Resistance of Pseudomonas aeruginosa to Antibiotics During Long-Term Persistence in Patients with Cystic Fibrosis
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Susceptibility of Pseudomonas aeruginosa Strains to Antibiotics: Phenotypic Aspect
2.2. Whole-Genome Sequencing of Pseudomonas aeruginosa Strains: Analysis of Draft Genomes and Genotyping
2.3. Evaluation of Susceptibility of Pseudomonas aeruginosa Strains to Antibiotics: Functional Annotation of Genomes
- Aminoglycoside-modifying enzymes: APH(3′) (aph(3′)-IIb);
- Chloramphenicol resistance: chloramphenicol acetyltransferase (catB7);
- Fosfomycin resistance: fosfomycin thiol transferase (fosA);
- Beta-lactam resistance: blaPAO;
- Major facilitator superfamily antibiotic efflux pump: bcr-1;
- Small multidrug resistance antibiotic efflux pump: emrE;
- Pmr phosphoethanolamine transferase: arnA, arnT, basS, cprR, and cprS;
- Resistance–nodulation–cell division (RND) antibiotic efflux pump: cpxR, mexA-BCDEFGHIJKLNPQRSTVWY, muxABC, nalCD, opmBDEH, oprJM, rsmA, triABC, Type A nfxB, and yajC;
- Outer membrane porin: parRS;
- PDC beta-lactamase: PDC-3, PDC-1, and PDC-59;
- Multidrug and toxic compound extrusion transporter: pmpM;
- ATP-binding cassette antibiotic efflux pump;
- Major facilitator superfamily antibiotic efflux pump;
- RND antibiotic efflux pump: soxR;
- Glycopeptide resistance gene cluster: vanW gene in the vanG cluster.
3. Discussion
4. Materials and Methods
4.1. Strain Collection and Identification
4.2. Antibiotic Susceptibility Testing
4.3. Whole-Genome Sequencing and Bioinformatical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, S.H.; Ryu, C.M.; Kim, J.S. Bacterial persistence: Fundamentals and clinical importance. J. Microbiol. 2019, 57, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Kunnath, A.P.; Suodha Suoodh, M.; Chellappan, D.K.; Chellian, J.; Palaniveloo, K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. Br. J. Biomed. Sci. 2024, 81, 12958. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Gu, J.; Zhang, Y. Bacterial persisters: Molecular mechanisms and therapeutic development. Signal Transduct. Target. Ther. 2024, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef]
- Chandler, C.E.; Hofstaedter, C.E.; Hazen, T.H.; Rasko, D.A.; Ernst, R.K. Genomic and Functional Characterization of Longitudinal Pseudomonas aeruginosa Isolates from Young Patients with Cystic Fibrosis. Microbiol. Spectr. 2023, 11, e0155623. [Google Scholar] [CrossRef]
- Cohen-Cymberknoh, M. Infection and Inflammation in the Cystic fibrosis (CF) airway. Pediatr. Pulmonol, 2024; Early View. [Google Scholar] [CrossRef]
- Shaginyan, I.A.; Kapranov, N.I.; Chernukha, M.Y.; Alekseeva, G.V.; Semykin, S.Y.; Avetisyan, L.R.; Kashirskaya, N.Y.; Pivkina, N.V.; Danilina, G.A.; Batov, A.B.; et al. Mikrobnyy peyzazh nizhnikh dykhatel’nykh putey u razlichnykh vozrastnykh grupp detey, bol’nykh mukovistsidozom. J. Microbiol. Epidemiol. Immunobiol. 2010, 87, 15–20. (In Russian) [Google Scholar]
- Cystic Fibrosis Foundation Patient Registry. Annual Data Report; Cystic Fibrosis Foundation Patient Registry: Bethesda, ML, USA, 2021. [Google Scholar]
- Camus, L.; Vandenesch, F.; Moreau, K. From genotype to phenotype: Adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb. Genom. 2021, 7, mgen000513. [Google Scholar] [CrossRef]
- Shaginyan, I.A.; Avetisyan, L.R.; Chernukha, M.Y.; Siyanova, E.A.; Burmistrov, E.M.; Voronkova, A.Y.; Kondratieva, E.I.; Chuchalin, A.G.; Gintzburg, A.L. Epidemiological significance of genome variations in Pseudomonas aeruginosa causing chronic lung infection in patients with cystic fibrosis. Clin. Microbiol. Antimicrob. Chemother. 2019, 21, 340–351. (In Russian) [Google Scholar] [CrossRef]
- Folkesson, A.; Jelsbak, L.; Yang, L.; Johansen, H.K.; Ciofu, O.; Hoiby, N.; Molin, S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 2012, 10, 841–851. [Google Scholar] [CrossRef]
- Kim, J.S.; Yamasaki, R.; Song, S.; Zhang, W.; Wood, T.K. Single cell observations show persister cells wake based on ribosome content. Environ. Microbiol. 2018, 20, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, J.L.; Mowat, E.; Ledson, M.J.; Walshaw, M.J.; Winstanley, C. Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J. Med. Microbiol. 2010, 59, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Olmos, A.; García-Castillo, M.; Alba, J.M.; Morosini, M.I.; Lamas, A.; Romero, B.; Galán, J.C.; del Campo, R.; Cantón, R. Population structure and antimicrobial susceptibility of both non persistent and persistent Pseudomonas aeruginosa isolates recovered from cystic fibrosis patients. J. Clin. Microbiol. 2013, 51, 2761–2765. [Google Scholar] [CrossRef] [PubMed]
- Kalferstova, L.; Vilimovska Dedeckova, K.; Antuskova, M.; Melter, O.; Drevinek, P. How and why to monitor Pseudomonas aeruginosa infections in the long term at a cystic fibrosis centre. J. Hosp. Infect. 2016, 92, 54–60. [Google Scholar] [CrossRef]
- Cramer, N.; Klockgether, J.; Wrasman, K.; Schmidt, M.; Davenport, C.F.; Tümmler, B. Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs. Environ. Microbiol. 2011, 13, 1690–1704. [Google Scholar] [CrossRef]
- Iwańska, A.; Trafny, E.A.; Czopowicz, M.; Augustynowicz-Kopeć, E. Phenotypic and genotypic characteristics of Pseudomonas aeruginosa isolated from cystic fibrosis patients with chronic infections. Sci. Rep. 2023, 13, 11741. [Google Scholar] [CrossRef]
- The Comprehensive Antibiotic Resistance Database. Available online: https://card.mcmaster.ca/aro/3000777#resistomes-table (accessed on 4 February 2025).
- Coyne, S.; Rosenfeld, N.; Lambert, T.; Courvalin, P.; Périchon, B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4389–4393. [Google Scholar] [CrossRef]
- Puzari, M.; Chetia, P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: A major issue worldwide. World J. Microbiol. Biotechnol. 2017, 33, 24. [Google Scholar] [CrossRef]
- Zwama, M.; Nishino, K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics 2021, 10, 774. [Google Scholar] [CrossRef]
- Athar, M.; Gervasoni, S.; Catte, A.; Basciu, A.; Malloci, G.; Ruggerone, P.; Vargiu, A.V. Tripartite efflux pumps of the RND superfamily: What did we learn from computational studies? Microbiology 2023, 169, 001307. [Google Scholar] [CrossRef]
- Kavanaugh, L.G.; Dey, D.; Shafer, W.M.; Conn, G.L. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol. Mol. Biol. Rev. 2024, 88, e0008923. [Google Scholar] [CrossRef] [PubMed]
- The Comprehensive Antibiotic Resistance Database. Available online: https://card.mcmaster.ca/aro/3005063 (accessed on 4 February 2025).
- Ruiz, J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin. Microbiol. Rev. 2019, 32, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Jacobo, V.M.; Hernández-Ramírez, K.C.; Romo-Rodríguez, P.; Pérez-Gallardo, R.V.; Campos-García, J.; Gutiérrez-Corona, J.F.; García-Merinos, J.P.; Meza-Carmen, V.; Silva-Sánchez, J.; Ramírez-Díaz, M.I. CrpP Is a Novel Ciprofloxacin-Modifying Enzyme Encoded by the Pseudomonas aeruginosa pUM505 Plasmid. Antimicrob. Agents Chemother. 2018, 62, e02629-17. [Google Scholar] [CrossRef]
- Ruiz, J. CrpP, a passenger or a hidden stowaway in the Pseudomonas aeruginosa genome? J. Antimicrob. Chemother. 2019, 74, 3397–3399. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Summers, S.; Rice, S.A.; Stapleton, F.; Willcox, M.D.P.; Subedi, D. Acquired fluoroquinolone resistance genes in corneal isolates of Pseudomonas aeruginosa. Infect. Genet. Evol. 2020, 85, 104574. [Google Scholar] [CrossRef]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. Pathogenicity Genomic Island-Associated CrpP-Like Fluoroquinolone-Modifying Enzymes among Pseudomonas aeruginosa Clinical Isolates in Europe. Antimicrob. Agents Chemother. 2020, 64, e00489-20. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Zheng, X.; Yu, K.; Sun, Y.; Liao, W.; Jia, H.; Xu, C.; Zhou, T.; Shen, M. The prevalence and functional characteristics of CrpP-like in Pseudomonas aeruginosa isolates from China. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2651–2656. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, H.; Yin, Z.; Jing, Y.; Zhao, Y.; Fu, H.; Du, H.; Zhou, D. Diversification and prevalence of the quinolone resistance crpP genes and the crpP-carrying Tn6786-related integrative and conjugative elements in Pseudomonas aeruginosa. Virulence 2021, 12, 2162–2170. [Google Scholar] [CrossRef]
- Ruiz, J.; Ocampo, K.; Salvador-Luján, G.; Reyes, Y.V.; Gómez, A.C.; Valera-Krumdieck, C.; Baca-Cumpa, A.D.; Soza, G.; Pinto, J.A.; Ramos-Chirinos, M.; et al. First report of CrpP prevalence in a South American country. New Microbes New Infect. 2023, 51, 101082. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, L.; Tao, X.; Li, P.; Zheng, X.; Zhang, W.; Tan, Z. Antimicrobial resistance survey and whole-genome analysis of nosocomial P. aeruginosa isolated from eastern Province of China in 2016-2021. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 12. [Google Scholar] [CrossRef]
- Hernández-García, M.; García-Castillo, M.; García-Fernández, S.; López-Mendoza, D.; Díaz-Regañón, J.; Romano, J.; Pássaro, L.; Paixão, L.; Cantón, R. Presence of Chromosomal crpP-like Genes Is Not Always Associated with Ciprofloxacin Resistance in Pseudomonas aeruginosa Clinical Isolates Recovered in ICU Patients from Portugal and Spain. Microorganisms. 2021, 9, 388. [Google Scholar] [CrossRef]
- Bharadwaj, V.G.; Suvvari, T.K.; Kandi, V.; Chitra Rajalakshmi, P.; Dharsandia, M.V. Molecular Characterization of Pseudomonas aeruginosa Clinical Isolates Through Whole-Genome Sequencing: A Comprehensive Analysis of Biotypes, Sequence Types, and Antimicrobial and Virulence Genes. Cureus 2024, 16, e71118. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huang, J.; Xu, Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb. Biotechnol. 2024, 17, e14487. [Google Scholar] [CrossRef] [PubMed]
- Tetard, A.; Zedet, A.; Girard, C.; Plésiat, P.; Llanes, C. Cinnamaldehyde induces expression of efflux pumps and multidrug resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e01081-19. [Google Scholar] [CrossRef]
- Dubois, E.; Spasovski, V.; Plésiat, P.; Llanes, C. Role of the two-component system AmgRS in early resistance of Pseudomonas aeruginosa to cinnamaldehyde. Microbiol. Spectr. 2025, 13, e0169924. [Google Scholar] [CrossRef]
- Nageeb, W.; Amin, D.H.; Mohammedsaleh, Z.M.; Makharita, R.R. Novel Molecular Markers Linked to Pseudomonas aeruginosa Epidemic High-Risk Clones. Antibiotics 2021, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Nageeb, W.M.; Hetta, H.F. The predictive potential of different molecular markers linked to amikacin susceptibility phenotypes in Pseudomonas aeruginosa. PLoS ONE 2022, 17, e0267396. [Google Scholar] [CrossRef]
- Srinivasan, V.B.; Rajamohan, G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob. Agents Chemother. 2013, 57, 4449–4462. [Google Scholar] [CrossRef]
- Nemchenko, U.M.; Belkova, N.L.; Klimenko, E.S.; Smurova, N.E.; Savilov, E.D. Phenotypic and genetic variability of clinical isolates of Pseudomonas aeruginosa persisting in patients with cystic fibrosis. Klin. Mikrobiol. Antimikrobn. Himioter. 2024, 26, 42. (In Russian) [Google Scholar]
- