An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds
Abstract
1. Introduction
2. Genetic Engineering of Actinomycetes
2.1. Assembly Strategies for Generation of Constructs for Genetic Engineering of Actinomycetes
2.1.1. iCatch
2.1.2. Direct Pathway Cloning (DiPaC)
2.1.3. Artificial Gene Operon Assembly System (AGOS)
2.1.4. Modified Gibson Assembly for Cloning Large High CG DNA Fragments
2.2. Introduction of Genetic Constructs into the Host: Delivery and Engineering Tools
2.2.1. Genetic Parts and Other Regulatory Elements for Engineering of Actinomycetes Genomes
Newly Identified, Synthetic and Modified Promoters and Other Genetic Regulatory Elements for Construction of Expression Plasmids
Riboswitches for Biosensors
2.2.2. Integrative and Replicative Expression Systems for Actinomycetes
Multiplex Integration Systems for Site-Specific Genome Engineering
2.2.3. Transposon- and Homologous Recombination-Based Systems for Actinomycetes Engineering
2.2.4. CRISPR/Cas–Based Editing Tools for Actinomycetes
CRISPR/Cas9-Mediated Genome Editing Using pCRISPomyces
CRISPR/Cas9-Mediated Genome Editing Using pKCcas9dO
CRISPR/Cas9-Mediated Genome Editing Using pCRISPR-Cas9
CRISPR/dCas9-Mediated Multiplex Gene Repression
CRISPR/Cas Base Editing System (CRISPR-BEST)
CRISPR/Cas9-CodA(sm) Combined System
CRISPR/Cas9 Knock-In Strategy
Generic CRISPR/Cas9 Approach Using the Same sgRNA for Editing
Fine-Tuning of Cas9 Expression
CRISPR/Cas9 TAR Cloning Approach
Cas9-Assisted Targeting of Chromosome Segments (CATCH)
Gibson Assembly Combined with CRISPR/Cas9
In vitro Packaging Mediated One-Step Targeted Cloning
3. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACT | actinorhodin |
AGOS | artificial gene operon assembly system |
AICE | actinomycetes integrative and conjugative elements |
aMSGE | advanced multiplexed site-specific genome engineering |
BAC | bacterial artificial chromosome |
BGC | biosynthetic gene cluster |
CATCH | Cas9-assisted targeting of chromosome segments |
CRISPR/Cas | clustered regularly interspaced short palindromic repeats/CRISPR associated |
crRNA | CRISPR RNA |
DiPaC | Direct pathway cloning |
DSB | double-strand break |
DNA | deoxyribonucleic acid |
gDNA | genomic DNA |
GFP | green fluorescent protein |
GusA | glucuronidase |
HDR | homology directed repair |
HE | homing endonuclease |
MCS | multiple cloning site |
mRNA | messenger RNA |
MSGE | multiplexed site-specific genome engineering |
NHEJ | non-homologous end joining |
NRPS | nonribosomal peptide synthetase |
OTC | oxytetracycline |
PCR | polymerase chain reaction |
PKS | polyketide synthase |
PTM | polycyclic tetramate macrolactam |
qPCR | quantitative PCR |
RBS | ribosome binding sites |
Real-time RT-PCR | real-time reverse-transcription quantitative polymerase |
RNA | ribonucleic acid |
SD | Shine-Dalgarno |
SEVA | standard European vector architecture |
sgRNA | synthetic guide RNA |
SLIC | sequence- and ligation-independent cloning |
TAR | transformation associated recombination |
tracrRNA | trans-activating CRISPR RNA |
UTR | untranslated region |
YAC | yeast artificial chromosome |
References
- Nouioui, I.; Carro, L.; Garcia-Lopez, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.P.; Goodfellow, M.; Goker, M. Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Whitman, W.; Goodfellow, M.; Kämpfer, P.; Busse, H.-J.; Trujillo, M.; Ludwig, W.; Suzuki, K.-I.; Parte, A. Bergey’s Manual of Systematic Bacteriology, “the Actinobacteria”, 2nd ed.; Springer-Verlag: New York, NY, USA, 2012; pp. 1–2083. [Google Scholar]
- Gao, B.; Gupta, R.S. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria. Microbiol. Mol. Biol. Rev. 2012, 76, 66–112. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Lal, D.; Kaur, J.; Saxena, A.; Kaur, J.; Anand, S.; Lal, R. Phylogenetic Analyses of Phylum Actinobacteria Based on Whole Genome Sequences. Res. Microbiol. 2013, 164, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Waksman, S.A. Studies in the Metabolism of Actinomycetes: Part II. J. Bacteriol. 1919, 4, 307–330. [Google Scholar] [CrossRef]
- Waksman, S.A. Studies in the Metabolism of Actinomycetes: Part I. J. Bacteriol. 1919, 4, 189–216. [Google Scholar] [CrossRef]
- Waksman, S.A. On the Classification of Actinomycetes. J. Bacteriol. 1940, 39, 549–558. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clement, C.; Ouhdouch, Y.; Van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef]
- Goodfellow, M.; Nouioui, I.; Sanderson, R.; Xie, F.; Bull, A.T. Rare Taxa and Dark Microbial Matter: Novel Bioactive Actinobacteria Abound in Atacama Desert Soils. Antonie Van Leeuwenhoek 2018, 111, 1315–1332. [Google Scholar] [CrossRef]
- Singh, R.; Dubey, A.K. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Front. Microbiol. 2018, 9, 1767. [Google Scholar] [CrossRef]
- Guo, X.; Liu, N.; Li, X.; Ding, Y.; Shang, F.; Gao, Y.; Ruan, J.; Huang, Y. Red Soils Harbor Diverse Culturable Actinomycetes That Are Promising Sources of Novel Secondary Metabolites. Appl. Environ. Microbiol. 2015, 81, 3086–3103. [Google Scholar] [CrossRef]
- Jackson, T.A. Fossil Actinomycetes in Middle Precambrian Glacial Varves. Science 1967, 155, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Poomthongdee, N.; Duangmal, K.; Pathom-aree, W. Acidophilic Actinomycetes from Rhizosphere Soil: Diversity and Properties Beneficial to Plants. J. Antibiot. (Tokyo) 2015, 68, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Takahashi, Y. Endophytic Actinomycetes: Promising Source of Novel Bioactive Compounds. J. Antibiot. (Tokyo) 2017, 70, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Chouvenc, T.; Elliott, M.L.; Sobotnik, J.; Efstathion, C.A.; Su, N.Y. The Termite Fecal Nest: A Framework for the Opportunistic Acquisition of Beneficial Soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ. Entomol. 2018, 47, 1431–1439. [Google Scholar] [CrossRef]
- Scott, J.J.; Oh, D.C.; Yuceer, M.C.; Klepzig, K.D.; Clardy, J.; Currie, C.R. Bacterial Protection of Beetle-Fungus Mutualism. Science 2008, 322, 63. [Google Scholar] [CrossRef]
- Zaher, F.; Isenberg, H.D.; Rosenfeld, M.H.; Schatz, A. The Distribution of Soil Actinomycetes Antagonistic to Protozoa. J. Parasitol. 1953, 39, 33–37. [Google Scholar] [CrossRef]
- Takasuka, T.E.; Book, A.J.; Lewin, G.R.; Currie, C.R.; Fox, B.G. Aerobic Deconstruction of Cellulosic Biomass by an Insect-Associated Streptomyces. Sci. Rep. 2013, 3, 1030. [Google Scholar] [CrossRef]
- Yang, T.; Yamada, K.; Zhou, T.; Harunari, E.; Igarashi, Y.; Terahara, T.; Kobayashi, T.; Imada, C. Akazamicin, a Cytotoxic Aromatic Polyketide from Marine-Derived Nonomuraea Sp. J. Antibiot. (Tokyo) 2019, 72, 202–209. [Google Scholar] [CrossRef]
- Iniyan, A.M.; Sudarman, E.; Wink, J.; Kannan, R.R.; Vincent, S.G.P. Ala-Geninthiocin, a New Broad Spectrum Thiopeptide Antibiotic, Produced by a Marine Streptomyces Sp. Icn19. J. Antibiot. (Tokyo) 2019, 72, 99–105. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, L. Diversity of Aquatic Actinomycetes in Lakes of the Middle Plateau, Yunnan, China. Appl. Environ. Microbiol. 1996, 62, 249–253. [Google Scholar] [CrossRef]
