Aptamer-Based Detection of Ampicillin in Urine Samples
Abstract
:1. Introduction
2. Results
2.1. Determination of Ampicillin in Buffer
2.2. FAM Labelled Aptamers for Use in Urine Based Assays
2.3. Development of Test to Determine Ampicillin Concentration in Urine
3. Discussion
4. Materials and Methods
4.1. Preparation of β-Lactam Antibiotic Solutions
4.2. Preparation of Hydrolysed β-Lactam Solutions
4.3. Determination of Ampicillin Concentrations in Buffer and Urine Using Aptamer Based Assay
4.4. Emission/Excitation Fluorescence Spectra
4.5. Preparation and Determination of Control Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Review on Antimicrobial Resistance—Tackling Drug Resistant Infections Globally; Government of the United Kingdom: London, UK, 2016.
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 2012, 402, 2153–2161. [Google Scholar] [CrossRef]
- deBoer, T.R.; Tarlton, N.J.; Yamaji, R.; Adams-Sapper, S.; Wu, T.Z.; Maity, S.; Vesgesna, G.K.; Sadlowski, C.M.; DePaola, P.; Riley, L.W.; et al. An Enzyme-Mediated Amplification Strategy Enables Detection of beta-Lactamase Activity Directly in Unprocessed Clinical Samples for Phenotypic Detection of -Lactam Resistance. ChemBioChem 2018, 19, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Kresse, H.; Belsey, M.J.; Rovini, H. The antibacterial drugs market. Nat. Rev. Drug Discov. 2007, 6, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Neu, H.C. The crisis in antibiotic-resistance. Science 1992, 257, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Sarah, T.; Thomas, C.H.; Christopher, P. Price, Ann Van den Bruel, Annette Plüddemann. NIHR (2017). Point-of-Care Testing for Urinary Tract Infections. Available online: https://www.community.healthcare.mic.nihr.ac.uk/reports-and-resources/horizon-scanning-reports/point-of-care-testing-for-urinary-tract-infections (accessed on 6 June 2020).
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Davenport, M.; Mach, K.E.; Shortliffe, L.M.D.; Banaei, N.; Wang, T.H.; Liao, J.C. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 2017, 14, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Leonard, H.; Colodner, R.; Halachmi, S.; Segal, E. Recent Advances in the Race to Design a Rapid Diagnostic Test for Antimicrobial Resistance. ACS Sens. 2018, 3, 2202–2217. [Google Scholar] [CrossRef]
- Reali, S.; Najib, E.Y.; Balazs, K.E.T.; Tan, A.C.H.; Varadi, L.; Hibbs, D.E.; Groundwater, P.W. Novel diagnostics for point-of-care bacterial detection and identification. RSC Adv. 2019, 9, 21486–21497. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; Stedtfeld, R.D.; Waseem, H.; Stedtfeld, T.; Upham, B.; Khalife, W.; Etchebarne, B.; Hughes, M.; Tiedje, J.M.; Hashsham, S.A. Implications of direct amplification for measuring antimicrobial resistance using point-of-care devices. Anal. Methods 2017, 9, 1229–1241. [Google Scholar] [CrossRef]
- Daikoku, T.; Saito, K.; Aihara, T.; Ikeda, M.; Takahashi, Y.; Hosoi, H.; Nishida, T.; Takemoto, M.; Shiraki, K. Rapid detection of human cytomegalovirus UL97 and UL54 mutations for antiviral resistance in clinical specimens. Microbiol. Immunol. 2013, 57, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Nihonyanagi, S.; Kanoh, Y.; Okada, K.; Uozumi, T.; Kazuyama, Y.; Yamaguchi, T.; Nakazaki, N.; Sakurai, K.; Hirata, Y.; Munekata, S.; et al. Clinical Usefulness of Multiplex PCR Lateral Flow in MRSA Detection: A Novel, Rapid Genetic Testing Method. Inflammation 2012, 35, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, N.; Rachow, A.; Hoelscher, M. Rapid Molecular Detection of Tuberculosis. N. Engl. J. Med. 2011, 364, 182. [Google Scholar] [PubMed] [Green Version]
