Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Prevalence and Antimicrobial Susceptibility Profiles of LR S. aureus
2.2. Mutations and Antimicrobial Resistance Genes
2.3. Molecular Characteristics of LR S. aureus Isolates
3. Materials and Methods
3.1. Sample Collection and Isolation of S. aureus
3.2. Antimicrobial Susceptibility Testing and Detection of Resistance Genes
3.3. Detection of Mutations
3.4. Molecular Typing of LR S. aureus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mendes, R.E.; Hogan, P.A.; Jones, R.N.; Sader, H.S.; Flamm, R.K. Surveillance for linezolid resistance via the Zyvoxw Annual Appraisal of Potency and Spectrum (ZAAPS) programme (2014): Evolving resistance mechanisms with stable susceptibility rates. J. Antimicrob. Chemother. 2016, 71, 1860–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobritz, M.; Hutton-Thomas, R.; Marshall, S.; Rice, L.B. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob. Agents Chemother. 2003, 47, 3318–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolter, N.; Smith, A.M.; Farrell, D.J.; Klugman, K.P. Heterogeneous macrolide resistance and gene conversion in the pneumococcus. Antimicrob. Agents Chemother. 2006, 50, 359–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, S.M.; Xiong, L.; Arias, C.A.; Villegas, M.V.; Lolans, K.; Quinn, J.; Mankin, A.S. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 2007, 64, 1506–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lin, D.C.; Guo, X.M.; Wei, H.K.; Liu, X.Q.; Chen, X.J.; Guo, J.Y.; Zeng, Z.L.; Liu, J.H. Distribution of the multidrug resistance gene cfr in Staphylococcus isolates from pigs, workers, and the environment of a hog market and a slaughterhouse in Guangzhou, China. Foodborne Pathog. Dis. 2015, 12, 598–605. [Google Scholar] [CrossRef]
- Schwarz, S.; Werckenthin, C.; Kehrenberg, C. Identification of a plasmid borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 2000, 44, 2530–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, R.E.; Deshpande, L.M.; Jones, R.N. Linezolid update: Stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist. Updates 2014, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, Y.; Schwarz, S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 2013, 68, 1697–1706. [Google Scholar] [CrossRef]
- Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef] [Green Version]
- Wendlandt, S.; Shen, J.; Kadlec, K.; Wang, Y.; Li, B.; Zhang, W.J.; Feßler, A.T.; Wu, C.; Schwarz, S. Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends Microbiol. 2015, 23, 44–54. [Google Scholar] [CrossRef]
- Kosowska-Shick, K.; Julian, K.G.; McGhee, P.L.; Appelbaum, P.C.; Whitener, C.J. Molecular and epidemiologic characteristics of linezolid-resistant coagulase-negative Staphylococci at a tertiary care hospital. Diagn. Microbiol. Infect. Dis. 2010, 68, 34–39. [Google Scholar] [CrossRef]
