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Abstract: Tigecycline offers broad anti-bacterial coverage for critically ill patients with complicated
infections. A described but less researched side effect is coagulopathy. The aim of this study was to
test whether tigecycline interferes with fibrinogen polymerization by peripheral interactions. To
study the effect of unmetabolized tigecycline, plasma of healthy volunteers were spiked with
increasing concentrations of tigecycline. In a second experimental leg, immortalized human liver
cells (HepG2) were treated with the same concentrations to test an inhibitory effect of hepatic
tigecycline metabolites. Using standard coagulation tests, only the activated thromboplastin time in
humane plasma was prolonged with increasing concentrations of tigecycline. Visualization of the
fibrin network using confocal live microscopy demonstrated a qualitative difference in tigecycline
treated experiments. Thrombelastometry and standard coagulation tests did not indicate an
impairment of coagulation. Although the discrepancy between functional and immunologic
fibrinogen levels increased in cell culture assays with tigecycline concentration, fibrinogen levels in
spiked plasma samples did not show significant differences determined by functional versus
immunologic methods. In our in vitro study, we excluded a direct effect of tigecycline in increasing
concentrations on blood coagulation in healthy adults. Furthermore, we demonstrated a rapid loss
of mitochondrial activity in hepatic cells with supra-therapeutic tigecycline dosages.
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1. Introduction

Of the expanded broad spectrum glycylcyclines, the substance tigecycline (tygacil), approved
by the Food and Drug Administration (FDA) in 2005 and by the European Medical Association
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(EMA) in 2006, respectively, is indicated for complicated skin, soft tissue infections and abdominal
infections in adults and infants older than eight years [1,2]. A described side effect during tigecycline
therapy is coagulopathy. Three small-scale studies reported effects of tigecycline on coagulation [3-
5]. A clinical trial observed decreased fibrinogen levels as assessed by the classical Clauss method
during high-dose treatment with tigecycline in a group of 45 intensive care patients [4]. Recently,
another study showed a decrease of fibrinogen in 19 out of 20 patients with severe infections treated
with glycylcycline. This occurred either with the recommended dose (loading dose of 100 mg,
followed by 50 mg twice per day intravenous (iv.)) and during high dose (2 x 100 mg iv. per day)
treatment with clinical bleeding in six patients [5]. Hakeam et al. reported decreased fibrinogen levels
during tigecycline treatment as compared to imipenem-—cilastatin after cytoreductive surgery and
hyperthermic intraperitoneal chemotherapy with peritoneal carcinomatosis [6]. In a retrospective
analysis Leng et al. demonstrated decreased fibrinogen levels in 50 hospitalized patients with
tigecycline treatment in China [3]. Additionally, eight case reports exist in regard to an effect of
tigecycline on coagulation [7-14]. In reflection to these observations, the manufacturer recommends
discontinuing tigecycline, if fibrinogen levels decrease below 100 mg/dL. However, it is one of few
available antibiotics active against key multi-drug resistant pathogens and its use as second line
antibiotic is limited to patients with no alternative suitable treatment options [15].

The origin of the decrease of fibrinogen remains elusive. Hypofibrinogenaemia concomitant to
tigecycline treatment in the mentioned studies was not accompanied by a worsening of liver
parameters. Thus, impaired hepatic synthesis of coagulation factors, such as fibrinogen, due to the
medication is unlikely in physiological doses. Tigecycline is excreted majorily unmetabolized, but
trace amounts of metabolites are generated by the liver. The major modifications include
glucuronidation and amide hydrolysis. These metabolites are usually pharmacologically inactive and
represent less than 10 percent of excreted tigecycline [16]. However, tigecycline was shown to interact
with an atypical, non-linear binding to plasma proteins, which is dependent on a complex interaction
with divalent metal ions such as calcium ions. A potential functional effect of tigecycline and its
metabolites on plasma proteins, such as fibrinogen and the polymerization to fibrin networks, thus
cannot be excluded.

