Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics
Abstract
:1. Introduction
2. Application of Aptamer Biosensors in the Detection of AGs
3. Colorimetric Aptamer Sensors
4. Fluorescent Aptamer Sensors
5. Chemiluminescent Aptamer Sensors
6. SPR Aptamer Sensors
7. Electrochemical Aptasensors
8. Other Aptasensors
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jospe-Kaufman, M.; Siomin, L.; Fridman, M. The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorg. Med. Chem. Lett. 2020, 30. [Google Scholar] [CrossRef]
- Glinka, M.; Wojnowski, W.; Wasik, A. Determination of aminoglycoside antibiotics: Current status and future trends. TRAC Trends Anal. Chem. 2020, 131, 116034. [Google Scholar] [CrossRef]
- Schilling, K.; Krmar, J.; Maljuric, N.; Pawellek, R.; Protic, A.; Holzgrabe, U. Quantitative structure-property relationship modeling of polar analytes lacking UV chromophores to charged aerosol detector response. Anal. Bioanal. Chem. 2019, 411, 2945–2959. [Google Scholar] [CrossRef] [PubMed]
- Toro, I.J.; Rodriguez, C.A.; Zuluaga, A.F. Effectiveness of the antibiotic combinations for enterococcal infections treatment: A critical review. Rev. Chil. Infectol. 2019, 36, 556–564. [Google Scholar]
- Khan, F.; Lee, J.W.; Javaid, A.; Park, S.K.; Kim, Y.M. Inhibition of biofilm and virulence properties of Pseudomonas aeruginosa by sub-inhibitory concentrations of aminoglycosides. Microb. Pathog. 2020, 146. [Google Scholar] [CrossRef]
- Hussein, M.; Han, M.L.; Zhu, Y.; Zhou, Q.; Lin, Y.W.; Hancock, R.E.W.; Hoyer, D.; Creek, D.J.; Li, J.; Velkov, T. Metabolomics Study of the Synergistic Killing of Polymyxin B in Combination with Amikacin against Polymyxin-Susceptible and -Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- ElFeky, D.S.; Awad, A.R.; Elshobaky, M.A.; Elawady, B.A. Effect of Ceftaroline, Vancomycin, Gentamicin, Macrolides, and Ciprofloxacin against Methicillin-Resistant Staphylococcus aureus Isolates: An In Vitro Study. Surg. Infect. 2020, 21, 150–157. [Google Scholar] [CrossRef]
- Maiden, M.M.; Zachos, M.P.; Waters, C.M. Hydrogels Embedded With Melittin and Tobramycin Are Effective Against Pseudomonas aeruginosa Biofilms in an Animal Wound Model. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Lu, M.; Chen, D.J. Advances in the development and application of aminoglycoside antibiotics. Chin. J. Antibiot. 2019, 44, 1288–1294. [Google Scholar]
- Rode, H.B.; Lade, D.M.; Gree, R.; Mainkar, P.S.; Chandrasekhar, S. Strategies towards the synthesis of anti-tuberculosis drugs. Org. Biomol. Chem. 2019, 17, 5428–5459. [Google Scholar] [CrossRef]
- Bellucci, M.C.; Volonterio, A. Aminoglycosides: From Antibiotics to Building Blocks for the Synthesis and Development of Gene Delivery Vehicles dagger. Antibiotics 2020, 9, 504. [Google Scholar] [CrossRef]
- Rosenberg, C.R.; Fang, X.; Allison, K.R. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.F.; Araujo, A.C.J.; Silva, A.L.F.; Almeida, D.V.; Freitas, P.R.; Santos, A.L.E.; Rocha, B.A.M.; Garcia, W.; Leme, A.M.; Bondan, E.; et al. Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int. J. Biol. Macromol. 2020, 146, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Rajkhan, A.T.; Esmat, A.; Alharthi, S.E. Protective Effect of Celastrol on Gentamicin-induced Nephrotoxicity in Mice. Int. J. Pharm. 2020, 16, 126–135. [Google Scholar] [CrossRef]