- Ross, J.E.; Farrell, D.J.; Mendes, R.E.; Sader, H.S.; Jones, R.N. Eight-year (2002–2009) summary of the Linezolid (Zyvox® annual appraisal of potency and spectrum; ZAAPS) program in European countries. J. Chemother. 2011, 23, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Pekana, A.; Green, E. Antimicrobial resistance profiles of Staphylococcus aureus isolated from meat carcasses and bovine milk in abattoirs and dairy farms of the Eastern Cape, South Africa. Int. J. Environ. Res. Public Health. 2018, 15, 2223. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wu, C.; Wang, Y.; Fan, R.; Schwarz, S.; Zhang, S. Identification of multiresistance gene cfr in methicillin-resistant Staphylococcus aureus from pigs: Plasmid location and integration into a staphylococcal cassette chromosome mec complex. Antimicrob. Agents Chemother. 2015, 59, 3641–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, D.; Lee, M.Y.; Jeong, T.D.; Sung, H.; Kim, M.N.; Hong, S.B. Co-emergence of linezolid-resistant Staphylococcus aureus and Enterococcus faecium in a patient with methicillin-resistant S. aureus pneumonic sepsis. Diagn. Microbiol. Infect. Dis. 2011, 69, 232–233. [Google Scholar] [CrossRef]
- Yoo, I.Y.; Kang, O.K.; Shim, H.J.; Huh, H.J.; Lee, N.Y. Linezolid resistance in methicillin-resistant Staphylococcus aureus in Korea: High rate of false resistance to linezolid by the VITEK 2 system. Ann. Lab. Med. 2020, 40, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.K.; Nam, H.M.; Jang, G.C.; Kim, S.R.; Chae, M.H.; Jung, S.C.; Kang, D.; Kim, J. Antimicrobial resistance in Staphylococcus aureus isolated from raw meats in slaughterhouse in Korea during 2010. Korean J. Vet. Publ. Health 2011, 35, 231–238. [Google Scholar]
- Moon, D.C.; Tamang, M.D.; Nam, H.M.; Jeong, J.H.; Jang, G.C.; Jung, S.C.; Park, Y.H.; Lim, S.K. Identification of livestock-associated methicillin-resistant Staphylococcus aureus isolates in Korea and molecular comparison between isolates from animal carcasses and slaughterhouse workers. Foodborne Pathog. Dis. 2015, 12, 327–334. [Google Scholar] [CrossRef]
- Farrell, D.J.; Mendes, R.E.; Ross, J.E.; Jones, R.N. Linezolid surveillance program results for 2008 (LEADER Program for 2008). Diagn. Microbiol. Infect. Dis. 2009, 65, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Kohno, S.; Ono, Y.; Ross, J.E.; Yanagihara, K. ZAAPS International Surveillance Program (2007) for linezolid resistance: Results from 5591 Gram-positive clinical isolates in 23 countries. Diagn. Microbiol. Infect. Dis. 2009, 64, 191–201. [Google Scholar] [CrossRef]
- Tamang, M.D.; Moon, D.C.; Kim, S.R.; Kang, H.Y.; Lee, K.; Nam, H.M.; Jang, G.C.; Lee, H.S.; Jung, S.C.; Lim, S.K. Detection of novel oxazolidinone and phenicol resistance gene optrA in Enterococcal isolates from food animals and animal carcasses. Vet. Microbiol. 2017, 201, 252–256. [Google Scholar] [CrossRef]
- Patel, S.N.; Memari, N.; Shahinas, D.; Toye, B.; Jamieson, F.B.; Farrell, D.J. Linezolid resistance in Enterococcus faecium isolated in Ontario, Canada. Diagn. Microbiol. Infect. Dis. 2013, 77, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Stefani, S.; Bongiorno, D.; Mongelli, G.; Campanile, F. Linezolid resistance in staphylococci. Pharmaceuticals 2010, 3, 1988–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammer, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehrenberg, C.; Cuny, C.; Strommenger, B.; Schwarz, S.; Witte, W. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob. Agents Chemother. 2009, 53, 779–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaMarre, J.M.; Locke, J.B.; Shaw, K.J.; Mankin, A.S. Low fitness cost of the multidrug resistance gene cfr. Antimicrob. Agents Chemother. 2011, 55, 3714–3719. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef]
- Foucault, M.L.; Depardieu, F.; Courvalin, P.; Grillot-Courvalin, C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc. Natl. Acad. Sci. USA 2010, 107, 16964–16969. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Rojas, A.; Macia, M.D.; Couce, A.; Gomez, C.; Castaneda-Garcia, A.; Oliver, A.; Blazquez, J. Assessing the emergence of resistance: The absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections. PLoS ONE 2010, 5, e10193. [Google Scholar] [CrossRef]
- Locke, J.B.; Hilgers, M.; Shaw, K.J. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in Staphylococci of clinical origin. Antimicrob. Agents Chemother. 2009, 53, 5275–5278. [Google Scholar] [CrossRef] [Green Version]
- Gales, A.C.; Deshpande, L.M.; De Souza, A.G.; Pignatari, A.C.C.; Mendes, R.E. MSSA ST398/t034 carrying a plasmid-mediated Cfr and Erm(B) in Brazil. J. Antimicrob. Chemother. 2015, 70, 303–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.K.; Nam, H.M.; Jang, G.C.; Lee, H.S.; Jung, S.C.; Kwak, H.S. The first detection of methicillin-resistant Staphylococcus aureus ST398 in pigs in Korea. Vet. Microbiol. 2012, 155, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.C.; Jeong, S.K.; Hyun, B.H.; Lim, S.K. Prevalence and characteristics of methicillin-resistant Staphylococcus aureus isolates in pigs and pig farmers in Korea. Foodborne Pathog. Dis. 2019, 16, 256–261. [Google Scholar] [CrossRef]
- Li, X.; Fang, F.; Zhao, J.; Lou, N.; Li, C.; Huang, T.; Li, Y. Molecular characteristics and virulence gene profiles of Staphylococcus aureus causing bloodstream infection. Braz. J. Infect. Dis. 2018, 22, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Mroczkowska, A.; Zmudzki, J.; Marszaøek, N.; Orczykowska-Kotyna, M.; Komorowska, I.; Nowak, A.; Grzesiak, A.; Czyzewska-Dors, E.; Dors, A.; Pejsak, Z.; et al. Livestock-Associated Staphylococcus aureus on Polish pig farms. PLoS ONE 2017, 12, e0170745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Yang, M.; Sreevatsan, S.; Bender, J.B.; Singer, R.S.; Knutson, T.P.; Marthaler, D.G.; Davies, P.R. Longitudinal study of Staphylococcus aureus colonization and infection in a cohort of swine veterinarians in the United States. BMC Infect. Dis. 2017, 17, 690. [Google Scholar] [CrossRef] [Green Version]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. MBio 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kérouanton, A.; Hennekinne, J.A.; Letertre, C.; Petit, L.; Chesneau, O.; Brisabois, A.; De Buyser, M.L. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int. J. Food Microbiol. 2007, 115, 369–375. [Google Scholar] [CrossRef]
- Mason, W.J.; Blevins, J.S.; Beenken, K.; Wibowo, N.; Ojha, N.; Smeltzer, M.S. Multiplex PCR protocol for the diagnosis of staphylococcal infection. J. Clin. Microbiol. 2001, 39, 3332–3338. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement; CLSI Document; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; p. M100. [Google Scholar]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2018, Version 8.1. Available online: http://www.eucast.org (accessed on 7 July 2020).
- Staphylococcus aureus MLST Database. Available online: https://pubmlst.org/saureus/ (accessed on 9 August 2020).
- Enright, M.C.; Day, N.P.J.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle-Vavra, S.; Daum, R.S. Community-acquired methicillin-resistant Staphylococcus aureus: The role of Panton-Valentine leukocidin. Lab. Investig. 2007, 87, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Van Duijkeren, E.; Ikawaty, R.; Broekhuizen-Stins, M.J.; Jansen, M.D.; Spalburg, E.C.; de Neeling, A.J.; Allaart, J.G.; van Nes, A.; Wagenaar, J.A.; Fluit, A.C. Transmission of methicillin-resistant Staphylococcus aureus strains between different kinds of pig farms. Vet. Microbiol. 2008, 126, 383–389. [Google Scholar] [CrossRef]
- Sung, J.M.L.; Lloyd, D.H.; Lindsay, J.A. Staphylococcus aureus host specificity: Comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology 2008, 154, 1949–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougal, L.K.; Steward, C.D.; Killgore, G.E.; Chaitram, J.M.; McAllister, S.K.; Tenover, F.C. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: Establishing a national database. J. Clin. Microbiol. 2003, 41, 5113–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | % (No. of Linezolid-Resistant Isolates/No. of Isolates) | |||
---|---|---|---|---|
Cattle | Pig | Chicken | Total | |
2010 | 0 (0/39) | 0 (0/70) | 0 (0/81) | 0 (0/190) |
2011 | 0 (0/69) | 0 (0/101) | 0 (0/137) | 0 (0/307) |
2012 | 0 (0/76) | 9.8 (12/122) | 0 (0/201) | 3 (12/399) |
2013 | 0 (0/49) | 1.7 (3/178) | 0 (0/133) | 0.8 (3/360) |
2014 | 0 (0/62) | 1.1 (2/182) | 0 (0/168) | 0.5 (2/412) |
2015 | 0 (0/41) | 2.5 (4/160) | 0 (0/195) | 1 (4/396) |
2016 | 0 (0/29) | 1.9 (3/158) | 0 (0/77) | 1.1 (3/264) |
2017 | 0 (0/17) | 0.9 (1/106) | 0 (0/96) | 0.5 (1/219) |
Total | 0 (0/382) | 2.3 (25/1077) | 0 (0/1088) | 1.0 (25/2547) |
Isolate | Year | Provinces | Farm ID | MIC (µg/mL) | Other Resistance Phenotype | Genetic Resistance Marker | MLST | Spa Type | SCCmec Type | Virulence Patterns | Pulso Type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LNZ | CHL | CLI | TIA | SYN | mecA | cfr | fexA | optrA | poxtA | 23S rRNA | rplC | rplD | ||||||||||
V02-12-023 | 2012 | Gyeonggi | GG-1 | 8 | >64 | >4 | >4 | >4 | ERY, GEN, KAN, PEN, TMP | - | + | + | - | - | WT | WT | WT | 5 | t002 | - | seg-sei-sem-sen-seo | A |
V02-12-027 | 2012 | Chungnam | CN-1 | 8 | >64 | >4 | >4 | 4 | FOX, PEN, TET | + | + | + | - | - | WT | WT | WT | 398 | t034 | V | ND | |
V04-12-005 | 2012 | Chungnam | CN-2 | 16 | >64 | >4 | >4 | 2 | GEN, KAN, PEN, TET | - | + | + | - | WT | WT | WT | 5 | t002 | - | seg-sei-sem-sen-seo-lukED | A | |
V08-12-002 | 2012 | Gyeongbuk | GB-1 | 8 | >64 | >4 | >4 | >4 | FOX, CIP, ERY, GEN, KAN, PEN, TET | + | + | + | - | - | WT | WT | WT | 541 | t034 | V | ND | |
V13-12-013 | 2012 | Gyeongbuk | GB-2 | 16 | >64 | >4 | >4 | 4 | GEN, KAN, PEN, TET | - | + | + | - | - | WT | WT | C353T | 433 | t318 | - | seg | B |
V14-12-001 | 2012 | Chungnam | CN-3 | 8 | >64 | >4 | >4 | 4 | TET | - | + | + | - | - | WT | WT | C353T | 433 | t318 | - | seg | B |
V14-12-008 | 2012 | Chungnam | CN-3 | 16 | >64 | >4 | >4 | 4 | FOX, ERY, PEN, TET | + | + | + | - | - | WT | WT | WT | 541 | t034 | V | ND | |
V14-12-011 | 2012 | Gyeonggi | GG-2 | 16 | >64 | >4 | >4 | 2 | FOX, ERY, PEN, TET | + | + | + | - | - | WT | WT | WT | 541 | t034 | V | ND | |
V14-12-012 | 2012 | Incheon | IC-1 | 8 | >64 | >4 | >4 | >4 | FOX, ERY, PEN, TET | + | + | + | - | - | WT | WT | WT | 541 | t034 | V | ND | |
V14-12-015 | 2012 | Chungnam | CN-4 | 8 | >64 | >4 | >4 | >4 | CIP, ERY, GEN, KAN, PEN, TET, TMP | - | + | + | - | - | WT | WT | WT | 541 | t034 | - | ND | |
V14-12-016 | 2012 | Chungnam | CN-5 | 16 | >64 | >4 | >4 | 4 | - | - | + | + | - | - | WT | WT | C353T | 433 | t318 | - | seg | B |
V14-12-017 | 2012 | Gyeonggi | GG-3 | 16 | >64 | >4 | >4 | 4 | - | - | + | + | - | - | WT | WT | C353T | 433 | t318 | - | seg | B |
V04-13-019 | 2013 | Chungbuk | CB-1 | 16 | >64 | >4 | >4 | 4 | PEN | - | + | + | - | - | WT | WT | WT | 9 | t337 | - | seg-sei-sem-sen-seo | C |
V04-13-032 | 2013 | Chungnam | CN-6 | 16 | >64 | >4 | >4 | 4 | PEN | - | + | + | - | - | WT | WT | WT | 9 | t337 | - | seg-sei-sem-sen-seo | C |
V08-13-003 | 2013 | Gyeongbuk | GB-3 | 8 | >64 | >4 | >4 | 4 | PEN | - | + | + | - | - | WT | WT | WT | 5 | t548 | - | seg-sei-sem-sen-seo-lukED | A |
V04-14-023 | 2014 | Chungbuk | CB-2 | 8 | >64 | >4 | >4 | 2 | PEN | - | + | + | - | - | WT | G121A | WT | 5 | t002 | - | seg-sei-sem-sen-seo-lukED | A-1 |
V14-14-006 | 2014 | Chungnam | CN-7 | 8 | >64 | >4 | >4 | 4 | CIP, GEN, KAN, PEN | - | + | + | - | - | WT | WT | C353T | 433 | t318 | - | seg | B |
V02-15-007 | 2015 | Gyeonggi | GG-4 | 8 | >64 | >4 | >4 | 2 | GEN, KAN, PEN | - | + | + | - | - | WT | WT | WT | 2007 | t8314 | - | seg-sei-sem-sen-seo | D |
V14-15-002 | 2015 | Incheon | IC-2 | 8 | >64 | >4 | >4 | 2 | TET | - | + | + | - | - | WT | WT | C353T | 433 | t318 | - | seg | B |
V14-15-016 | 2015 | Incheon | IC-3 | 8 | >64 | >4 | >4 | >4 | FOX, ERY, PEN, TET | + | + | + | - | - | WT | WT | WT | 541 | t034 | V | ND | |
V15-15-012 | 2015 | Jeonnam | JN-1 | 8 | >64 | >4 | >4 | 4 | PEN | - | + | + | - | - | WT | WT | WT | 9 | t337 | - | seg-sei-sem-sen-seo | C |
V03-16-003 | 2016 | Gangwon | GW-1 | 8 | >64 | >4 | >4 | 4 | GEN, KAN, PEN | - | + | + | - | - | WT | WT | WT | 5 | t002 | - | seg-sei-sem-sen-seo-lukED | A |
V06-16-007 | 2016 | Jeonbuk | JB-1 | 8 | >64 | >4 | >4 | 2 | PEN, TET | - | + | + | - | - | WT | WT | WT | 9 | t899 | - | seg-sei-sem-sen-seo | C-1 |
V14-16-004 | 2016 | Gyeonggi | GG-5 | 8 | >64 | >4 | >4 | 4 | CIP, ERY, PEN, TET, TMP | - | + | + | - | - | WT | WT | WT | 398 | t1170 | - | ND | |
V13-17-011 | 2017 | Gyeongbuk | GB-4 | 8 | 64 | >4 | >4 | 4 | - | - | + | + | - | - | WT | WT | C353T | 433 | t021 | - | seg | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.Y.; Moon, D.C.; Mechesso, A.F.; Choi, J.-H.; Kim, S.-J.; Song, H.-J.; Kim, M.H.; Yoon, S.-S.; Lim, S.-K. Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses. Antibiotics 2020, 9, 769. https://doi.org/10.3390/antibiotics9110769
Kang HY, Moon DC, Mechesso AF, Choi J-H, Kim S-J, Song H-J, Kim MH, Yoon S-S, Lim S-K. Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses. Antibiotics. 2020; 9(11):769. https://doi.org/10.3390/antibiotics9110769
Chicago/Turabian StyleKang, Hee Young, Dong Chan Moon, Abraham Fikru Mechesso, Ji-Hyun Choi, Su-Jeong Kim, Hyun-Ju Song, Mi Hyun Kim, Soon-Seek Yoon, and Suk-Kyung Lim. 2020. "Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses" Antibiotics 9, no. 11: 769. https://doi.org/10.3390/antibiotics9110769
APA StyleKang, H. Y., Moon, D. C., Mechesso, A. F., Choi, J. -H., Kim, S. -J., Song, H. -J., Kim, M. H., Yoon, S. -S., & Lim, S. -K. (2020). Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses. Antibiotics, 9(11), 769. https://doi.org/10.3390/antibiotics9110769