We hypothesize that tigecycline interacts with fibrinogen, affecting the functionality of
fibrinogen and alter associated laboratory measurements of coagulation parameters. The Clauss
assay is a functional assay based on the determination of time for fibrin clot formation. For other
drugs like starches interferences with this turbidimetric method of fibrinogen measurement are
reported [17,18]. In contrast, immunological fibrinogen assays measure protein concentration rather
than functional activity. However, these fibrinogen antigen concentrations correlate well with
fibrinogen functional activity except in cases of dysfibrinogenemia [19,20].

In the presented study in vitro tests are used to investigate an association of tigecycline treatment
and a qualitative or quantitative dysfibrinogenaemia in peripheral blood of healthy volunteers. We
employ an in vitro spiking assay to globally test dose dependent peripheral interactions of tigecycline
with the coagulation system, determined by functional and immunologic fibrinogen tests, as well as
thrombelastometric techniques, which are an accurate method for detection of fibrin polymerization
disturbances [17]. In a second experimental leg, we apply a cell model of hepatocytes to test if the
most common metabolic modifications of tigecycline alter fibrinogen functionality.

2. Results

Plasma samples of 14 healthy subjects were obtained to perform the planned experiments. One
subject had to be excluded due to missing rotational thrombelastometry (ROTEM) measurements. In
the final analysis blood samples of three males and ten females, aged 21-39 years old were included.

Demographics as well as baseline laboratory parameters are shown in Table 1.
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Table 1. Baseline parameters of all subjects (1 = 14).

Demographics mean * SD
Age (years) 27.0+6.1
Height (cm) 170.0 £9.7
Weight (kg) 64.3£9.6

Blood count

Leukocytes (G/L) 56+1.0
Erythrocytes (T/L) 46+04
Haemoglobin (g/L) 136.2 +10.7
Haematocrit (L/L) 0.4+0.0

MCH (pg) 299+1.1

MCHC (g/L) 343.5+82

MCYV (fL) 87.0+3.30

Red blood cell distribution (%)  13.2+0.8
Thrombocytes (G/L) 2542+ 51.1

Mean platelet volume (f/L) 10.8 £0.81

SD reflects standard deviation, MCH reflects mean corpuscular haemoglobin, MCHC reflects mean

corpuscular haemoglobin concentration, MCV reflects mean corpuscular volume.

2.1. Influence of Increasing Concentrations of Tigecycline on Standard Coagulation Tests

Standard coagulation parameters (i.e., activated partial thromboplastin time, Quick,
international normalized ratio, Fibrinogen by Clauss, Fibrinogen antigen, Thrombin time, Batroxobin
time, coagulation factor XIII (F.XIII) and F.XIII immunologic) remained nearly unchanged after
addition of increasing concentrations of tigecycline (Table 2). A trend to a decreased activated partial
thromboplastin time could be observed only at supraphysiologic concentrations (i.e., about hundred-
fold) as compared to baseline activated partial thromboplastin time (aPTT).

Table 2. Standard coagulation parameters after addition of tigecycline in increasing concentrations (1

- 14).
T -
1gecycline concentration baseline 0.106 1.06 10.6 106
(ug/mL)
aPTT (s) 2938+226 29384210 29.62+233 29.69+256 38.92+5221
Quick (%) 91.46+732 91.00+640 89.46+7.43 90.85+829  85.00+592
Intemanorﬁiﬂormahmd 1054007  1.05+0.05  1.07+0.06  1.05+0.07  1.09+0.06
Fibrinogen by Clauss 266.69 + 260.10 + 258.20 + 258.20 + 258.10 +
(mg/dL) 60,79 61.23 55.29 49.57 59.75
Fibrinogen antigen (mgdl)  252* 24520 + 244,30 + 241.50 + 247.80 +
& gen (mg 34.47 33.19 33.73 39.00 34.76
Thrombin time (s) 2038+1,76 19924180 20.15+173 19.77+188  20.38+1.98
Batroxobin time (s) 1638+051 16314075 1623+0.60 16.15+0.55  16.23 = 0.44
108.44 + 114.30 + 113.70 + 114.20 + 112.20 +
F. XIII (%
(%) 13.93 16.06 17.85 15.85 16.15
. . 106.10 + 10550 +
F. XIII, immunologic (%)  103.18+9.23 0o o 10590 +8.93  105.60 +9.12