- Prasad, K.N.; Bondy, S.C. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech. Ageing Dev. 2020, 185. [Google Scholar] [CrossRef]
- Pham, T.N.M.; Jeong, S.Y.; Kim, D.H.; Park, Y.H.; Lee, J.S.; Lee, K.W.; Moon, I.S.; Choung, S.Y.; Kim, S.H.; Kang, T.H.; et al. Protective Mechanisms of Avocado Oil Extract Against Ototoxicity. Nutrients 2020, 12, 947. [Google Scholar] [CrossRef] [Green Version]
- Ogier, J.M.; Lockhart, P.J.; Burt, R.A. Intravenously delivered aminoglycoside antibiotics, tobramycin and amikacin, are not ototoxic in mice. Hear. Res. 2020, 386. [Google Scholar] [CrossRef] [PubMed]
- Mahi-Birjand, M.; Yaghoubi, S.; Abdollahpour-Alitappeh, M.; Keshtkaran, Z.; Bagheri, N.; Pirouzi, A.; Khatami, M.; Sepehr, K.S.; Peymani, P.; Karimzadeh, M. Protective effects of pharmacological agents against aminoglycoside-induced nephrotoxicity: A systematic review. Expert Opin. Drug Saf. 2020, 19, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Ricker, N.; Trachsel, J.; Colgan, P.; Jones, J.; Choi, J.; Lee, J.; Coetzee, J.F.; Howe, A.; Brockmeier, S.L.; Loving, C.L.; et al. Toward Antibiotic Stewardship: Route of Antibiotic Administration Impacts the Microbiota and Resistance Gene Diversity in Swine Feces. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Reis, A.C.; Kolvenbach, B.A.; Nunes, O.C.; Corvini, P.F.X. Biodegradation of antibiotics: The new resistance determinants—Part I. New Biotechnol. 2020, 54, 34–51. [Google Scholar] [CrossRef]
- Shao, J.; Wei, D.; Zeng, K.; Huang, Z.; Du, D.L. Research progress in rapid analysis of aminoglycoside antibiotics in food. Jiangsu Agric. Sci. 2019, 47, 18–24. [Google Scholar]
- Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef]
- Qian, J.; Yu, K.J.; Chen, J.; Liu, Z.C.; Liu, Y.Y.; Pan, Y.F. Liquid phase fluorescence method was used to detect 9 aminoglycosides residues in dairy products. Fujian Anal. Test. 2011, 20, 13–17. [Google Scholar]
- Lou, X.Y.; Tang, Y.Y.; Fang, C.L.; Kong, C.; Yu, H.J.; Shi, Y.F.; Huang, D.M.; Guo, Y.G.; Xiao, D.X. Simultaneous determination of ten aminoglycoside antibiotics in aquatic feeds by high-performance liquid chromatography quadrupole-orbitrap mass spectrometry with pass-through cleanup. Chirality 2020, 32, 324–333. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wang, J.J.; Wu, Q.H.; Li, L.; Wang, Y.; Yang, H.L. Determination of Kanamycin by High Performance Liquid Chromatography. Molecules 2019, 24, 1902. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Liu, Y.; Wang, W.T.; Jia, Y.B.; Zhao, G.P.; Zhang, X.X.; Chen, H.X.; Zhou, Y.L. Highly sensitive determination of aminoglycoside residues in food by sheathless CE-ESI-MS/MS. Anal. Methods 2019, 11, 5064–5069. [Google Scholar] [CrossRef]
- Wu, N.; Hai, X.; Yang, R.J. Advances in the application of chromatography and spectroscopy in the detection of antibiotics in milk. Lab. Test. 2018, 17, 194–197. [Google Scholar]
- Zhu, W.X.; Yang, J.Z.; Wei, W.; Liu, Y.F.; Zhang, S.S. Simultaneous determination of 13 aminoglycoside residues in foods of animal origin by liquid chromatography-electrospray ionization tandem mass spectrometry with two consecutive solid-phase extraction steps. J. Chromatogr. A 2008, 1207, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Song, X.Q.; Zhang, M.Y.; Li, E.; He, L. Simultaneous Determination of Aminoglycoside Residues in Food Animal Muscles by Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Method 2018, 11, 1690–1700. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Michali, C.S.; Thomaidis, N.S. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1452, 67–80. [Google Scholar] [CrossRef]
- Arsand, J.B.; Jank, L.; Martins, M.T.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M.; Sirtori, C. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry. Talanta 2016, 154, 38–45. [Google Scholar] [CrossRef]
- Roseboom, I.C.; Thijssen, B.; Rosing, H.; Mbui, J.; Beijnen, J.H.; Dorlo, T.P.C. Highly sensitive UPLC-MS/MS method for the quantification of paromomycin in human plasma. J. Pharm. Biomed. 2020, 185. [Google Scholar] [CrossRef]
- Qiu, J.L.; Liu, Q.Y.; Zhang, M.Y.; Li, X.Z.; Zhang, J.H.; Xiong, R.P.; He, L.M. Simultaneous Determination of Aminoglycoside Residues in Environmental Water Matrices by Lyophilization Combined with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Anal. Lett. 2020, 53, 2235–2251. [Google Scholar] [CrossRef]
- Acaroz, U.; Ince, S.; Arslan-Acaroz, D.; Kucukkurt, I.; Eryavuz, A. Determination of Kanamycin Residue in Anatolian Buffalo Milk by LC-MS/MS. Kafkas Univ. Vet. Fak. 2020, 26, 97–102. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, D.; Lara, F.J.; Jurgovska, N.; Gamiz-Gracia, L.; Garcia-Campana, A.M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal. Chim. Acta 2015, 891, 321–328. [Google Scholar] [CrossRef]
- Zhu, G.Z.; Bao, C.J.; Liu, W.F.; Yan, X.X.; Liu, L.L.; Xiao, J.; Chen, C.P. Rapid Detection of AGs using Microchip Capillary Electrophoresis Contactless Conductivity Detection. Curr. Pharm. Anal. 2019, 15, 9–16. [Google Scholar] [CrossRef]
- Cai, J.H.; Liu, W.N.; Gu, X. Microbiological detection of streptomycin residues in milk. Chin. J. Vet. Med. 2004, 11, 7–9. [Google Scholar]
- Jin, Y.; Jang, J.W.; Han, C.H. Development of ELISA and immunochromatographic assay for the detection of gentamicin. J. Agric. Food Chem. 2005, 53, 7639–7643. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Shang, Y.H.; Li, X.M. Development of an enzyme-linked immunoassay for the detection of gentamicin in swine tissues. Food Chem. 2008, 108, 304–309. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Byzova, N.A.; Zvereva, E.A.; Zherdev, A.V.; Dzantiev, B.B. Sensitive lateral flow immunoassay of an antibiotic neomycin in foodstuffs. J. Food Sci. Technol. Mysore 2020. [Google Scholar] [CrossRef]
- Wei, D.L.; Meng, H.; Zeng, K.; Huang, Z. Visual dual dot immunoassay for the simultaneous detection of kanamycin and streptomycin in milk. Anal. Methods 2019, 11, 70–77. [Google Scholar] [CrossRef]
- Farouk, F.; Azzazy, H.M.; Niessen, W.M. Challenges in the determination of aminoglycoside antibiotics, a review. Anal. Chim. Acta 2015, 890, 21–43. [Google Scholar] [CrossRef]
- Raut, A.; Sharma, D.; Suvarna, V. A Status Update on Pharmaceutical Analytical Methods of Aminoglycoside Antibiotic: Amikacin. Crit. Rev. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Donegatti, T.A.; Lobato, A.; Duek, E.A.R.; Goncalves, L.M.; Pereira, E.A. Derivatization-free determination of aminoglycosides by CZE-UV in pharmaceutical formulations. Electrophoresis 2020. [Google Scholar] [CrossRef]
- Usmani, M.; Ahmed, S.; Sheraz, M.A.; Ahmad, I. Development and Validation of a Pre-Column Derivatization HPLC Method for the Assay of Amikacin Sulfate in Pure and Parenteral Dos age Forms. Curr. Pharm. Anal. 2019, 15, 511–520. [Google Scholar] [CrossRef]
- Liu, X.D.; Lin, H.; Jiang, J. Advances in the detection of aminoglycoside antibiotics in animal-derived foods. Anhui Agric. Sci. 2010, 38, 4128–4132. [Google Scholar]
- Fu, Q.M.; Ou, X.M.; Liu, Y.H. Progress in the detection of aminoglycoside antibiotic residues in agricultural products. Pestic. Sci. 2009, 48, 784–789. [Google Scholar]
- Peng, Y.; Ye, T.; Cao, H. Advances in the detection of antibiotics by ligand sensors. Ind. Microorg. 2019, 49, 55–60. [Google Scholar]
- Reder-Christ, K.; Bendas, G. Biosensor applications in the field of antibiotic research--a review of recent developments. Sensors 2011, 11, 9450–9466. [Google Scholar] [CrossRef] [Green Version]
- Mungroo, N.A.; Neethirajan, S. Biosensors for the detection of antibiotics in poultry industry-a review. Biosensors 2014, 4, 472–493. [Google Scholar] [CrossRef] [Green Version]
- Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 2007, 24, 191–200. [Google Scholar] [CrossRef]
- Liu, H.M.; Luan, Y.X.; Lu, A.X. The application of nucleic acid aptamer in the rapid detection of small molecular target. J. Food Saf. Qual. Insp. 2017, 8, 2957–2965. [Google Scholar]
- Pei, J.Y.; Zhu, L.J.; Xu, W.T. Progress in the application of aptamer in the detection of foodborne pathogenic bacteria. Biotechnol. Bull. 2016, 32, 48–62. [Google Scholar]
- Chen, A.; Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef]
- Toh, S.Y.; Citartan, M.; Gopinath, S.C.; Tang, T.H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2015, 64, 392–403. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019, 37, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Radom, F.; Jurek, P.M.; Mazurek, M.P.; Otlewski, J.; Jelen, F. Aptamers: Molecules of great potential. Biotechnol. Adv. 2013, 31, 1260–1274. [Google Scholar] [CrossRef]
- Raducanu, V.-S.; Rashid, F.; Zaher, M.S.; Li, Y.; Merzaban, J.S.; Hamdan, S.M. A direct fluorescent signal transducer embedded in a DNA aptamer paves the way for versatile metal-ion detection. Sens. Actuators B Chem. 2020, 304, 127376. [Google Scholar] [CrossRef]
- Song, K.M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem. 2011, 415, 175–181. [Google Scholar] [CrossRef]
- De-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. SPR sensingof small molecules with modified RNA aptamers: Detection of neomycin B. Biosens. Bioelectron. 2009, 24, 2547–2553. [Google Scholar] [CrossRef]
- Zhou, N.D.; Wang, J.Y.; Zhang, J.; Li, C.; Tian, Y.; Wang, J. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta 2013, 108, 109–116. [Google Scholar] [CrossRef]
- Nie, J.; Yuan, L.; Jin, K.; Han, X.; Tian, Y.; Zhou, N. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity. Biosens. Bioelectron. 2018, 122, 254–262. [Google Scholar] [CrossRef]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Nikolaus, N.; Strehlitz, B. DNA-Aptamers Binding Aminoglycoside Antibiotics. Sensors 2014, 14, 3737–3755. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wu, Y.G.; Tao, H. Colorimetric detection of streptomycin in milk based on peroxidase—Mimicking catalytic activity of gold nanoparticles. RSC Adv. 2017, 7, 38471–38478. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Han, T.; Li, X.; Sun, L.; Zhang, Y.; Zhang, Y. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism. Anal. Chim. Acta 2015, 891, 298–303. [Google Scholar] [CrossRef]
- Ramezani, M.; Danesh, N.M.; Lavaee, P.A. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sens. Actuators B Chem. 2016, 222, 1–7. [Google Scholar] [CrossRef]
- Ling, K.; Jiang, H.Y.; Zhang, L.L. A self—Assembling RNA aptamer—Based nanoparticle sensor for fluorometric detection of neomycin B in milk. Anal. Bioanal. Chem. 2016, 408, 3593–3600. [Google Scholar] [CrossRef]
- Wu, C.Y.; Gan, N.; Ou, C.R.; Tang, H.Q.; Zhou, Y.; Cao, J.X. A homogenous “signal-on” aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification. RSC Adv. 2017, 7, 8381–8387. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, D.E.; Liu, Y.; Liu, Z. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens. Bioelectron. 2014, 55, 149–156. [Google Scholar] [CrossRef]
- Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Abnous, K. A labelfree fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem. 2016, 203, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Lavaee, P.; Nejabat, M.; Abnous, K.; Taghdisi, S.M. A labelfree fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Anal. Chim. Acta 2018, 1030, 142–147. [Google Scholar] [CrossRef]
- Leung, K.H.; He, H.Z.; Chan, S.H.; Fu, W.C.; Leung, C.H.; Ma, D.L. An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution. Sens. Actuators B Chem. 2013, 177, 487–492. [Google Scholar] [CrossRef]
- Lin, X.; Su, J.; Lin, H.; Sun, X.; Liu, B.; Kankala, R.K.; Zhou, S.F. Luminescent carbon nanodots based aptasensors for rapid detection of kanamycin residue. Talanta 2019, 202, 452–459. [Google Scholar] [CrossRef]
- Feng, R.R. Electrochemical Biosensor Based on Amino Antibiotic Nucleic Acid Aptamer; Yan’an University: Yan’an, China, 2017. [Google Scholar]
- Zhu, Y.; Chandra, P.; Song, K.M.; Ban, C.; Shim, Y.B. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Sun, L.H.; Huang, X.C.; Sun, Y.Y.; Lu, C.H. A label-free and signal-on electrochemical aptasensor for ultrasensitive kanamycin detection based on exonuclease recycling cleavage. Anal. Methods 2016, 8, 176. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Zhou, Y.; Li, T.H.; Xu, Q.; Cao, Y.T.; Chen, Y.J. A novel aptamer-metal ions-nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens. Actuators B Chem 2017, 242, 1201–1209. [Google Scholar] [CrossRef]
- Li, F.; Yu, Z.; Han, X.; Shi, W.; Liu, Y.; Yan, H.; Zhang, G. A signal-on electrochemical aptasensor for highly sensitive and specific detection of kanamycin based on target-induced signaling probe shifting mechanism. Sens. Actuators B Chem. 2018, 273, 480–487. [Google Scholar] [CrossRef]
- Sharma, A.; Istamboulie, G.; Hayat, A.; Catanante, G.; Bhand, S.; Marty, J.L. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sens. Actuators B Chem. 2017, 245, 507. [Google Scholar] [CrossRef]