- Toosky, M.N.; Grunwald, J.T.; Pala, D.; Shen, B.; Zhao, W.A.; D’Agostini, C.; Coghe, F.; Angioni, G.; Motolese, G.; Abram, T.J.; et al. A rapid, point-of-care antibiotic susceptibility test for urinary tract infections. J. Med. Microbiol. 2020, 69, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Maiga, M.; Maiga, M.C.; Atudorei, V.; Sharp, Z.D.; Bishai, W.R.; Timmins, G.S. Rapid in vivo detection of isoniazid-sensitive Mycobacterium tuberculosis by breath test. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.Y.; Kadiyala, U.; VanEpps, J.S.; Yau, S.T. Culture-free bacterial detection and identification from blood with rapid, phenotypic, antibiotic susceptibility testing. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Garzón, V.; Pinacho, D.G.; Bustos, R.H.; Garzón, G.; Bustamante, S. Optical biosensors for therapeutic drug monitoring. Biosensors 2019, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- El-Zahry, M.R.; Refaat, I.H.; Mohamed, H.A.; Rosenberg, E.; Lendl, B. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles. Talanta 2015, 144, 710–716. [Google Scholar] [CrossRef]
- Tomassetti, M.; Conta, G.; Campanella, L.; Favero, G.; Sanzò, G.; Mazzei, F.; Antiochia, R. A flow SPR immunosensor based on a sandwich direct method. Biosensors 2016, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Zumla, A.; Al-Tawfig, J.A.; Enne, V.I.; Kidd, M.; Drosten, C.; Breuer, J.; Muller, M.A.; Hui, D.; Maeurer, M.; Bates, M.; et al. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections-needs, advances, and future prospects. Lancet Infect. Dis. 2014, 14, 1123–1135. [Google Scholar] [CrossRef]
- Dheda, K.; Ruhwald, M.; Theron, G.; Peter, J.; Yam, W.C. Point-of-care diagnosis of tuberculosis: Past, present and future. Respirology 2013, 18, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Buder, S. The Laboratory Diagnosis of Neisseria gonorrhoeae: Current Testing and Future Demands. Pathogens 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Rothman, R.E. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004, 4, 337–348. [Google Scholar] [CrossRef]
- Quinn, A.D.; Dixon, D.; Meenan, B.J. Barriers to hospital-based clinical adoption of point-of-care testing (POCT): A systematic narrative review. Crit. Rev. Clin. Lab. Sci. 2016, 53, 1–12. [Google Scholar] [CrossRef]
- Hays, J.P.; Mitsakakis, K.; Luz, S.; van Belkum, A.; Becker, K.; van den Bruel, A.; Harbarth, S.; Rex, J.H.; Simonsen, G.S.; Werner, G.; et al. The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex “mix-and-match” implementation package. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- van Rooij, T.; Wilson, D.M.; Marsh, S. Personalized medicine policy challenges: Measuring clinical utility at point of care. Expert Rev. Pharm. Outcomes Res. 2012, 12, 289–295. [Google Scholar] [CrossRef]
- Collinson, P. Laboratory medicine is faced with the evolution of medical practice. J. Med. Biochem. 2017, 36, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Rawson, T.M.; Sharma, S.; Georgiou, P.; Holmes, A.; Cass, A.; O’Hare, D. Towards a minimally invasive device for beta-lactam monitoring in humans. Electrochem. Commun. 2017, 82, 1–5. [Google Scholar] [CrossRef]
- Drobniewski, F.; Cooke, M.; Jordan, J.; Casali, N.; Mugwagwa, T.; Broda, A.; Townsend, C.; Sivaramakrishnan, A.; Green, N.; Jit, M.; et al. Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol. Assess. 2015, 19, 1–viii. [Google Scholar] [CrossRef]
- Davey, P.; Brown, E.; Charani, E.; Fenelon, L.; Gould, I.M.; Holmes, A.; Ramsay, C.R.; Wiffen, P.J.; Wilcox, M. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2013, 210. [Google Scholar] [CrossRef]
- McWhinney, B.C.; Wallis, S.C.; Hillister, T.; Roberts, J.A.; Lipman, J.; Ungerer, J.P.J. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2039–2043. [Google Scholar] [CrossRef] [PubMed]
- Cairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B.M. A new HPLC–DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, T.; Suzuki, A.; Niwa, T.; Ushikoshi, H.; Shirai, K.; Yoshida, S.; Ogura, S.; Itoh, Y. Simultaneous determination of eight β-lactam antibiotics in human serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Stove, V.; Wallis, S.C.; De Waele, J.J.; Verstraete, A.G.; Lipman, J.; Roberts, J.A. Assays for therapeutic drug monitoring of β-lactam antibiotics: A structured review. Int. J. Antimicrob. Agents 2015, 46, 367–375. [Google Scholar] [CrossRef]
- Zhou, W.Z.; Huang, P.J.J.; Ding, J.S.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2014, 139, 2627–2640. [Google Scholar] [CrossRef] [Green Version]
- Willner, I.; Zayats, M. Electronic aptamer-based sensors. Angew. Chem. Int. Ed. 2007, 46, 6408–6418. [Google Scholar] [CrossRef]
- Torres-Chavolla, E.; Alocilja, E.C. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 2009, 24, 3175–3182. [Google Scholar] [CrossRef]
- Tombelli, S.; Minunni, M.; Mascini, A. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef]
- Famulok, M.; Mayer, G. Aptamer Modules as Sensors and Detectors. Acc. Chem. Res. 2011, 44, 1349–1358. [Google Scholar] [CrossRef]
- Chen, A.L.; Yang, S.M. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Hermann, T.; Patel, D.J. Biochemistry Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.J.; Jockusch, S.; Vicens, M.; Turro, N.J.; Tan, W.H. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl. Acad. Sci. USA 2005, 102, 17278–17283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Dai, A.T.; Sun, J.; Li, X.Y.; Gao, F.H.; Wu, L.Z.; Fang, Y.; Yang, H.; An, L.; Wu, H.X.; et al. Aptamer-conjugated Mn3O4@SiO2 core-shell nanoprobes for targeted magnetic resonance imaging. Nanoscale 2013, 5, 10447–10454. [Google Scholar] [CrossRef]
- Yu, M.K.; Kim, D.; Lee, I.H.; So, J.S.; Jeong, Y.Y.; Jon, S. Image-Guided Prostate Cancer Therapy Using Aptamer-Functionalized Thermally Cross-Linked Superparamagnetic Iron Oxide Nanoparticles. Small 2011, 7, 2241–2249. [Google Scholar] [CrossRef]
- Huang, P.J.J.; Liu, J.W. Flow Cytometry-Assisted Detection of Adenosine in Serum with an Immobilized Aptamer Sensor. Anal. Chem. 2010, 82, 4020–4026. [Google Scholar] [CrossRef] [Green Version]
- Swensen, J.S.; Xiao, Y.; Ferguson, B.S.; Lubin, A.A.; Lai, R.Y.; Heeger, A.J.; Plaxco, K.W.; Soh, H.T. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor. J. Am. Chem. Soc. 2009, 131, 4262–4266. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.W.; Mazumdar, D.; Lu, Y. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures”. Angew. Chem. Int. Ed. 2006, 45, 7955–7959. [Google Scholar] [CrossRef]
- Maldonado, J.; Estevez, M.C.; Fernandez-Gavela, A.; Gonzalez-Lopez, J.J.; Gonzalez-Guerrero, A.B.; Lechuga, L.M. Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor. Analyst 2020, 145, 497–506. [Google Scholar] [CrossRef]
- McNaught, A.D.; McNaught, A.W. IUPAC. Compendium of Chemical Terminology, 2nd ed.; Gold Book, Ed.; Blackwell Scientific Publications: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Chapter 2 Laboratory Assessment of Kidney Disease. In Pocket Companion to Brenner and Rector’s The Kidney, 2nd ed.; Michael, R.; Clarkson, C.N.M.A.B.M.B. (Eds.) Elsevier: Amsterdam, The Netherlands, 2011; pp. 21–41. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. pH and temperature effects on the hydrolysis of three beta-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Sci. Total Environ. 2014, 466, 547–555. [Google Scholar] [CrossRef]
- Unruh, J.R.; Gokulrangan, G.; Wilson, G.S.; Johnson, C.K. Fluorescence properties of fluorescein, tetramethylrhodamine and Texas Red linked to a DNA aptamer. Photochem. Photobiol. 2005, 81, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Molecular Probes™ Handbook a Guide to Fluorescent Probes and Labeling Technologies, 11th ed.; Invitrogen by Thermo Fisher Scientific: Waltham, MA, USA, 2010; Available online: https://www.thermofisher.com/uk/en/home/global/forms/mp-handbook-download-request-form-2014.html (accessed on 4 November 2019).