- Lee, G.C.; Kim, Y.S.; Kim, M.J.; Oh, S.A.; Choi, I.; Choi, J.; Park, J.G.; Chong, C.K.; Kim, Y.Y.; Lee, K.; et al. Presence, Molecular Characteristics and Geosmin Producing Ability of Actinomycetes Isolated from South Korean Terrestrial and Aquatic Environments. Water Sci. Technol. 2011, 63, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, I.; Hameed, K.M.; Moussauui, A. Characterization and Analysis of Antibiotic Activity of Some Aquatic Actinomycetes. Microbios. 1999, 99, 173–179. [Google Scholar] [PubMed]
- Ueda, J.Y.; Khan, S.T.; Takagi, M.; Shin-ya, K. Jbir-58, A New Salicylamide Derivative, Isolated from a Marine Sponge-Derived Streptomyces Sp. Spd081030me-02. J. Antibiot. (Tokyo) 2010, 63, 267–269. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.S.; Sayed, A.M.; Mohammed, R.; Khanfar, M.A.; Rateb, M.E.; Mohammed, T.A.; Hajjar, D.; Hassan, H.M.; Gulder, T.A.M.; Abdelmohsen, U.R. New Pim-1 Kinase Inhibitor from the Co-Culture of Two Sponge-Associated Actinomycetes. Front. Chem. 2018, 6, 538. [Google Scholar] [CrossRef] [PubMed]
- Mehbub, M.F.; Tanner, J.E.; Barnett, S.J.; Franco, C.M.; Zhang, W. The Role of Sponge-Bacteria Interactions: The Sponge Aplysilla rosea Challenged by Its Associated Bacterium Streptomyces act-52a in a Controlled Aquarium System. Appl. Microbiol. Biotechnol. 2016, 100, 10609–10626. [Google Scholar] [CrossRef]
- Minas, W.; Bailey, J.E.; Duetz, W. Streptomycetes in Micro-Cultures: Growth, Production of Secondary Metabolites, and Storage and Retrieval in the 96-Well Format. Antonie Van Leeuwenhoek 2000, 78, 297–305. [Google Scholar] [CrossRef]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes Benefaction Role in Soil and Plant Health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Saini, A.; Aggarwal, N.K.; Sharma, A.; Yadav, A. Actinomycetes: A Source of Lignocellulolytic Enzymes. Enzyme Res. 2015, 2015. [Google Scholar] [CrossRef]
- Sellstedt, A.; Richau, K.H. Aspects of Nitrogen-Fixing Actinobacteria, in Particular Free-Living and Symbiotic Frankia. FEMS Microbiol. Lett. 2013, 342, 179–186. [Google Scholar] [CrossRef]
- Dahal, B.; NandaKafle, G.; Perkins, L.; Brozel, V.S. Diversity of Free-Living Nitrogen Fixing Streptomyces in Soils of the Badlands of South Dakota. Microbiol. Res. 2017, 195, 31–39. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Wang, X.; Chen, D.; Chen, X.; Wang, L.; Han, L.; Huang, X.; Jiang, C. Diversity, Antimicrobial Activity, and Biosynthetic Potential of Cultivable Actinomycetes Associated with Lichen Symbiosis. Microb. Ecol. 2017, 74, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sosa-Calvo, J.; Horn, H.A.; Pupo, M.T.; Clardy, J.; Rabeling, C.; Schultz, T.R.; Currie, C.R. Convergent Evolution of Complex Structures for Ant-Bacterial Defensive Symbiosis in Fungus-Farming Ants. Proc. Natl. Acad. Sci. USA 2018, 115, 10720–10725. [Google Scholar] [CrossRef] [PubMed]
- Van der Meij, A.; Willemse, J.; Schneijderberg, M.A.; Geurts, R.; Raaijmakers, J.M.; Van Wezel, G.P. Inter- and Intracellular Colonization of Arabidopsis Roots by Endophytic Actinobacteria and the Impact of Plant Hormones on Their Antimicrobial Activity. Antonie Van Leeuwenhoek 2018, 111, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Kaltenpoth, M.; Yildirim, E.; Gurbuz, M.F.; Herzner, G.; Strohm, E. Refining the Roots of the Beewolf-Streptomyces Symbiosis: Antennal Symbionts in the Rare Genus Philanthinus (Hymenoptera, Crabronidae). Appl. Environ. Microbiol. 2012, 78, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Kaltenpoth, M. Actinobacteria as Mutualists: General Healthcare for Insects? Trends Microbiol. 2009, 17, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Kurtboke, D.I.; French, J.R.; Hayes, R.A.; Quinn, R.J. Eco-Taxonomic Insights into Actinomycete Symbionts of Termites for Discovery of Novel Bioactive Compounds. Adv. Biochem. Eng. Biotechnol. 2015, 147, 111–135. [Google Scholar]
- Visser, A.A.; Nobre, T.; Currie, C.R.; Aanen, D.K.; Poulsen, M. Exploring the Potential for Actinobacteria as Defensive Symbionts in Fungus-Growing Termites. Microb. Ecol. 2012, 63, 975–985. [Google Scholar] [CrossRef]
- Kim, K.H.; Ramadhar, T.R.; Beemelmanns, C.; Cao, S.; Poulsen, M.; Currie, C.R.; Clardy, J. Natalamycin A, an Ansamycin from a Termite-Associated Streptomyces Sp. Chem. Sci. 2014, 5, 4333–4338. [Google Scholar] [CrossRef]
- Beemelmanns, C.; Ramadhar, T.R.; Kim, K.H.; Klassen, J.L.; Cao, S.; Wyche, T.P.; Hou, Y.; Poulsen, M.; Bugni, T.S.; Currie, C.R.; et al. Macrotermycins A-D, Glycosylated Macrolactams from a Termite-Associated Amycolatopsis Sp. M39. Org. Lett. 2017, 19, 1000–1003. [Google Scholar] [CrossRef]
- Robertsen, H.L.; Musiol-Kroll, E.M. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel) 2019, 8, 157. [Google Scholar] [CrossRef]
- Subramani, R.; Sipkema, D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar. Drugs 2019, 17, 249. [Google Scholar] [CrossRef] [PubMed]
- Genilloud, O. Actinomycetes: Still a Source of Novel Antibiotics. Nat. Prod. Rep. 2017, 34, 1203–1232. [Google Scholar] [CrossRef] [PubMed]
- Waksman, S.A.; Woodruff, H.B. Actinomyces antibioticus, a New Soil Organism Antagonistic to Pathogenic and Non-Pathogenic Bacteria. J. Bacteriol. 1941, 42, 231–249. [Google Scholar] [CrossRef]
- Hug, J.J.; Bader, C.D.; Remskar, M.; Cirnski, K.; Muller, R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. The Science of Antibiotic Discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Van der Meij, A.; Worsley, S.F.; Hutchings, M.I.; Van Wezel, G.P. Chemical Ecology of Antibiotic Production by Actinomycetes. FEMS Microbiol. Rev. 2017, 41, 392–416. [Google Scholar] [CrossRef]
- Nett, M.; Ikeda, H.; Moore, B.S. Genomic Basis for Natural Product Biosynthetic Diversity in the Actinomycetes. Nat. Prod. Rep. 2009, 26, 1362–1384. [Google Scholar] [CrossRef]
- Takahashi, Y.; Nakashima, T. Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics. Antibiotics (Basel) 2018, 7, 45. [Google Scholar] [CrossRef]
- Landwehr, W.; Wolf, C.; Wink, J. Actinobacteria and Myxobacteria-Two of the Most Important Bacterial Resources for Novel Antibiotics. Curr. Top. Microbiol. Immunol. 2016, 398, 273–302. [Google Scholar]
- Dhakal, D.; Pokhrel, A.R.; Shrestha, B.; Sohng, J.K. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front. Microbiol. 2017, 8, 1106. [Google Scholar] [CrossRef]
- Bentley, S.D.; Chater, K.F.; Cerdeno-Tarraga, A.M.; Challis, G.L.; Thomson, N.R.; James, K.D.; Harris, D.E.; Quail, M.A.; Kieser, H.; Harper, D.; et al. Complete Genome Sequence of the Model Actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Baral, B.; Akhgari, A.; Metsa-Ketela, M. Activation of Microbial Secondary Metabolic Pathways: Avenues and Challenges. Synth. Syst. Biotechnol. 2018, 3, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Onaka, H. Novel Antibiotic Screening Methods to Awaken Silent or Cryptic Secondary Metabolic Pathways in Actinomycetes. J. Antibiot. (Tokyo) 2017, 70, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Ochi, K.; Hosaka, T. New Strategies for Drug Discovery: Activation of Silent or Weakly Expressed Microbial Gene Clusters. Appl. Microbiol. Biotechnol. 2013, 97, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Becerril, A.; Alvarez, S.; Brana, A.F.; Rico, S.; Diaz, M.; Santamaria, R.I.; Salas, J.A.; Mendez, C. Uncovering Production of Specialized Metabolites by Streptomyces argillaceus: Activation of Cryptic Biosynthesis Gene Clusters Using Nutritional and Genetic Approaches. PLoS One 2018, 13, e0198145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, W.P.; Ye, B.C. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. ACS Synth. Biol. 2018, 7, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, J.; Zhuo, J.; Li, Y.; Tian, Y.; Tan, H. Activation and Mechanism of a Cryptic Oviedomycin Gene Cluster Via the Disruption of a Global Regulatory Gene, adpA, in Streptomyces ansochromogenes. J. Biol. Chem. 2017, 292, 19708–19720. [Google Scholar] [CrossRef]