- Wang, M.; Hu, B.; Yang, C.; Zhang, Z.; He, L.; Fang, S.; Qu, X.; Zhang, Q. Electrochemical biosensing based on protein-directed carbon nanospheres embedded with SnO and TiO2 nanocrystals for sensitive detection of tobramycin. Biosens. Bioelectron. 2018, 99, 176–185. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, T.; Hu, Q.; Zhong, L.; Wang, X.; Wan, H.; Wang, P. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta 2020, 208, 120231. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Z.; Li, B.; Du, J. Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Food Chem. 2020, 339, 128059. [Google Scholar] [CrossRef]
- Jia, M.; Sha, J.; Li, Z.; Wang, W.; Zhang, H. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor. Food Chem. 2020, 317, 126459. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, Y.; Xiu, F.-R.; Hou, J. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sens. Actuators B Chem. 2020, 304, 127359. [Google Scholar] [CrossRef]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef]
- Simon, J.; Udayan, S.; Bindiya, E.S.; Bhat, S.G.; Nampoori, V.P.N.; Kailasnath, M. Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins. Anal. Biochem. 2020, 612, 113975. [Google Scholar] [CrossRef]
- Ortiz-Castillo, J.E.; Gallo-Villanueva, R.C.; Madou, M.J.; Perez-Gonzalez, V.H. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord. Chem. Rev. 2020, 425, 213489. [Google Scholar] [CrossRef]
- Li, X.; Cheng, R.; Shi, H.; Tang, B.; Xiao, H.; Zhao, G. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. J. Hazard. Mater. 2016, 304, 474–480. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Feng, R.R.; Li, X.X. Gold nanoparticle colorimetry for the detection of Kanamycin. J. Anal. Sci. 2018, 34, 372–376. [Google Scholar]
- Chen, J.; Li, Z.; Ge, J.; Yang, R.; Zhang, L.; Qu, L.B.; Wang, H.Q.; Zhang, L. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Talanta 2015, 139, 226–232. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, J.; Ding, A.; Xu, L.; Chen, J.; Li, C.M. Highly sensitive aflatoxin B1 sensor based on DNA-guided assembly of fluorescent probe and TdT-assisted DNA polymerization. Food Chem. 2019, 294, 19–26. [Google Scholar] [CrossRef]
- Sharma, R.; Akshath, U.S.; Bhatt, P.; Raghavarao, K. Fluorescent aptaswitch for chloramphenicol detection – Quantification enabled by immobilization of aptamer. Sens. Actuators B Chem. 2019, 290, 110–117. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, J.; Uppal, J.S.; Peng, H.; Wang, H.; Le, X.C. Nucleic acid aptamers improving fluorescence anisotropy and fluorescence polarization assays for small molecules. Trac. Trends Anal. Chem. 2019, 110, 401–409. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, J.; Feng, W.; Uppal, J.S.; Peng, H.; Le, X.C. Aptamer binding assays and molecular interaction studies using fluorescence anisotropy—A review. Anal. Chim. Acta 2020, 1125, 267–278. [Google Scholar] [CrossRef]
- Bonilla, J.C.; Bozkurt, F.; Ansari, S.; Sozer, N.; Kokini, J.L. Applications of quantum dots in Food Science and biology. Trends Food Sci. Technol. 2016, 53, 75–89. [Google Scholar] [CrossRef]
- Badıllı, U.; Mollarasouli, F.; Bakirhan, N.K.; Ozkan, Y.; Ozkan, S.A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TRAC Trends Anal. Chem. 2020, 131, 116013. [Google Scholar] [CrossRef]
- Yang, L.; Ni, H.; Li, C.; Zhang, X.; Wen, K.; Ke, Y.; Yang, H.; Shi, W.; Zhang, S.; Shen, J.; et al. Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers. Sens. Actuators B Chem. 2019, 281, 801–811. [Google Scholar] [CrossRef]