- National Collaborating Centre for Women’s and Children’s Health (UK). Urinary tract infection in children: Diagnosis, treatment and long-term management. In NICE Guideline CG54; Excellence, N.I.F.H.A.C., Ed.; RCOG Press: London, UK, 2007. [Google Scholar]
- Zvarik, M.; Martinicky, D.; Hunakova, L.; Lajdova, I.; Sikurova, L. Fluorescence characteristics of human urine from normal individuals and ovarian cancer patients. Neoplasma 2013, 60, 533–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, D.T.; Sobhanifar, S.; Strynadka, N.C.J. The Mechanisms of Resistance to β-Lactam Antibiotics; Gotte, M.B.A., Matlashewski, G., Wainberg, M., Sheppard, D., Eds.; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Meyers, B.R.; Wilkinson, P.; Mendelson, M.H.; Walsh, S.; Bournazos, C.; Hirschman, S.Z. Pharmacokinetics of ampicillin-sulbactam in healthy elderly and young volunteers. Antimicrob. Agents Chemother. 1991, 35, 2098–2101. [Google Scholar] [CrossRef] [Green Version]
- Ling, G.V.; Conzelman, G.M.; Franti, C.E.; Ruby, A.L. Urine concentrations of 5 penicillins following oral-administration to normal adult dogs. Am. J. Vet. Res. 1980, 41, 1123–1125. [Google Scholar] [PubMed]
- Lim, W.S.; Gander, S.; Finch, R.G.; Macfarlane, J.T. A novel method for collecting and detecting amoxycillin in urine: A tool for testing antibiotic compliance in the community. J. Antimicrob. Chemother. 2000, 46, 835–837. [Google Scholar] [CrossRef] [PubMed]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 55–75. [Google Scholar] [CrossRef]
- Wolfgang Haiss, N.T.K.T.; Jenny, A.; David, G.F. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Nakatsuka, N.; Cao, H.H.; Deshayes, S.; Melkonian, A.L.; Kasko, A.M.; Weiss, P.S.; Andrews, A.M. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates. ACS Appl. Mater. Interfaces 2018, 10, 23490–23500. [Google Scholar] [CrossRef]
Technique | Antibiotic | Sample Matrix | Time Taken | LoD (µg/mL) | LoD (µM) | %cv (%) | [Ref] |
---|---|---|---|---|---|---|---|
Dip-stick inhibition | Amoxycillin | Urine | 1 to 14 days | N/A ‡ | N/A | N/A | [62] |
HPLC with UV-Vis detection | Various β-lactams Ampicillin | Plasma | 1 to 25 min * | 4.0–197 4.8–130 | 11.4–563.81 3.7–372.1 | 0.4–6.8 0.7–6.5 | [34] |
UHPLC with UV-Vis detection | Ampicillin | Plasma | 8 min * | 0.5 | 1.4 | 0.03–1.8 | [35] |
HPLC-MS | Ampicillin | Plasma | 13 min * | 0.05–50 | 0.143–143.1 | N/A | [37,36] |
Surface Enhanced Raman Spectroscopy (SERS) | Ampicillin | DI Water | n/a | 0.027 | 0.07 | N/A | [20,21] |
Surface Enhanced Raman Spectroscopy (SERS) | Ampicillin | Buffer | 20 min * | 349 | 1000 | N/A | [20,22] |
Fluorescently labelled aptamer detection | Ampicillin | Urine | 60 min | 0.007 | 0.026 | 1–9% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmons, M.D.; Miller, L.M.; Sundström, M.O.; Johnson, S. Aptamer-Based Detection of Ampicillin in Urine Samples. Antibiotics 2020, 9, 655. https://doi.org/10.3390/antibiotics9100655
Simmons MD, Miller LM, Sundström MO, Johnson S. Aptamer-Based Detection of Ampicillin in Urine Samples. Antibiotics. 2020; 9(10):655. https://doi.org/10.3390/antibiotics9100655
Chicago/Turabian StyleSimmons, Matthew D., Lisa M. Miller, Malin O. Sundström, and Steven Johnson. 2020. "Aptamer-Based Detection of Ampicillin in Urine Samples" Antibiotics 9, no. 10: 655. https://doi.org/10.3390/antibiotics9100655
APA StyleSimmons, M. D., Miller, L. M., Sundström, M. O., & Johnson, S. (2020). Aptamer-Based Detection of Ampicillin in Urine Samples. Antibiotics, 9(10), 655. https://doi.org/10.3390/antibiotics9100655