- Thanapipatsiri, A.; Gomez-Escribano, J.P.; Song, L.; Bibb, M.J.; Al-Bassam, M.; Chandra, G.; Thamchaipenet, A.; Challis, G.L.; Bibb, M.J. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster. Chem. Biochem. 2016, 17, 2189–2198. [Google Scholar]
- Ochi, K. Insights into Microbial Cryptic Gene Activation and Strain Improvement: Principle, Application and Technical Aspects. J. Antibiot. (Tokyo) 2017, 70, 25–40. [Google Scholar] [CrossRef]
- Monciardini, P.; Iorio, M.; Maffioli, S.; Sosio, M.; Donadio, S. Discovering New Bioactive Molecules from Microbial Sources. Microb. Biotechnol. 2014, 7, 209–220. [Google Scholar] [CrossRef]
- Van Bergeijk, D.A.; Terlouw, B.R.; Medema, M.H.; Van Wezel, G.P. Ecology and Genomics of Actinobacteria: New Concepts for Natural Product Discovery. Nat. Rev. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Baltz, R.H. Gifted Microbes for Genome Mining and Natural Product Discovery. J. Ind. Microbiol. Biotechnol. 2017, 44, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Kealey, C.; Creaven, C.A.; Murphy, C.D.; Brady, C.B. New Approaches to Antibiotic Discovery. Biotechnol. Lett. 2017, 39, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Genilloud, O. Mining Actinomycetes for Novel Antibiotics in the Omics Era: Are We Ready to Exploit This New Paradigm? Antibiotics (Basel) 2018, 7, 85. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Dhakal, D.; Pham, V.T.T.; Nguyen, H.T.; Sohng, J.K. Recent Advances in Strategies for Activation and Discovery/Characterization of Cryptic Biosynthetic Gene Clusters in Streptomyces. Microorganisms 2020, 8, 616. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. Antismash 5.0: Updates to the Secondary Metabolite Genome Mining Pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef]
- Hug, J.J.; Krug, D.; Müller, R. Bacteria as Genetically Programmable Producers of Bioactive Natural Products. Nat. Rev. Chem. 2020, 4, 172–193. [Google Scholar] [CrossRef]
- Bu, Q.-T.; Yu, P.; Wang, J.; Li, Z.-Y.; Chen, X.-A.; Mao, X.-M.; Li, Y.-Q.J.M.c.f. Rational Construction of Genome-Reduced and High-Efficient Industrial Streptomyces Chassis Based on Multiple Comparative Genomic Approaches. Microb. Cell. Fact. 2019, 18, 1–17. [Google Scholar] [CrossRef]
- Ikeda, H.; Shin-ya, K.; Omura, S.J. Genome Mining of the Streptomyces avermitilis Genome and Development of Genome-Minimized Hosts for Heterologous Expression of Biosynthetic Gene Clusters. J. Ind. Microbiol. Biotechnol. 2014, 41, 233–250. [Google Scholar] [CrossRef]
- Komatsu, M.; Uchiyama, T.; Ōmura, S.; Cane, D.E.; Ikeda, H. Genome-Minimized Streptomyces Host for the Heterologous Expression of Secondary Metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef]
- Myronovskyi, M.; Luzhetskyy, A. Heterologous Production of Small Molecules in the Optimized Streptomyces Hosts. Nat. Prod. Rep. 2019, 36, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A.J.M.E. Generation of a Cluster-Free Streptomyces albus Chassis Strains for Improved Heterologous Expression of Secondary Metabolite Clusters. Metab. Eng. 2018, 49, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Musiol-Kroll, E.M.; Tocchetti, A.; Sosio, M.; Stegmann, E. Challenges and Advances in Genetic Manipulation of Filamentous Actinomycetes - the Remarkable Producers of Specialized Metabolites. Nat. Prod. Rep. 2019, 36, 1351–1369. [Google Scholar] [CrossRef] [PubMed]
- Loman, N.J.; Pallen, M.J. Twenty Years of Bacterial Genome Sequencing. Nat. Rev. Microbiol. 2015, 13, 787–794. [Google Scholar] [CrossRef] [PubMed]
- F, D.I.F.; Micheli, G.; Camilloni, G. Restriction Enzymes and Their Use in Molecular Biology: An Overview. J. Biosci. 2019, 44, 38. [Google Scholar]
- Rittie, L.; Perbal, B. Enzymes Used in Molecular Biology: A Useful Guide. J. Cell Commun. Signal 2008, 2, 25–45. [Google Scholar] [CrossRef]
- Wohlleben, W.; Mast, Y.; Muth, G.; Rottgen, M.; Stegmann, E.; Weber, T. Synthetic Biology of Secondary Metabolite Biosynthesis in Actinomycetes: Engineering Precursor Supply as a Way to Optimize Antibiotic Production. FEBS Lett. 2012, 586, 2171–2176. [Google Scholar] [CrossRef]
- Baltz, R.H. Synthetic Biology, Genome Mining, and Combinatorial Biosynthesis of NRPS-Derived Antibiotics: A Perspective. J. Ind. Microbiol. Biotechnol. 2018, 45, 635–649. [Google Scholar] [CrossRef]
- Aubry, C.; Pernodet, J.-L.; Lautru, S. Modular and Integrative Vectors for Synthetic Biology Applications in Streptomyces Spp. Appl. Environ. Microbiol. 2019, 85, e00485–e00419. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Jiang, W.; Lu, Y. Recent Advances in Synthetic Biology Approaches to Optimize Production of Bioactive Natural Products in Actinobacteria. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Shetty, R.P.; Endy, D.; Knight, T.F., Jr. Engineering Biobrick Vectors from Biobrick Parts. J. Biol. Eng. 2008, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Purnick, P.E.; Weiss, R. The Second Wave of Synthetic Biology: From Modules to Systems. Nat. Rev. Mol. Cell Biol. 2009, 10, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Rebets, Y.; Brotz, E.; Tokovenko, B.; Luzhetskyy, A. Actinomycetes Biosynthetic Potential: How to Bridge in Silico and in Vivo? J. Ind. Microbiol. Biotechnol. 2014, 41, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics, 1st ed.; John Innes Foundation: Norwich, England, 2000; pp. 18–581. [Google Scholar]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; Van Sinderen, D. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef] [PubMed]
- Kinashi, H.; Shimaji, M.; Sakai, A. Giant Linear Plasmids in Streptomyces Which Code for Antibiotic Biosynthesis Genes. Nature 1987, 328, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Mast, Y.; Weber, T.; Gölz, M.; Ort-Winklbauer, R.; Gondran, A.; Wohlleben, W.; Schinko, E. Characterization of the ‘Pristinamycin Supercluster’ of Streptomyces pristinaespiralis. Microb Biotechnol 2011, 4, 192–206. [Google Scholar] [CrossRef]
- Wang, J.; Lu, A.; Liu, J.; Huang, W.; Wang, J.; Cai, Z.; Zhao, G. Icatch: A New Strategy for Capturing Large DNA Fragments Using Homing Endonucleases. Acta Bioch. Bioph. Sin. 2018, 51, 97–103. [Google Scholar] [CrossRef]
- Liu, J.-K.; Chen, W.-H.; Ren, S.-X.; Zhao, G.-P.; Wang, J. Ibrick: A New Standard for Iterative Assembly of Biological Parts with Homing Endonucleases. PloS one 2014, 9, e110852. [Google Scholar] [CrossRef]
- Knight, T. Idempotent Vector Design for Standard Assembly of Biobricks. Available online: http://hdl.handle.net/1721.1/21168 (accessed on 20 May 2020).