1p<0.0001. aPTT reflects activated partial thromboplastin time, F. XIII reflects coagulation factor XIII,
F. XIII, immunologic reflects coagulation factor XIII as assessed immunologically. Data are presented
as means + standard deviations; Statistically significant differences between groups were tested by
One-Way ANOVA or Kruskal-Wallis-Test. Post-hoc multiple comparison of significant results were
tested by Dunnet's multiple comparison test.

2.2. Influence of Tigecycline on ROTEM® Measurements
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Parameters in rotational thromboelastometry remained nearly unchanged in all three test
settings of activated intrinsic and extrinsic pathway (INTEM and EXTEM), as well as fibrinogen
dependent test read outs (FIBTEM). Differences between treatment groups were not shown to display
systematic trends as determined by one-way ANOVA (Table 3).

Table 3. Rotational thromboelastometry after addition of tigecycline in increasing concentrations in

blood samples of healthy volunteers (1 = 14).

Tigecycline concentration baseline 0.106 1.06 10.6 106
(ug/mL)
INTEM
Clotting Time (s) 189.3+19,4 194 + 39 194 £27 182 £ 54 192 £22
Maximum Clot Firmness (mm) 56.5+4,3 58 £5 57+5 57+5 58 +5
Maximum Lysis (%) 11.0£2,2 10+2 9+2 10+2 11+2
EXTEM
Clotting Time (s) 75.0+9,2 76 £10 72+6 72+11 79+12
Maximum Clot Firmness (mm) 61.2+5,6 61+6 59+6 60+6 61+7
Maximum Lysis (%) 92+19 9+2 9+2 9+2 9+3
FIBTEM
Clotting Time (s) 63.8+16,3 71+7 68+17 67 +10 72+9
Maximum Clot Firmness (mm) 13.9+5,3 11+4 13+2 15+6 12+2
Maximum Lysis (%) 3.6+54 2+4 4+3 9+11 2+3

INTEM reflects intrinsically activated test using ellagic acid, EXTEM reflects extrinsically activated
assay with tissue factor, FIBTEM reflects extrinsically activated assay with tissue factor and the
platelet inhibitor cytochalasin D. Data are presented as means * standard deviations.

2.3. Influence of Tigecycline on fibrin polymerization

In cell culture experiments, supra physiologic doses of tigecycline resulted in a rapid loss of
viable cells within 72 h after treatment start (dimethyl thiazolyl diphenyl tetrazolium bromide (MTT)
activity —67.6% + 3.79% compared to untreated, p <0.001, n = 3), while physiologic doses had no effect
on viability as measured by MTT activity (-31.72% + 2.50% compared to untreated, p = 0.39, n =3,
Figure 1).

1.5- %k %k %k

1.0

0.5

MTT-activity
(arbitrary units)

0.0- T
untreated 10.6 pg/mL 106 ug/mL

Figure 1. The differences in cell viability as assessed by dimethyl thiazolyl diphenyl tetrazolium
bromide (MTT)-assay of immortalized human liver cells (HepG2) after three days treatment with

different concentrations of tigecycline (n = 3).
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Confocal microscopy with the immortalized human liver cells (HepG2) supernatant blended
with an equal volume of citrated platelet-free plasma (PFP) from a healthy volunteer was performed
to evaluate the structure of the fibrin network after incubating different concentrations of tigecycline
for a maximum of ten days. The amount of fibrinogen directly produced by cultured hepatocytes
were beneath the measurement limits of both the Clauss method and the immunologic fibrinogen
detection, therefore supernatants of the cell culture experiments were blended with plasma from a
healthy volunteer in a plasma-exchange approach [21]. In plasma exchange experiments we found
qualitative differences, with a more filigree appearance of the fibrin networks with increasing

concentrations of tigecycline (Figure 2).
Plasma Plasma + Supernatant

.
.

Figure 2. Confocal imaging of fibrin networks in plasma (left panel side) and plasma exchange experiments

no Tigecycline

1.06 pg/mL Tigecycline

106 pg/mL Tigecycline

(right panel side). (A) shows the fibrin network in platelet-free plasma (PFP) of a healthy donor and (B) mixed
with the supernatant of HepG2 cell culture experiments without the addition of tigecycline. Fibrin
polymerization was compared to experiments applying increasing doses of tigecycline: PFP mixed with 1.06
ug/mL (C) and 106 pug/mL tigecycline (E) versus PFP mixed with conditioned supernatant of HepG2 after 24
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hours incubation in a 1:1 ratio with 1.06 pug/mL (D) and 106 ug/mL tigecycline (F). green = Fluorescein
isothiocyanate (FITC)-labeled FXIIIa; PFP = platelet free plasma.

These qualitative differences could not be detected in quantitative measurements of fibrinogen
by Clauss or by immunologic detection of fibrinogen antigen in plasma samples (Table 2) or the
plasma exchange experiments with supernatants of cell culture in-vitro assays (Figure 3A), despite a
lower number of active hepatocytes was present in experiments with 106 ug/mL tigecycline, as
determined by the MTT-assay. However, a trend indicating an increasing discrepancy between the
two methods of fibrinogen quantification with higher concentrations of tigecycline was observed in
measurements including conditioned media from tigecycline-treated HepG2 (Figure 3B).

A B

140~ n.s. 25+

- 20
®

10
110 —l— 5

100 T T T 0- T
untreated 1.06 pg/mL 106 pg/mL untreated  1.06 pg/mL 106 pg/mL

1304

Fibrinogen
[ma/dl]
8
1
A Fibrinogen
[mg/dL]

Figure 3. Functional levels of fibrinogen in samples (1 = 5) of the plasma exchange experiment with
cell culture supernatants as determined by Clauss compared to immunologically measured
fibrinogen concentrations. (A) Fibrinogen levels were detected with Clauss method in supernatants
of HepG2 treated with the indicated concentrations of tigecycline and mixed with normal platelet-
free plasma (PFP). (B) Additional to the functional measurement, antigen levels of fibrinogen were
assessed. Plotted are the differences between immunologic minus functional levels of fibrinogen (A
fibrinogen) as mean and corresponding standard deviation. Both figures display the cumulative data
of supernatants after five to ten days incubation of cells with tigecycline plotted by concentration.
Differences between groups were tested by One-Way ANOVA, the alpha error levels were higher
than 0.05 in both comparisons.

3. Discussion

In this in vitro-experiment we sought to elucidate the cause of an erratic fibrinogen decrease in
critical ill patients during tigecycline treatment. We observed small changes in fibrinogen levels und
coagulation parameters after addition of supra-therapeutic tigecycline doses to the blood of healthy
adults. These minor changes are of little clinical relevance, as clinical overt bleeding in critical care is
mostly linked to gross fibrinogen decreases. Moreover, the fibrinogen decrease in critical ill patients
tends to occur only after several days of tigecycline start [3,4]. We conclude that the blood of our
healthy subjects lacks either the causative agent of the fibrinogen decrease observed in critical ill
patients under tigecycline treatment or a long enough exposure to tigecycline. Moreover, patients
experiencing a decreased fibrinogen under tigecycline treatment could either be related to an
increased consumption or a (hepatic) synthesis problem. From a clinical point of view it is crucial if
administration of fibrinogen concentrate could further fuel the underlying mechanism in case of an
increased consumption. Sabanis et al. hypothesized a synthesis issue by decrease of gut bacteria
during tigecycline treatment leading to an accordingly depletion of vitamin K2-dependent
coagulation factors [11]. Here, we demonstrated a rapid decrease of hepatic cells viability after
addition of supra-therapeutic tigecycline dosages. However, this decrease was not reflected in
functional fibrinogen measurements in plasma exchange experiments. At this step, we did not use
the hepatoprotective drugs like vitamine C or L-carnithin, but we hypothesize that high-dose
treatment could have an effect on liver function in vivo.