- Sun, Y.; Han, R.; Dai, Y.; Zhu, X.; Liu, H.; Gao, D.; Luo, C.; Wang, X.; Wei, Q. Highly selective and sensitive streptomycin chemiluminescence sensor based on aptamer and G-quadruplex DNAzyme modified three-dimensional graphene composite. Sens. Actuators B Chem. 2019, 301, 127122. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Chen, L.; Liu, D. A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid. Anal. Chim. Acta 2019, 1090, 57–63. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef]
- Koyun, S.; Akgonullu, S.; Yavuz, H.; Erdem, A.; Denizli, A. Surface plasmon resonance aptasensor for detection of human activated protein C. Talanta 2019, 194, 528–533. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 2019, 192, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Yang, D.; Mo, Q.H. Research progress of adaptor sensor based on surface plasmon resonance. Biotechnol. Commun. 2015, 26, 149–153. [Google Scholar]
- Zhu, M. Application of electrochemical sensor in antibiotic detection. Shandong Chem. Ind. 2019, 48, 246–247. [Google Scholar]
- Wang, M.H.; Hu, M.Y.; Liu, J.M.; Guo, C.P.; Peng, D.L.; Jia, Q.J.; He, L.H.; Zhang, Z.H.; Du, M. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron. 2019, 132, 8–16. [Google Scholar] [CrossRef]
- Li, F.; Yu, Z.; Han, X.; Lai, R.Y. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal. Chim. Acta 2019, 1051, 1–23. [Google Scholar] [CrossRef]
- Li, F.Q.; Yu, Z.G. Progress in electrochemical aptamer sensor for detection of kanamycin residues in milk and water. J. Anal. Sci. 2019, 35, 514–520. [Google Scholar]
- Caglayan, M.O. Aptamer-based ellipsometric sensor for ultrasensitive determination of aminoglycoside group antibiotics from dairy products. Sci. Food Agric. 2020, 100, 3386–3393. [Google Scholar] [CrossRef]
- Tang, Y.F.; Gu, C.M.; Wang, C.; Song, B.D.; Zhou, X.H.; Lou, X.H.; He, M. Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching. Biosens. Bioelectron. 2018, 102, 646–651. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, F.; Zhu, Y.; Xie, S.; Chen, M.; Xiong, Y.; Liu, Q.; Yang, H.; Chen, X. Intelligent Platform for Simultaneous Detection of Multiple Aminoglycosides Based on a Ratiometric Paper-Based Device with Digital Fluorescence Detector Readout. ACS Sens. 2019, 4, 3283–3290. [Google Scholar] [CrossRef]
Drug Name | Species or Product | Detection Object | MRL (μg kg−1) | |||
---|---|---|---|---|---|---|
China | The European Union | The United States | Japan | |||
Gentamicin | Pig, Cattle | Muscle, Fat | 100 | 50 | 100/400 | 100 |
Liver | 2000 | 200 | 300 | 2000 | ||
Kidney | 5000 | 750 | 400 | 5000 | ||
Milk | 200 | 100 | - | 200 | ||
Chicken | Tissue | 100 | - | 100 | - | |
Kanamycin | Cattle | Muscle, Fat | - | 100 | - | 40 |
Liver | - | 600 | - | 40 | ||
Kidney | - | 2500 | - | 40 | ||
Milk | - | 150 | - | 400 | ||
Pig, Chicken | Muscle | - | 100 | - | 100/50 (chicken) | |
Fat | - | 100 | - | 100 | ||
Liver | - | 600 | - | 100/50 (chicken) | ||
Kidney | - | 2500 | - | 100/500 (chicken) | ||
Chicken | Egg | - | - | - | 500 | |
Neomycin | Cattle, Pig, Chicken | Muscle, Fat, Liver | 500 | 500 | 1200/-/3600 | 500 |
Kidney | 10,000 | 5000 | 7200 | 10,000 | ||
Milk | 500 | 1500 | 150 | 500 | ||
Egg | 500 | 500 | - | 500 | ||
Streptomycin/Dihydrostreptomycin | Cattle, Sheep, Pig | Muscle, Fat, Liver | 600 | 500 | 500 | 600 |