- Greunke, C.; Regina Duell, E.; D’Agostino, P.; Glöckle, A.; Lamm, K.; Am Gulder, T. Direct Pathway Cloning (DiPaC) to Unlock Natural Product Biosynthetic Potential. Metab. Eng. 2018, 47, 334–345. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Yim, H.-S.; Ryu, J.-Y.; Lee, H.S.; Lee, J.-H.; Seen, D.-S.; Kang, S.G. One-Step Sequence-and Ligation-Independent Cloning as a Rapid and Versatile Cloning Method for Functional Genomics Studies. Appl. Environ. Microbiol. 2012, 78, 5440–5443. [Google Scholar] [CrossRef]
- D’Agostino, P.M.; Gulder, T.A. Direct Pathway Cloning Combined with Sequence- and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and Heterologous Expression. ACS Synth. Biol. 2018, 7, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Basitta, P.; Westrich, L.; Rösch, M.; Kulik, A.; Gust, B.; Apel, A.K. Agos: A Plug-and-Play Method for the Assembly of Artificial Gene Operons into Functional Biosynthetic Gene Clusters. ACS Synth. Biol. 2017, 6, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Gust, B.; Chandra, G.; Jakimowicz, D.; Yuqing, T.; Bruton, C.J.; Chater, K.F. L Red-Mediated Genetic Manipulation of Antibiotic-Producing Streptomyces. Adv. Appl. Microbiol. 2004, 54, 107–128. [Google Scholar] [PubMed]
- Eustáquio, A.S.; Gust, B.; Li, S.-M.; Pelzer, S.; Wohlleben, W.; Chater, K.F.; Heide, L. Production of 8′-Halogenated and 8′-Unsubstituted Novobiocin Derivatives in Genetically Engineered Streptomyces coelicolor Strains. Chem. Biol. 2004, 11, 1561–1572. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A.; Smith, H.O. Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, Y.; Ruan, L.; Yang, S.; Ge, M.; Jiang, W.; Lu, Y. A Stepwise Increase in Pristinamycin II Biosynthesis by Streptomyces pristinaespiralis through Combinatorial Metabolic Engineering. Metab. Eng. 2015, 29, 12–25. [Google Scholar] [CrossRef]
- Te Poele, E.M.; Bolhuis, H.; Dijkhuizen, L.J.A.V.L. Actinomycete Integrative and Conjugative Elements. Antonie Van Leeuwenhoek 2008, 94, 127–143. [Google Scholar] [CrossRef]
- Siegl, T.; Luzhetskyy, A. Actinomycetes Genome Engineering Approaches. Antonie Van Leeuwenhoek 2012, 102, 503–516. [Google Scholar] [CrossRef]
- Jang, M.S.; Fujita, A.; Ikawa, S.; Hanawa, K.; Yamamura, H.; Tamura, T.; Hayakawa, M.; Tezuka, T.; Ohnishi, Y. Isolation of a Novel Plasmid from Couchioplanes caeruleus and Construction of Two Plasmid Vectors for Gene Expression in Actinoplanes missouriensis. Plasmid 2015, 77, 32–38. [Google Scholar] [CrossRef]
- Kormanec, J.; Rezuchova, B.; Homerova, D.; Csolleiova, D.; Sevcikova, B.; Novakova, R.; Feckova, L. Recent Achievements in the Generation of Stable Genome Alterations/Mutations in Species of the Genus Streptomyces. Appl. Microbiol. Biotechnol. 2019, 103, 5463–5482. [Google Scholar] [CrossRef]
- Wohlleben, W.; Hartmann, V.; Hillemann, D.; Krey, K.; Muth, G.; Nussbaumer, B.; Pelzer, S. Transfer and Establishment of DNA in Streptomyces (a Brief Review). Acta Microbiol. Immunol. Hung. 1994, 41, 381–389. [Google Scholar] [PubMed]
- Deng, Y.; Zhang, X.; Zhang, X. Recent Advances in Genetic Modification Systems for Actinobacteria. Appl. Microbiol. Biotechnol. 2017, 101, 2217–2226. [Google Scholar] [CrossRef] [PubMed]
- Okanishi, M.; Suzuki, K.; Umezawa, H. Formation and Reversion of Streptomycete Protoplasts: Cultural Condition and Morphological Study. J. Gen. Microbiol. 1974, 80, 389–400. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bibb, M.J.; Ward, J.M.; Hopwood, D.A. Transformation of Plasmid DNA into Streptomyces at High Frequency. Nature 1978, 274, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Bierman, M.; Logan, R.; O’Brien, K.; Seno, E.T.; Rao, R.N.; Schoner, B.E. Plasmid Cloning Vectors for the Conjugal Transfer of DNA from Escherichia coli to Streptomyces Spp. Gene 1992, 116, 43–49. [Google Scholar] [CrossRef]
- Mazodier, P.; Petter, R.; Thompson, C. Intergeneric Conjugation between Escherichia coli and Streptomyces Species. J. Bacteriol. 1989, 171, 3583–3585. [Google Scholar] [CrossRef]
- Bibb, M.J.; Janssen, G.R.; Ward, J.M. Cloning and Analysis of the Promoter Region of the Erythromycin Resistance Gene (ermE) of Streptomyces erythraeus. Gene 1985, 38, 215–226. [Google Scholar] [CrossRef]
- Labes, G.; Bibb, M.; Wohlleben, W. Isolation and Characterization of a Strong Promoter Element from the Streptomyces ghanaensis Phage I19 Using the Gentamicin Resistance Gene (aacc1) of Tn1696 as Reporter. Microbiology 1997, 143, 1503–1512. [Google Scholar] [CrossRef]
- Xu, G.; Wang, J.; Wang, L.; Tian, X.; Yang, H.; Fan, K.; Yang, K.; Tan, H. “Pseudo” Gamma-Butyrolactone Receptors Respond to Antibiotic Signals to Coordinate Antibiotic Biosynthesis. J. Biol. Chem. 2010, 285, 27440–27448. [Google Scholar] [CrossRef]
- Murakami, T.; Holt, T.G.; Thompson, C.J. Thiostrepton-Induced Gene Expression in Streptomyces lividans. J. Bacteriol. 1989, 171, 1459–1466. [Google Scholar] [CrossRef]
- Herai, S.; Hashimoto, Y.; Higashibata, H.; Maseda, H.; Ikeda, H.; Omura, S.; Kobayashi, M. Hyper-Inducible Expression System for Streptomycetes. Proc. Natl. Acad. Sci. USA 2004, 101, 14031–14035. [Google Scholar] [CrossRef] [PubMed]
- Polkade, A.V.; Mantri, S.S.; Patwekar, U.J.; Jangid, K. Quorum Sensing: An Under-Explored Phenomenon in the Phylum Actinobacteria. Front. Microbiol. 2016, 7, 131. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bhukya, H.; Bhujbalrao, R.; Bitra, A.; Anand, R. Structural and Functional Basis of Transcriptional Regulation by TetR Family Protein CprB from S. coelicolor A3(2). Nucleic Acids Res. 2014, 42, 10122–10133. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Garcia, A.; Combes, P.; Perez-Redondo, R.; Smith, M.C.; Smith, M.C. Natural and Synthetic Tetracycline-Inducible Promoters for Use in the Antibiotic-Producing Bacteria Streptomyces. Nucleic Acids Res. 2005, 33, e87. [Google Scholar] [CrossRef] [PubMed]
- Hindle, Z.; Smith, C.P. Substrate Induction and Catabolite Repression of the Streptomyces coelicolor Glycerol Operon Are Mediated through the GylR Protein. Mol. Microbiol. 1994, 12, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; He, L.; Niu, G. Regulation of Antibiotic Biosynthesis in Actinomycetes: Perspectives and Challenges. Synth. Syst. Biotechnol. 2018, 3, 229–235. [Google Scholar] [CrossRef]
- Liu, G.; Chater, K.F.; Chandra, G.; Niu, G.; Tan, H. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 2013, 77, 112–143. [Google Scholar] [CrossRef]
- Romero-Rodriguez, A.; Robledo-Casados, I.; Sanchez, S. An Overview on Transcriptional Regulators in Streptomyces. Biochim. Biophys. Acta 2015, 1849, 1017–1039. [Google Scholar] [CrossRef]
- Barreales, E.G.; Vicente, C.M.; De Pedro, A.; Santos-Aberturas, J.; Aparicio, J.F. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis. Appl. Environ. Microbiol. 2018, 84, e00246-18. [Google Scholar] [CrossRef]
- Zhang, J.; Jensen, M.K.; Keasling, J.D. Development of Biosensors and Their Application in Metabolic Engineering. Curr. Opin. Chem. Biol. 2015, 28, 1–8. [Google Scholar] [CrossRef]
- Tan, S.Z.; Prather, K.L. Dynamic Pathway Regulation: Recent Advances and Methods of Construction. Curr. Opin. Chem. Biol. 2017, 41, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Tang, X.L.; Kardashliev, T. Transcription Factor-Based Biosensors in High-Throughput Screening: Advances and Applications. Biotechnol. J. 2018, 13, e1700648. [Google Scholar] [CrossRef] [PubMed]
- Kasey, C.M.; Zerrad, M.; Li, Y.; Cropp, T.A.; Williams, G.J. Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology. ACS Synth. Biol. 2018, 7, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.M.; Sinnott, R.W.; Sandoval, N.R. Transcription Factor-Based Biosensors and Inducible Systems in Non-Model Bacteria: Current Progress and Future Directions. Curr. Opin. Biotechnol. 2019, 64, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Rebets, Y.; Schmelz, S.; Gromyko, O.; Tistechok, S.; Petzke, L.; Scrima, A.; Luzhetskyy, A. Design, Development and Application of Whole-Cell Based Antibiotic-Specific Biosensor. Metab. Eng. 2018, 47, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Baltz, R.H. Genetic Manipulation of Secondary Metabolite Biosynthesis for Improved Production in Streptomyces and Other Actinomycetes. J. Ind. Microbiol. Biotechnol. 2016, 43, 343–370. [Google Scholar] [CrossRef]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors (Basel) 2018, 8, 54. [Google Scholar] [CrossRef]
- Myronovskyi, M.; Luzhetskyy, A. Native and Engineered Promoters in Natural Product Discovery. Nat. Prod. Rep. 2016, 33, 1006–1019. [Google Scholar] [CrossRef]
- Palazzotto, E.; Tong, Y.; Lee, S.Y.; Weber, T. Synthetic Biology and Metabolic Engineering of Actinomycetes for Natural Product Discovery. Biotechnol. Adv. 2019, 37, 107366. [Google Scholar] [CrossRef]
- Yi, J.S.; Kim, M.W.; Kim, M.; Jeong, Y.; Kim, E.J.; Cho, B.K.; Kim, B.G. A Novel Approach for Gene Expression Optimization through Native Promoter and 5’ UTR Combinations Based on RNA-Seq, Ribo-Seq, and TSS-Seq of Streptomyces coelicolor. ACS Synth. Biol. 2017, 6, 555–565. [Google Scholar] [CrossRef]
- Horbal, L.; Siegl, T.; Luzhetskyy, A. A Set of Synthetic Versatile Genetic Control Elements for the Efficient Expression of Genes in Actinobacteria. Sci. Rep. 2018, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Siegl, T.; Tokovenko, B.; Myronovskyi, M.; Luzhetskyy, A. Design, Construction and Characterisation of a Synthetic Promoter Library for Fine-Tuned Gene Expression in Actinomycetes. Metab. Eng. 2013, 19, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Seghezzi, N.; Amar, P.; Koebmann, B.; Jensen, P.R.; Virolle, M.J. The Construction of a Library of Synthetic Promoters Revealed Some Specific Features of Strong Streptomyces Promoters. Appl. Microbiol. Biotechnol. 2011, 90, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.H.; Kim, J.P.; Kang, H.S. Library of Synthetic Streptomyces Regulatory Sequences for Use in Promoter Engineering of Natural Product Biosynthetic Gene Clusters. ACS Synth. Biol. 2018, 7, 1946–1955. [Google Scholar] [CrossRef]
- Ji, C.H.; Kim, H.; Kang, H.S. Synthetic Inducible Regulatory Systems Optimized for the Modulation of Secondary Metabolite Production in Streptomyces. ACS Synth. Biol. 2019, 8, 577–586. [Google Scholar] [CrossRef]
- Guan, C.; Cui, W.; He, X.; Hu, X.; Xu, J.; Du, G.; Chen, J.; Zhou, Z. Construction and Development of a Novel Expression System of Streptomyces. Protein Expr. Purif. 2015, 113, 17–22. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Wang, J.; Xiang, S.; Feng, X.; Yang, K. An Engineered Strong Promoter for Streptomycetes. Appl. Environ. Microbiol. 2013, 79, 4484–4492. [Google Scholar] [CrossRef]
- Xu, N.; Wei, L.; Liu, J. Recent Advances in the Applications of Promoter Engineering for the Optimization of Metabolite Biosynthesis. World J. Microbiol. Biotechnol. 2019, 35, 33. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, C.Y.; Wei, W.P.; You, D.; Yin, B.C.; Ye, B.C. A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-In Bidirectional Promoters. ACS Synth. Biol. 2019, 8, 1134–1143. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Bechthold, A.; Ma, Z.; Yu, X. Selection of an Efficient Promoter and Its Application in Toyocamycin Production Improvement in Streptomyces diastatochromogenes 1628. World J. Microbiol. Biotechnol. 2017, 33, 30. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Barton, K.W.; Zhao, H. Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus. ACS Synth. Biol. 2015, 4, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, H.; Liang, J.; Wang, M.; Lu, L.; Shao, Z.; Cobb, R.E.; Zhao, H. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster. Nat. Commun. 2013, 4, 2894. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Li, X.; Yin, S.; Wang, W.; Yang, K. Genome-Wide Identification and Evaluation of Constitutive Promoters in Streptomycetes. Microb. Cell. Fact. 2015, 14, 172. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, X.F.; Bu, Q.T.; Zheng, Y.; Chen, X.A.; Li, Y.Q.; Mao, X.M. Transcriptome-Based Identification of a Strong Promoter for Hyper-Production of Natamycin in Streptomyces. Curr. Microbiol. 2019, 76, 95–99. [Google Scholar] [CrossRef]
- Wang, K.; Chen, X.A.; Li, Y.Q.; Mao, X.M. Identification of a Secondary Metabolism-Responsive Promoter by Proteomics for Over-Production of Natamycin in Streptomyces. Arch. Microbiol. 2019, 201, 1459–1464. [Google Scholar] [CrossRef]
- Schaffert, L.; Marz, C.; Burkhardt, L.; Droste, J.; Brandt, D.; Busche, T.; Rosen, W.; Schneiker-Bekel, S.; Persicke, M.; Puhler, A.; et al. Evaluation of Vector Systems and Promoters for Overexpression of the Acarbose Biosynthesis Gene acbC in Actinoplanes Sp. Se50/110. Microb. Cell Fact. 2019, 18, 114. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Xiang, W.; Yang, K.; Li, Z.; Wang, W. An Autoregulated Fine-Tuning Strategy for Titer Improvement of Secondary Metabolites Using Native Promoters in Streptomyces. ACS Synth. Biol. 2018, 7, 522–530. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, Y.; Zhao, X.; Hu, Y.; Xiang, S.; Miao, J.; Lou, C.; Zhang, L. Exploiting a Precise Design of Universal Synthetic Modular Regulatory Elements to Unlock the Microbial Natural Products in Streptomyces. Proc. Natl. Acad. Sci. USA 2015, 112, 12181–12186. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.L.; Tao, X.Y.; Zhao, G.L.; Ren, Y.H.; Wang, F.Q.; Wei, D.Z. Engineering Diverse Eubacteria Promoters for Robust Gene Expression in Streptomyces lividans. J. Biotechnol. 2019, 289, 93–102. [Google Scholar] [CrossRef]
- Horbal, L.; Fedorenko, V.; Luzhetskyy, A. Novel and Tightly Regulated Resorcinol and Cumate-Inducible Expression Systems for Streptomyces and Other Actinobacteria. Appl. Microbiol. Biotechnol. 2014, 98, 8641–8655. [Google Scholar] [CrossRef]
- Wang, W.; Yang, T.; Li, Y.; Li, S.; Yin, S.; Styles, K.; Corre, C.; Yang, K. Development of a Synthetic Oxytetracycline-Inducible Expression System for Streptomycetes Using De Novo Characterized Genetic Parts. ACS Synth. Biol. 2016, 5, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hashimoto, Y.; Saitoh, Y.; Kumano, T.; Kobayashi, M. Development of Nitrilase Promoter-Derived Inducible Vectors for Streptomyces. Biosci. Biotechnol. Biochem. 2016, 80, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.M.; Vockenhuber, M.P.; Suess, B. Conditional Control of Gene Expression by Synthetic Riboswitches in Streptomyces coelicolor. Methods Enzymol. 2015, 550, 283–299. [Google Scholar] [PubMed]
- Mehdizadeh Aghdam, E.; Hejazi, M.S.; Barzegar, A. Riboswitches: From Living Biosensors to Novel Targets of Antibiotics. Gene 2016, 592, 244–259. [Google Scholar] [CrossRef]
- Winkler, W.C.; Breaker, R.R. Regulation of Bacterial Gene Expression by Riboswitches. Annu. Rev. Microbiol. 2005, 59, 487–517. [Google Scholar] [CrossRef]
- Findeiß, S.; Etzel, M.; Will, S.; Mörl, M.; Stadler, P.F. Design of Artificial Riboswitches as Biosensors. Sensors 2017, 17, 1990. [Google Scholar] [CrossRef]
- Suess, B.; Fink, B.; Berens, C.; Stentz, R.; Hillen, W. A Theophylline Responsive Riboswitch Based on Helix Slipping Controls Gene Expression in Vivo. Nucleic Acids Res. 2004, 32, 1610–1614. [Google Scholar] [CrossRef]
- Rudolph, M.M.; Vockenhuber, M.-P.; Suess, B. Synthetic Riboswitches for the Conditional Control of Gene Expression in Streptomyces coelicolor. Microbiology 2013, 159, 1416–1422. [Google Scholar] [CrossRef]
- Horbal, L.; Luzhetskyy, A. Dual Control System–a Novel Scaffolding Architecture of an Inducible Regulatory Device for the Precise Regulation of Gene Expression. Metab. Eng. 2016, 37, 11–23. [Google Scholar] [CrossRef]
- Combes, P.; Till, R.; Bee, S.; Smith, M.C. The Streptomyces Genome Contains Multiple Pseudo-attB Sites for the (Phi)C31-Encoded Site-Specific Recombination System. J. Bacteriol. 2002, 184, 5746–5752. [Google Scholar] [CrossRef]
- Gregory, M.A.; Till, R.; Smith, M.C. Integration Site for Streptomyces Phage PhiBT1 and Development of Site-Specific Integrating Vectors. J. Bacteriol. 2003, 185, 5320–5323. [Google Scholar] [CrossRef] [PubMed]
- Van Mellaert, L.; Mei, L.; Lammertyn, E.; Schacht, S.; Anne, J. Site-Specific Integration of Bacteriophage VWB Genome into Streptomyces venezuelae and Construction of a VWB-Based Integrative Vector. Microbiology 1998, 144 (Pt 12), 3351–3358. [Google Scholar] [CrossRef]
- Morita, K.; Yamamoto, T.; Fusada, N.; Komatsu, M.; Ikeda, H.; Hirano, N.; Takahashi, H. The Site-Specific Recombination System of Actinophage TG1. FEMS Microbiol. Lett. 2009, 297, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Fayed, B.; Younger, E.; Taylor, G.; Smith, M.C. A Novel Streptomyces Spp. Integration Vector Derived from the S. venezuelae Phage, SV1. BMC Biotechnol. 2014, 14, 51. [Google Scholar] [CrossRef]
- Miura, T.; Hosaka, Y.; Yan-Zhuo, Y.; Nishizawa, T.; Asayama, M.; Takahashi, H.; Shirai, M. In Vivo and in Vitro Characterization of Site-Specific Recombination of Actinophage R4 Integrase. J. Gen. Appl. Microbiol. 2011, 57, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Boccard, F.; Smokvina, T.; Pernodet, J.L.; Friedmann, A.; Guerineau, M. The Integrated Conjugative Plasmid pSAM2 of Streptomyces ambofaciens Is Related to Temperate Bacteriophages. EMBO J. 1989, 8, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Fogg, P.C.M.; Haley, J.A.; Stark, W.M.; Smith, M.C.M. Genome Integration and Excision by a New Streptomyces Bacteriophage, PhiJoe. Appl. Environ. Microbiol. 2017, 83, e02767-16. [Google Scholar] [CrossRef] [PubMed]
- Thibessard, A.; Bertrand, C.; Hiblot, J.; Piotrowski, E.; Leblond, P. Construction of pDYN6902, a New Streptomyces Integrative Expression Vector Designed for Cloning Sequences Interfering with Escherichia coli Viability. Plasmid 2015, 82, 43–49. [Google Scholar] [CrossRef]
- Huang, J.; Shi, J.; Molle, V.; Sohlberg, B.; Weaver, D.; Bibb, M.J.; Karoonuthaisiri, N.; Lih, C.J.; Kao, C.M.; Buttner, M.J.; et al. Cross-Regulation among Disparate Antibiotic Biosynthetic Pathways of Streptomyces coelicolor. Mol. Microbiol. 2005, 58, 1276–1287. [Google Scholar] [CrossRef]
- Standard European Vector Architecture (Seva). Available online: http://seva.cnb.csic.es (accessed on 5 August 2020).
- Durante-Rodriguez, G.; De Lorenzo, V.; Martinez-Garcia, E. The Standard European Vector Architecture (Seva) Plasmid Toolkit. Methods Mol. Biol. 2014, 1149, 469–478. [Google Scholar]
- Martinez-Garcia, E.; Goni-Moreno, A.; Bartley, B.; McLaughlin, J.; Sanchez-Sampedro, L.; Pascual Del Pozo, H.; Prieto Hernandez, C.; Marletta, A.S.; De Lucrezia, D.; Sanchez-Fernandez, G.; et al. Seva 3.0: An Update of the Standard European Vector Architecture for Enabling Portability of Genetic Constructs among Diverse Bacterial Hosts. Nucleic Acids Res. 2020, 48, D1164–D1170. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutierrez, C.; Aparicio, T.; Torres-Sanchez, L.; Martinez-Garcia, E.; De Lorenzo, V.; Villar, C.J.; Lombo, F. Multifunctional Seva Shuttle Vectors for Actinomycetes and Gram-Negative Bacteria. MicrobiologyOpen 2020, 9, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, H.P. Applications of the Saccharomyces cerevisiae Flp-FRT System in Bacterial Genetics. J. Mol. Microbiol. Biotechnol. 2003, 5, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, G.; Chen, J.; Ge, M.; Jiang, W.; Lu, Y. Multiplexed Site-Specific Genome Engineering for Overproducing Bioactive Secondary Metabolites in Actinomycetes. Metab. Eng. 2017, 40, 80–92. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, G.; Jiang, W.; Hu, H.; Lu, Y. One-Step High-Efficiency CRISPR/Cas9-Mediated Genome Editing in Streptomyces. Acta Bioch. Bioph. Sin. 2015, 47, 231–243. [Google Scholar] [CrossRef]
- Li, L.; Wei, K.; Liu, X.; Wu, Y.; Zheng, G.; Chen, S.; Jiang, W.; Lu, Y. aMSGE: Advanced Multiplex Site-Specific Genome Engineering with Orthogonal Modular Recombinases in Actinomycetes. Metab. Eng. 2019, 52, 153–167. [Google Scholar] [CrossRef]
- Phelan, R.M.; Sachs, D.; Petkiewicz, S.J.; Barajas, J.F.; Blake-Hedges, J.M.; Thompson, M.G.; Reider Apel, A.; Rasor, B.J.; Katz, L.; Keasling, J.D. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae. ACS Synth. Biol. 2017, 6, 159–166. [Google Scholar] [CrossRef]
- Ko, B.; D’Alessandro, J.; Douangkeomany, L.; Stumpf, S.; DeButts, A.; Blodgett, J. Construction of a New Integrating Vector from Actinophage VarphiOZJ and Its Use in Multiplex Streptomyces Transformation. J. Ind. Microbiol. Biotechnol. 2020, 47, 73–81. [Google Scholar] [CrossRef]
- Goryshin, I.Y.; Naumann, T.A.; Apodaca, J.; Reznikoff, W.S. Chromosomal Deletion Formation System Based on Tn5 Double Transposition: Use for Making Minimal Genomes and Essential Gene Analysis. Genome Res. 2003, 13, 644–653. [Google Scholar] [CrossRef]
- Reznikoff, W.S. Tn5 as a Model for Understanding DNA Transposition. Mol. Microbiol. 2003, 47, 1199–1206. [Google Scholar] [CrossRef]
- Reznikoff, W.S. Transposon Tn5. Annu. Rev. Genet. 2008, 42, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Kaniecki, K.; De Tullio, L.; Greene, E.C. A Change of View: Homologous Recombination at Single-Molecule Resolution. Nat. Rev. Genet. 2018, 19, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Charusanti, P.; Musiol-Kroll, E.M.; Jiang, X.; Tong, Y.; Kim, H.U.; Lee, S.Y. Metabolic Engineering of Antibiotic Factories: New Tools for Antibiotic Production in Actinomycetes. Trends Biotechnol. 2015, 33, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Doroghazi, J.R.; Buckley, D.H. Widespread Homologous Recombination within and between Streptomyces Species. ISME J. 2010, 4, 1136–1143. [Google Scholar] [CrossRef]
- Doroghazi, J.R.; Buckley, D.H. A Model for the Effect of Homologous Recombination on Microbial Diversification. Genome Biol. Evol. 2011, 3, 1349–1356. [Google Scholar] [CrossRef]
- Wright, W.D.; Shah, S.S.; Heyer, W.D. Homologous Recombination and the Repair of DNA Double-Strand Breaks. J. Biol. Chem. 2018, 293, 10524–10535. [Google Scholar] [CrossRef]
- Herrmann, S.; Siegl, T.; Luzhetska, M.; Petzke, L.; Jilg, C.; Welle, E.; Erb, A.; Leadlay, P.F.; Bechthold, A.; Luzhetskyy, A. Site-Specific Recombination Strategies for Engineering Actinomycete Genomes. Appl. Environ. Microbiol. 2012, 78, 1804–1812. [Google Scholar] [CrossRef]
- Jacquier, A.; Dujon, B. An Intron-Encoded Protein Is Active in a Gene Conversion Process That Spreads an Intron into a Mitochondrial Gene. Cell 1985, 41, 383–394. [Google Scholar] [CrossRef]
- Jasin, M. Genetic Manipulation of Genomes with Rare-Cutting Endonucleases. Trends Genet. 1996, 12, 224–228. [Google Scholar] [CrossRef]
- Fernandez-Martinez, L.T.; Del Sol, R.; Evans, M.C.; Fielding, S.; Herron, P.R.; Chandra, G.; Dyson, P.J. A Transposon Insertion Single-Gene Knockout Library and New Ordered Cosmid Library for the Model Organism Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 2011, 99, 515–522. [Google Scholar] [CrossRef]
- Petzke, L.; Luzhetskyy, A. In Vivo Tn5-Based Transposon Mutagenesis of Streptomycetes. Appl. Microbiol. Biotechnol. 2009, 83, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Bilyk, B.; Weber, S.; Myronovskyi, M.; Bilyk, O.; Petzke, L.; Luzhetskyy, A. In Vivo Random Mutagenesis of Streptomycetes Using Mariner-Based Transposon Himar1. Appl. Microbiol. Biotechnol. 2013, 97, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Robertsen, H.L.; Musiol-Kroll, E.M.; Ding, L.; Laiple, K.J.; Hofeditz, T.; Wohlleben, W.; Lee, S.Y.; Grond, S.; Weber, T. Filling the Gaps in the Kirromycin Biosynthesis: Deciphering the Role of Genes Involved in Ethylmalonyl-CoA Supply and Tailoring Reactions. Sci. Rep. 2018, 8, 3230. [Google Scholar] [CrossRef] [PubMed]
- Hoff, G.; Bertrand, C.; Piotrowski, E.; Thibessard, A.; Leblond, P. Genome Plasticity Is Governed by Double Strand Break DNA Repair in Streptomyces. Sci. Rep. 2018, 8, 5272. [Google Scholar] [CrossRef]
- Darbon, E.; Martel, C.; Nowacka, A.; Pegot, S.; Moreau, P.L.; Virolle, M.-J. Transcriptional and Preliminary Functional Analysis of the Six Genes Located in Divergence of phoR/phoP in Streptomyces lividans. Appl. Microbiol. Biotechnol. 2012, 95, 1553–1566. [Google Scholar] [CrossRef]
- Lu, Z.; Xie, P.; Qin, Z. Promotion of Markerless Deletion of the Actinorhodin Biosynthetic Gene Cluster in Streptomyces coelicolor. Acta Biochim. Biophys. Sin. 2010, 42, 717–721. [Google Scholar] [CrossRef][Green Version]
- Siegl, T.; Petzke, L.; Welle, E.; Luzhetskyy, A. I-SceI Endonuclease: A New Tool for DNA Repair Studies and Genetic Manipulations in Streptomycetes. Appl. Microbiol. Biotechnol. 2010, 87, 1525–1532. [Google Scholar] [CrossRef]
- Luo, S.; Chen, X.A.; Mao, X.M.; Li, Y.Q. Transposon-Based Identification of a Negative Regulator for the Antibiotic Hyper-Production in Streptomyces. Appl. Microbiol. Biotechnol. 2018, 102, 6581–6592. [Google Scholar] [CrossRef]
- Baltz, R.H.; McHenney, M.A.; Cantwell, C.A.; Queener, S.W.; Solenberg, P.J. Applications of Transposition Mutagenesis in Antibiotic Producing Streptomycetes. Antonie Van Leeuwenhoek 1997, 71, 179–187. [Google Scholar] [CrossRef]
- Horbal, L.; Fedorenko, V.; Bechthold, A.; Luzhetskyy, A. A Transposon-Based Strategy to Identify the Regulatory Gene Network Responsible for Landomycin E Biosynthesis. FEMS Microbiol. Lett. 2013, 342, 138–146. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y.; Chater, K.F.; Ou, H.-Y.; Xu, H.H.; Deng, Z.; Tao, M. Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis. Appl. Environ. Microbiol. 2017, 83, e02889–e02816. [Google Scholar] [CrossRef] [PubMed]
- Meyer, F.; Pupkes, H.; Steinbuchel, A. Development of an Improved System for the Generation of Knockout Mutants of Amycolatopsis Sp. Strain ATCC 39116. Appl. Environ. Microbiol. 2017, 83, e02660-16. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J. Streptomycin Resistance; a Genetically Recessive Mutation. J. Bacteriol. 1951, 61, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, L.T.; Bibb, M.J. Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to Select for Gene Deletions in Actinomycetes. Sci. Rep. 2014, 4, 7100. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.; Embden, J.D.A.v.; Gaastra, W.; Schouls, L.M. Identification of Genes That Are Associated with DNA Repeats in Prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. [Google Scholar] [CrossRef]
- Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin. Microbiology 2005, 151, 2551–2561. [Google Scholar] [CrossRef]
- Ding, Q.; Regan, S.N.; Xia, Y.; Oostrom, L.A.; Cowan, C.A.; Musunuru, K. Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing Talens with CRISPRs. Cell Stem Cell 2013, 12, 393. [Google Scholar] [CrossRef]
- Generoso, W.C.; Gottardi, M.; Oreb, M.; Boles, E. Simplified CRISPR-Cas Genome Editing for Saccharomyces cerevisiae. J. Microbiol. Methods 2016, 127, 203–205. [Google Scholar] [CrossRef]
- Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L.A. RNA-Guided Editing of Bacterial Genomes Using CRISPR-Cas Systems. Nat. Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J.-L. Targeted Genome Modification of Crop Plants Using a CRISPR-Cas System. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Shivalila, C.S.; Dawlaty, M.M.; Cheng, A.W.; Zhang, F.; Jaenisch, R. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell 2013, 153, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR Provides Acquired Resistance against Viruses in Prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Van der Oost, J.; Jore, M.M.; Westra, E.R.; Lundgren, M.; Brouns, S.J. CRISPR-Based Adaptive and Heritable Immunity in Prokaryotes. Trends Biochem. Sci. 2009, 34, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Amitai, G.; Sorek, R. CRISPR–Cas Adaptation: Insights into the Mechanism of Action. Nat. Rev. Microbiol. 2016, 14, 67–76. [Google Scholar] [CrossRef]
- Jackson, S.A.; McKenzie, R.E.; Fagerlund, R.D.; Kieper, S.N.; Fineran, P.C.; Brouns, S.J. CRISPR-Cas: Adapting to Change. Science 2017, 356, eaal5056. [Google Scholar] [CrossRef]
- Rath, D.; Amlinger, L.; Rath, A.; Lundgren, M. The CRISPR-Cas Immune System: Biology, Mechanisms and Applications. Biochimie 2015, 117, 119–128. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-Target Effects in CRISPR/Cas9-Mediated Genome Engineering. Mol. Ther-Nucl. Acids 2015, 4, e264. [Google Scholar] [CrossRef]
- Cobb, R.E.; Wang, Y.; Zhao, H. High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System. ACS Synth. Biol. 2015, 4, 723–728. [Google Scholar] [CrossRef]
- Tong, Y.; Weber, T.; Lee, S.Y. CRISPR/Cas-Based Genome Engineering in Natural Product Discovery. Nat. Prod. Rep. 2019, 36, 1262–1280. [Google Scholar] [CrossRef]
- Ye, S.; Enghiad, B.; Zhao, H.; Takano, E. Fine-Tuning the Regulation of Cas9 Expression Levels for Efficient CRISPR-Cas9 Mediated Recombination in Streptomyces. J. Ind. Microbiol. Biotechnol. 2020, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Muth, G. The pSG5-Based Thermosensitive Vector Family for Genome Editing and Gene Expression in Actinomycetes. Appl. Microbiol. Biotechnol. 2018, 102, 9067–9080. [Google Scholar] [CrossRef] [PubMed]
- Wolf, T.; Gren, T.; Thieme, E.; Wibberg, D.; Zemke, T.; Pühler, A.; Kalinowski, J. Targeted Genome Editing in the Rare Actinomycete Actinoplanes Sp. Se50/110 by Using the CRISPR/Cas9 System. J. Biotechnol. 2016, 231, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Munnoch, J.T.; Devine, R.; Holmes, N.A.; Seipke, R.F.; Wilkinson, K.A.; Wilkinson, B.; Hutchings, M.I. Formicamycins, Antibacterial Polyketides Produced by Streptomyces formicae Isolated from African Tetraponera Plant-Ants. Chem. Sci. 2017, 8, 3218–3227. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Charusanti, P.; Zhang, L.; Weber, T.; Lee, S.Y. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synth. Biol. 2015, 4, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Wohlleben, W.; Stegmann, E.; Süssmuth, R.D. Molecular Genetic Approaches to Analyze Glycopeptide Biosynthesis. Methods Enzymol. 2009, 458, 459–486. [Google Scholar]
- Low, Z.J.; Pang, L.M.; Ding, Y.; Cheang, Q.W.; Le Mai Hoang, K.; Thi Tran, H.; Li, J.; Liu, X.-W.; Kanagasundaram, Y.; Yang, L.; et al. Identification of a Biosynthetic Gene Cluster for the Polyene Macrolactam Sceliphrolactam in a Streptomyces Strain Isolated from Mangrove Sediment. Sci. Rep-UK 2018, 8, 1594. [Google Scholar] [CrossRef]
- Cohen, D.R.; Townsend, C.A. A Dual Role for a Polyketide Synthase in Dynemicin Enediyne and Anthraquinone Biosynthesis. Nat. Chem. 2018, 10, 231–236. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Zheng, G.; Jiang, W.; Deng, Z.; Wang, Z.; Lu, Y. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces. J. Biotechnol. 2018, 13, e1800121. [Google Scholar] [CrossRef]
- Tong, Y.; Whitford, C.M.; Robertsen, H.L.; Blin, K.; Jørgensen, T.S.; Klitgaard, A.K.; Gren, T.; Jiang, X.; Weber, T.; Lee, S.Y. Highly Efficient DSB-Free Base Editing for Streptomycetes with CRSISPR-BEST. Proc. Natl. Acad. Sci. USA 2019, 116, 20366–20375. [Google Scholar] [CrossRef]
- Haurwitz, R.E.; Jinek, M.; Wiedenheft, B.; Zhou, K.; Doudna, J.A. Sequence-and Structure-Specific RBA Processing by a CRISPR Endonuclease. Science 2010, 329, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Pedersen, L.E.; Weber, T.; Lee, S.Y. CRISPy-Web: An Online Resource to Design sgRNAs for CRISPR Applications. Synt. Syst. Biotechnol. 2016, 1, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Dubeau, M.-P.; Ghinet, M.G.; Jacques, P.-É.; Clermont, N.; Beaulieu, C.; Brzezinski, R. Cytosine Deaminase as a Negative Selection Marker for Gene Disruption and Replacement in the Genus Streptomyces and Other Actinobacteria. Appl. Environ. Microbiol. 2009, 75, 1211–1214. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wen, S.; Xu, W.; He, Z.; Zhai, G.; Liu, Y.; Deng, Z.; Sun, Y. Highly Efficient Editing of the Actinorhodin Polyketide Chain Length Factor Gene in Streptomyces coelicolor M145 Using CRISPR/Cas9-CodA (Sm) Combined System. Appl. Microbiol. Biotechnol. 2015, 99, 10575–10585. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Y.; Guan, H.; Zhang, J.; Tan, H. Enhancement of Neomycin Production by Engineering the Entire Biosynthetic Gene Cluster and Feeding Key Precursors in Streptomyces fradiae Cgmcc 4.576. Appl. Microbiol. Biotechnol. 2019, 103, 2263–2275. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wong, F.T.; Wang, Y.; Luo, S.; Lim, Y.H.; Heng, E.; Yeo, W.L.; Cobb, R.E.; Enghiad, B.; Ang, E.L. CRISPR–Cas9 Strategy for Activation of Silent Streptomyces Biosynthetic Gene Clusters. Nat. Chem. Biol. 2017, 13, 607–609. [Google Scholar] [CrossRef]
- Najah, S.; Saulnier, C.; Pernodet, J.-L.; Bury-Moné, S. Design of a Generic CRISPR-Cas9 Approach Using the Same sgRNA to Perform Gene Editing at Distinct Loci. BMC Biotechnol. 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Kouprina, N.; Larionov, V. Tar Cloning: Insights into Gene Function, Long-Range Haplotypes and Genome Structure and Evolution. Nat. Rev. Genet. 2006, 7, 805–812. [Google Scholar] [CrossRef]
- Lee, N.C.; Larionov, V.; Kouprina, N. Highly Efficient CRISPR/Cas9-Mediated TAR Cloning of Genes and Chromosomal Loci from Complex Genomes in Yeast. Nucleic Acids Res. 2015, 43, e55–e55. [Google Scholar] [CrossRef]
- Meng, J.; Feng, R.; Zheng, G.; Ge, M.; Mast, Y.; Wohlleben, W.; Gao, J.; Jiang, W.; Lu, Y. Improvement of Pristinamycin I (PI) Production in Streptomyces pristinaespiralis by Metabolic Engineering Approaches. Synth. Syst. Biotechnol. 2017, 2, 130–136. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, H.; Zheng, G.; Jiang, W.; Lu, Y. Metabolic Engineering of Streptomyces coelicolor for Enhanced Prodigiosins (RED) Production. Sci. China Life Sci. 2017, 60, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhao, X.; Gabrieli, T.; Lou, C.; Ebenstein, Y.; Zhu, T.F. Cas9-Assisted Targeting of Chromosome Segments CATCH Enables One-Step Targeted Cloning of Large Gene Clusters. Nat. Commun. 2015, 6, 8101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Wang, A.; Li, K.; Wang, B.; Jin, S.; Reiser, M.; Lockey, R.F. CRISPR/Cas9 Nuclease Cleavage Combined with Gibson Assembly for Seamless Cloning. BioTechniques 2015, 58, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Chen, L.; Zhao, C.; Wu, J.; Yan, D.; Deng, Z.; Sun, Y. In Vitro Packaging Mediated One-Step Targeted Cloning of Natural Product Pathway. ACS Synth. Biol. 2019, 8, 1991–1997. [Google Scholar] [CrossRef]
- Alberti, F.; Corre, C. Editing Streptomycete Genomes in the CRISPR/Cas9 Age. Nat Prod Rep 2019, 36, 1237–1248. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | Example Organisms |
---|---|---|---|
iCatch [89] | + cloning of large fragments + complements other cloning methods (like TAR and CATCH) | − previous strain editing (insertion of HE recognition sites) required | S. coelicolor [89] |
Direct Pathway Cloning (DiPaC) [92] | + refactoring of BGCs is possible + cloning of full BGCs | − PCR amplification of target sequence: risk of mutations − pure and high molecular weight gDNA required | Saccharopolyspora erythreae [92] |
Artificial gene operon assembly system (AGOS) [95] | + refactoring of BGCs is possible | − limited production of refactored BGCs | Streptomyces niveus [95] |
Modified Gibson Assembly for cloning large high GC DNA fragments [99] | + reusable vector + increased assembly efficiency for high GC content DNA | − PCR amplification of target sequence: risk of mutations | S. pristinaespiralis [99] |
Method | Advantages | Disadvantages | Example Organisms |
---|---|---|---|
CRISPR/Cas9 engineering using pCRISPomyces [223] | + targeting any site of interest + multiplex targeting possible | − problems in S. coelicolor [249] − time-consuming elimination of temperature sensitive plasmid − Cas9 toxicity possible − Cas9 off-target effects possible | S. viridochromogenes [223] S. albus [223] S. lividans [223] Actinoplanes sp. [227] S. formicae [228] |
CRISPR/Cas9 engineering using pKCas9dO [179] | + targeting any site of interest + multiplex targeting possible + inducible Cas9 expression | − time-consuming elimination of temperature sensitive plasmid − Cas9 off-target effects possible | S. coelicolor [178,179] S. pristinaespiralis [178] |
CRISPR/Cas9 engineering using pCRISPR-Cas9 [229] | + targeting any site of interest + inducible Cas9 expression | − time-consuming elimination of temperature sensitive plasmid − tipA in host genome required − Cas9 off-target effects possible | S. coelicolor [229] Streptomyces sp. SD85 [231] Micromonospora chersina [232] |
CRISPR/dCas9-mediated multiplex gene repression [233] | + targeting any site of interest + stable system through integrative plasmid -multiplex approach | − Cas9 off-target effects possible − Cas9 toxicity possible − repression levels are lower when targeting multiple sites | S. coelicolor [233] |
CRISPR-BEST [234] | + targeting any site of interest + rescue approach when dCas9 was unsuccessful | − tipA in host genome required - Cas9 off-target effects possible | S. coelicolor [234]S. griseofuscus [234]S. collinus [234] |
CRISPR/cas9-CodA(sm) [238] | + targeting any site of interest + unmarked mutants + reusable delivery vector + no off-target effects | − Cas9 toxicity possible − Cas9 off-target effects possible | S. coelicolor [238] S. fradiae [239] |
CRISPR/Cas9 knock-in strategy [240] | + targeting any site of interest + activation of silent gene clusters | − requires introduction of recombinant DNA for activation of BGC, may be challenging for some strains | S. albus [240] S. lividans [240] Streptomyces rhodeosporus [240] S. venezuelae [240] S. viridochromogenes [240] |
Generic CRISPR/Cas9 approach [241] | + no specific sgRNA design required + limited off-target effects | − previous strain editing required | S. ambofaciens [241] |
Fine-tuning Cas9 expression [225] | + reduced Cas9 toxicity | − non-toxic expression levels must be explored for each strain | S. coelicolor [225] S. lividans [225] |
CRISPR/Cas9 TAR cloning approach [243] | + targeting any site of interest + less-time intensive compared to traditional TAR cloning + no advanced experience in working with yeast required | − working with yeast − Cas9 off-target effects | S. pristinaespiralis [244] S. coelicolor [245] |
Cas9-assisted targeting of chromosome segments (CATCH) [246] | + targeting any site of interest + one-step approach + cloning of large fragments + in gel cleavage protects gDNA from shearing | − size limit of 150 kb − Cas9 off-target effects possible | S. venezuelae [246] S. aureofaciens [246] |
Gibson assembly and CRISPR/Cas9 [247] | + targeting any site of interest + no specific vectors or inverse PCR are required | − Cas9 off-target effects possible | S. pristinaespiralis [178] S. coelicolor [178] |
In vitro packaging mediated one-step targeting cloning [248] | + refactoring possible + no strict requirements for gDNA preparation | − fragment size limited to packaging capacity of 37.4–50.4 kb from λ phage | S. thiolactonus [248] Micromonospora inyoensis [248] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitousis, L.; Thoma, Y.; Musiol-Kroll, E.M. An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics 2020, 9, 494. https://doi.org/10.3390/antibiotics9080494
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics. 2020; 9(8):494. https://doi.org/10.3390/antibiotics9080494
Chicago/Turabian StyleMitousis, Lena, Yvonne Thoma, and Ewa M. Musiol-Kroll. 2020. "An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds" Antibiotics 9, no. 8: 494. https://doi.org/10.3390/antibiotics9080494
APA StyleMitousis, L., Thoma, Y., & Musiol-Kroll, E. M. (2020). An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics, 9(8), 494. https://doi.org/10.3390/antibiotics9080494