Google Scholar] [CrossRef]
- Ishige, H.; Akaike, S.; Hayakawa, T.; Hiratsuka, M.; Nakamura, Y. Evaluation of protein adsorption to diamond-like carbon (DLC) and fluorinedoped DLC films using the quartz crystal microbalance method. Dent. Mater. J. 2019, 38, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilic, E.; Pardo, A.; Suter, T.; Mischler, S.; Schmutz, P.; Hauert, R. A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces. Surf. Coat. Technol. 2019, 375, 402–413. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ohgoe, Y.; Ozeki, K.; Hirakuri, K.; Aoki, H. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J. Mater. Sci. Mater. Med. 2007, 18, 2263–2268. [Google Scholar] [CrossRef]
- Ohgoe, Y.; Kobayashi, S.; Ozeki, K.; Aoki, H.; Nakamori, H.; Hirakuri, K.K.; Miyashita, O. Reduction effect of nickel ion release on a diamond-like carbon film coated onto an orthodontic archwire. Thin Solid Film. 2006, 497, 218–222. [Google Scholar] [CrossRef]
- Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Corrosion performance of Fe-Cr-Ni Alloys in artificial saliva and mouthwash solution. Bioinorg. Chem. Appl. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
Component | Grade | Composition (wt.%) | ||||||
---|---|---|---|---|---|---|---|---|
Ni | Cr | C | Mn | Si | Cu | Fe | ||
Brackets 1 | AISI303 | 8–10 | 17–19 | ≤0.15 | ≤2 | ≤1 | - | Balance |
Tubes 2 | AISI630 | 3–5 | 15–18 | ≤0.07 | ≤2 | ≤1 | 3–5 | Balance |
Bands 1 | AISI305 | 11–13 | 17–19 | ≤0.12 | ≤2 | ≤1 | - | Balance |
Substrates for coatings | AISI310 | 19–22 | 24–26 | ≤0.25 | ≤2 | ≤1.5 | - | Balance |
Concentration [g/L] | ||||||
---|---|---|---|---|---|---|
NaCl | KCl | CaCl2∙2H2O | NaH2PO4 | Na2S∙9H2O | CO (NH2)2 | HCl (1M) |
0.4 | 0.4 | 0.795 | 0.78 | 0.005 | 1 | until pH 6.8 or 2.3 |
- | Concentration (µg/L) | ||||
---|---|---|---|---|---|
Samples | Days | pH | Ni | Cr | Fe |
Brackets | 30 | 6.8 | 54 | 24 | 218 |
2.3 | 75,020 | 24,380 | 138,960 | ||
Tubes | 30 | 6.8 | 11 | <LD | 90 |
2.3 | 691 | 2162 | 10,723 | ||
Bands | 30 | 6.8 | 363 | 125 | 2710 |
2.3 | 593 | 812 | 4608 | ||
SS310 | 7 | 6.8 | 17 | <LD | 145 |
2.3 | 38 | 29 | 256 | ||
30 | 6.8 | 20 | 23 | 182 | |
2.3 | 42 | 35 | 356 | ||
a-C:H | 7 | 6.8 | 12 | <LD | 69 |
2.3 | 34 | 40 | 217 | ||
30 | 6.8 | 12 | 21 | 77 | |
2.3 | 64 | 51 | 345 |
- | - | As-Deposited | As-Immersed | |||
---|---|---|---|---|---|---|
- | - | - | 7 Days | 30 Days | ||
pH 6.8 | pH 2.3 | pH 6.8 | pH 2.3 | |||
Elemental composition [at.%] | C | 96.4 | NE | NE | 96.7 | 96.7 |
Cr | 2.0 | 1.6 | 1.6 | |||
Ar | 1.6 | 1.7 | 1.7 | |||
Roughness [nm] | Ra | 6.8 | NE | NE | NE | 8.7 |
Contact Angle [º] | - | 56 ± 6 | 62 ± 12 | 59 ± 6 | 54 ± 2 | 54 ± 3 |
Nanohardness [GPa] | HB | 22.7 ± 3.9 | 20.5 ± 1.9 | 17.5 ± 1 | 23.7 ± 1.9 | 20.5 ± 2.0 |
Raman bonding configuration | G band [cm−1] | 1549 | 1550 | 1548 | 1546 | 1546 |
ID/IG ratio | 0.45 | 0.45 | 0.46 | 0.45 | 0.46 | |
C-C sp3 [%] | 39 | 39 | 40 | 41 | 41 | |
FTIR analysis | C-H sp2/sp3 ratio | 0.31 | 0.31 | 0.19 | 0.16 | 0.16 |
Index (i) | Peak Assignment [21] | As-dep. | 7 Days pH = 6.8 | 7 Days pH = 2.3 | 30 Days pH = 6.8 | 30 Days pH = 2.3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Configuration | Position | Posi | Ai | Posi | Ai | Posi | Ai | Posi | Ai | Posi | Ai | |
(cm−1) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | ||
1 | CH2–sp2 (A) | 3085 | 3079 | 0.03 | 3080 | 0.06 | 3078 | 0.05 | 3082 | 0.04 | 3080 | 0.03 |
2 | CH–sp2 | 3035 | 3036 | 0.03 | 3044 | 0.06 | 3036 | 0.04 | 3035 | 0.06 | 3037 | 0.04 |
3 | CH–sp2 (S) | 2990–3000 | 2995 | 0.94 | 2997 | 0.85 | 2997 | 0.46 | 2994 | 0.16 | 3004 | 0.19 |
4 | CH2–sp2 (S) | 2975 | 2966 | 0.39 | 2974 | 0.25 | 2973 | 0.21 | 2974 | 0.07 | 2974 | 0.09 |
5 | CH3–sp3 (A) | 2955 | 2944 | 0.60 | 2948 | 0.43 | 2949 | 0.50 | 2943 | 0.28 | 2945 | 0.45 |
6 | CH2–sp3 (A) | 2920 | 2921 | 1.23 | 2924 | 1.17 | 2922 | 1.17 | 2919 | 0.48 | 2918 | 0.46 |
7 | CH–sp3 | 2920 | 2913 | 0.06 | 2914 | 0.05 | 2915 | 0.09 | 2914 | 0.08 | 2912 | 0.05 |
8 | CH3–sp3 (S) | 2885 | 2898 | 0.67 | 2897 | 0.66 | 2897 | 0.51 | 2895 | 0.22 | 2897 | 0.30 |
9 | CH2–sp3 (S) | 2855 | 2862 | 1.93 | 2861 | 1.66 | 2860 | 1.63 | 2860 | 1.06 | 2860 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fróis, A.; Evaristo, M.; Santos, A.C.; Louro, C.S. Salivary pH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System. Coatings 2021, 11, 1302. https://doi.org/10.3390/coatings11111302
Fróis A, Evaristo M, Santos AC, Louro CS. Salivary pH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System. Coatings. 2021; 11(11):1302. https://doi.org/10.3390/coatings11111302
Chicago/Turabian StyleFróis, António, Manuel Evaristo, Ana Cristina Santos, and Cristina Santos Louro. 2021. "Salivary pH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System" Coatings 11, no. 11: 1302. https://doi.org/10.3390/coatings11111302
APA StyleFróis, A., Evaristo, M., Santos, A. C., & Louro, C. S. (2021). Salivary pH Effect on Orthodontic Appliances: In Vitro Study of the SS/DLC System. Coatings, 11(11), 1302. https://doi.org/10.3390/coatings11111302