Kidney | 1000 | 1000 | 2000 | 1000 | ||
Cattle | Milk | 200 | 200 | - | 200 |
AGs | Aptamer Sequence (5′–3′) | Kd (μmol L−1) | Ref. |
---|---|---|---|
Kanamycin | TGGGGGTTGAGGCTAAGCCGA | 0.079 | [59] |
Neomycin B | GGCCUGGGCGAGAAGUUUAGGCC | 1.24 | [60] |
Streptomycin | TAGGGAATTCGTCGACGGATCCGGGGTCTGGTGTTCTGCTTTGTTCTGTCGGGTCGTCTGCAGGTCGACGCATGCGCCG | 0.199 | [61] |
Tobramycin | GACTAGGCACTAGTC | 0.042 | [62] |
Sensor Type | Method | Strategy | Analytes | LOD* | Ref.* |
---|---|---|---|---|---|
Colorimetric | NaCl-AuNPs | High-salt induce AuNPs* aggregation from red to blue | Kanamycin | 25 nmol/L | [59] |
the catalytic chromogenic reaction of AuNPs mimics enzymes | Streptomycin | 86 nmol/L | [65] | ||
NaCl-AgNPs | based on analyte-protected and aptamer-selective mechanism | Kanamycin | 2.6 ng/mL | [66] | |
Fluorescent | Labeled | labeled with Exo III, AuNPs and FAM*. | Kanamycin | 321 pmol/L | [67] |
Poly A and FAM modified at the two ends of aptamer | Neomycin B | 0.01 μmol/L | [68] | ||
A fluorescent “signal-on” switch aptasensor based on QDs-SSB* | Streptomycin | 0.03 ng/mL | [69] | ||
The fluorescence resonant energy transfer based on UCNPs* and graphene oxide (GO) | Kanamycin | 9 pmol/L | [70] | ||
Non-labeled | digestion of dsDNA by ExoIII and the ability of SYBR Gold as a fluorescent dye | Streptomycin | 54.5 nmol/L | [71] | |
dsDNA-capped mesoporous silica nanoparticles and Rhodamine B | Kanamycin | 7.5 nmol/L | [72] | ||
Chemiluminescence | Cold light probe | The Pt complex performs signal transduction | Kanamycin | 143 nmol/L | [73] |
FALIA* assay | CNP*-aptasensor probe | Kanamycin | 5 × 10−8 ng/mL | [74] | |
Surface plasmon resonance | Competitive effect | RNA aptamer modified by methyl groups | Neomycin B | 5 nmol/L | [60] |
Electrochemical | Differential pulse voltammetry (DPV) | GR* and AuNPs modified on glassy carbon electrode surface as adaptor carriers | Kanamycin Streptomycin | 0.03 pmol/L 0.3 pmol/L | [75] |
conductive polymer/gold self-assembled nanocomposite | Kanamycin | 9.4 ± 0.4 nmol/L | [76] | ||
Square wave voltammetry (SWV) | The background signal compressed by exonuclease | Kanamycin | 1 pmol/L | [77] | |
nanoscale metal organic framework | Kanamycin | 0.16 pmol/L | [78] | ||
Alternating current voltammetry (ACV) | Target induces signal probe transfer | Kanamycin | 3.3 pmol/L | [79] | |
Electrochemical impedance spectroscopy (EIS) | screen printing carbon electrode | Kanamycin | 0.11 ng/mL | [80] | |
protein-oriented carbon nanoparticles embedded with SnOx and TiO2 nanocrystalline | Tobramycin | 6.7 pg mL−1 | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, Y.; Wang, N.; Li, C.; Guo, X.; Lu, A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics 2020, 9, 787. https://doi.org/10.3390/antibiotics9110787
Luan Y, Wang N, Li C, Guo X, Lu A. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics. 2020; 9(11):787. https://doi.org/10.3390/antibiotics9110787
Chicago/Turabian StyleLuan, Yunxia, Nan Wang, Cheng Li, Xiaojun Guo, and Anxiang Lu. 2020. "Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics" Antibiotics 9, no. 11: 787. https://doi.org/10.3390/antibiotics9110787
APA StyleLuan, Y., Wang, N., Li, C., Guo, X., & Lu, A. (2020). Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics, 9(11), 787. https://doi.org/10.3390/antibiotics9110787