A major limit in interpreting the current and sparse data on coagulopathy under tigecycline
treatment are the different drug dosages used in the different trials or case reports. One could
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hypothesize that high-dose treatment with tigecycline is a possible risk factor for hypofibrinogenemia
which is supported by the observations of Routsi et al. who found high doses of this drug leading to
hypofibrinogenemia [4]. Moreover, Zhang et al. described a dose dependent decrease of fibrinogen
levels [5].

The manufacturer recommends a loading dose of 100 mg, followed by 50 mg twice per day iv.
for adults. One study administered mainly the recommended 2 x 50 mg iv. per day with only 5
patients receiving a higher dose [5]. Another study used higher doses (2 x 100 mg iv. in 39 patients)
and another 6 patients receiving 75 mg twice a day [4]. However, patient weight was reported in
neither study. Therefore, alteration of coagulation could even be due to different serum
concentrations, which is especially true for critical ill patients with changing fluid balance over the
course of illness. Another factor could be continuous renal replacement therapy (CRRT) which is
often required in critical ill patients. However, CRRT contributes only to a minor part of tigecycline
elimination [22].

Possible limitations are the small sample size and young age of the healthy volunteers.
Increasing age has been shown to increase the risk of thrombosis and is an independent risk factor
for cardiovascular disease [23]. On the other hand, Zhang et al. found no difference in the magnitude
of fibrinogen decrease in patients being younger or older than the age of 65 [5].

In summary, our data support a possible effect of tigecycline on qualitative characteristics of the
fibrin network. As the clinical significance of these qualitative changes are not assessable to date, the
benefit of treatment with tigecycline in patients with underlying coagulopathy or being at risk for
bleeding should be carefully weighed as the possible manifestation of a clinically relevant
coagulopathy cannot be excluded.

To summarize, in vitro standard coagulation parameters remained unchanged after addition of
tigecycline in increasing doses to blood of young and healthy adults. Qualitative differences could be
observed regarding the architecture of the fibrin networks with increasing doses of tigecycline, but
these changes had no significant effect on clot stability parameters. Peripheral interactions of
tigecycline on fibrin polymerization therefore might not be the reason of coagulopathy in critically ill
patients during tigecycline treatment.

4. Materials and Methods

4.1. Healthy Volunteers

Healthy adult volunteers were included into the study after providing informed consent to the
study procedures and a medical check especially regarding the medical history of coagulopathies,
concomitant medication interfering with coagulation parameters or any kind of liver diseases. As
such the exclusion criteria comprised intake of any anticoagulant medications, the presence of any
kind of haemophilia or acquired and hereditary coagulation disorders, any kind of liver disease,
pregnancy, as well as the intake of medications possibly interfering with the results of the study (i.e.,
Aspirin, other platelet inhibitors). Within one month prior to testing several participants took low
dose of nonsteroidal anti-inflammatory drugs (1 = 5), oral contraceptives (1 = 2), a beta-blocker (n =
1), a retinoid (n = 1), and an inhalation aerosol that contained a combination of a beta-2
sympathomimetic and a vagolytic drug (1 =1). The procedure was approved by the Ethics Committee
of the Medical University of Innsbruck (#1199/2017).

4.2. Preparation of Blood Samples

This laboratory study was conducted in Innsbruck. From each healthy adult blood samples were
drawn. One citrate blood sample (Vacutainer, Sarstedt, Niimbrecht, Germany) served as baseline for
ROTEM® and real-time live confocal microscopy, respectively. Another four citrate blood samples
were spiked with logarithmically increasing concentrations of tigecycline. Thereafter fibrin
polymerization was measured with ROTEM® and visualized by real-time live confocal imaging. Two
Ethylenediaminetetracetic acid (EDTA)-tubes (Sarstedt, Niimbrecht, Germany) were used for blood
cell count and baseline thrombelastometric tests. For each spiking step, stock solutions were
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prepared. A 50 mg Tygacil® vial (Pfizer, Kent, United Kingdom) was dissolved in 16.3 mL of 0.9 %
sodium chloride injection (Braun, Melsungen, Germany). As Tygacil® vials contain a 6 % overage,
16.3 mL equal a concentration of 3286 pug/mL. This first solution was further diluted with Dulbecco’s
phosphate-buffered saline (DPBS; BioWhittaker, Lonza, Belgium). Right after blood collection every
citrate blood sample was mixed with 100 pL of their corresponding stock solution to reach the
different concentrations of tigecycline. Final concentrations were 0.16 pg/mL for spiking step I, 1.06
pg/mL for step II, 10.6 ug/mL for step III and 106 pg/mL for step IV, respectively. One citrated and
one EDTA blood sample served as baseline (i.e., step 0). To exclude diluting effects in control samples
100 pL DPBS was added. After adding the tigecycline solutions, all samples were put aside and
slightly swirled for 10 minutes before ROTEM® measurements were started.

4.3. Coagulation Tests

Citrated whole blood samples were centrifuged at 12.500 rpm for 12 min at room temperature.
Thereafter further coagulation tests and blood count were performed at the Central Institute of
Medical and Chemical Laboratory Diagnostics, University Hospitals of Innsbruck, Austria. For
fibrinogen levels (Clauss method) the Multifibren® U-assay (Siemens Healthcare Diagnostics,
Marburg, Germany) was used. Fibrinogen antigen was measured using a turbidimetric latex
immunoassay (LIAPHEN™ fibrinogen; Hyphen Biomed, Neuville sur Oise, France).

4.4. Rotational Thromboelastometry (ROTEM®)

All samples were analyzed within 4 h after blood draw. Two ROTEM® gamma analyzers (TEM
Innovations, Munich, Germany) with reagents provided by the same manufacturer for EXTEM
(extrinsically activated assay with tissue factor), INTEM (intrinsically activated test using ellagic
acid), and FIBTEM (extrinsically activated assay with tissue factor and the platelet inhibitor
cytochalasin D) measurements were used.

4.5. Cell Culture

The human hepatocyte cell line HepG2 (American Type Culture Collection (ATCC®) HB-
8065TM) was chosen to investigate if tigecycline treatment of cells interferes with fibrinogen
production in quantitative and/or qualitative aspects. HepG2 has been tested for an inducible
decrease of fibrinogen synthesis in vitro in several studies [24-26], mostly reporting fibrinogen
concentrations as relative to control experiments or fold changes of mRNA detection. However,
Binsack et al. reported fibrinogen concentrations in the supernatant after culturing 6-well plates with
2 mL serum-free medium for 24h of 0.2 pg/mL = 0.02 mg/dL, which is about 10.000-fold less than
normal fibrinogen levels in humans [21].

4.6. Stimulation of Hepatocytes

Cells were cultured in Roswell Park Memorial Institute (RPMI 1640, Biochrome GmbH, Berlin,
Germany) supplemented with 10% fetal calf serum (FCS) and 1% Penicillin/Streptomycin (Sigma
Aldrich, Germany) in collagen I (PureCol, Advanced Biomatrix, San Diego, USA) coated cell culture
flasks (25 cm?) or 6-well-plates at standard cell culture conditions (5% CO2 at 37 °C, saturated
humidity). Cells were stimulated with two different concentrations of tigecycline or untreated control
cells for 10, 7, 5 days and for 72 and 24 hours. Stock preparations of tigecycline were diluted to a
physiological concentration (1 pg/mL) and a supraphysiological concentration (100 pug/mL) in PBS
and added to the cell culture medium. Medium including tigecycline was exchanged every other day.
Cells were checked daily for their confluency status and passaged at a density of 90 %. After the
respective incubation period, cells were harvested, cell count and viability was assessed and cells
were seeded in a standardized density, which equaled 1 x 10¢ cells per 6-well for fibrinogen
measurements and 1 x 10° cells per 96-well to assess the mitochondrial activity. 24 hours after seeding,
the medium was exchanged to serum-free RPMI. After an additional incubation for 24 hours
supernatants were harvested, cells and debris were removed by centrifugation.
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4.7. Real-Time Live Confocal Microscopy of Fibrin Formation

Real-time live confocal microscopy of fibrin formation patterns was performed with a spinning
disk confocal system (UltraVIEW® VoX; Perkin Elmer, Waltham, MA, USA) that was connected to a
Zeiss AxioObserver Z1 microscope (Zeiss, Oberkochen, Germany). Images and Z-stacks were
acquired using Volocity software (Perkin Elmer, Waltham, MA, USA) and a 63x oil immersion
objective with a numerical aperture of 1.42 [27-29]. Briefly, citrated plasma of healthy volunteers or
cell culture supernatants mixed in a 1:1 dilution with plasma from a healthy donor, were pipetted
onto a glass slide. Formation of fibrin was initiated by the addition of the ROTEM reagent EXTEM
and a protein nicked with fluorescein which specifically labels activated FXIII was added to visualize
the fibrin network. To increase the validity of the data acquisition, the experimentator performing
the microscopic analysis was blinded to experimental set ups. Background correction was carried out
with Image] 1.52k (National Institute of Health, USA, http://image].nih.gov/ij), no further adaptions
were applied. To validate the observations of the visual examinations, fibrin polymerization of both
experimental approaches was quantified by Clauss Method and compared to levels determined by
immunologic assays as described above.

4.8. Cell Viability and Mitochondrial Activity (MTT)

Cell viability was assessed by acridine orange and propidium iodide staining (Biozym Scientific,
Hessisch Oldendorf, Germany) at DO after trypsinization from 6-well plates and before seeding
HepG2 for harvesting. Frequencies of stained cells were determined with an automated cell counter
(LUNA, Logos Biosystems, Gyeonggi-do, South Korea).

A nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent cellular oxidoreductase
enzyme assay, commonly known as MTT assay, was used to assess mitochondrial activity of the cells
as proxy for cell viability. Cells were cultured in standardized densities in 96-well plates after priming
for the indicated time periods with tigecycline. After 24 hours, growth medium was replaced with
200uL serum-free RPMI per well. After addition of 20uL MTT reagent (3-[4,5-dimethylthiazol-2-yl]-
2, 5 diphenyl tetrazolium bromide) cells were incubated for 2 hours at standard cell culture
conditions. Supernatant was discarded, 200uL dimethyl sulphoxide (DMSO) was added to each well.
After complete disruption of cells the absorbance of formed formazan was read at 570 nm against a
reference wavelength at 690 nm with a microplate reader (Infinite M200, Tecan, Salzburg, Austria).

4.9. Statistics

The primary endpoint of the study was the absolute change of fibrinogen concentration as
dermined by Clauss, from baseline to the measurement after the addition of tigecycline. IBM® SPSS
Statistics 25.0 (IBM®, Armonk, NY, United States) and GraphPad Prism (Graphpad Software, Version
8.3.0 for macOS, La Jolla, California, USA, www.graphpad.com) were used for statistical analyses
and graphical representations. If not else indicated, all parameters are presented as mean and
standard deviations.
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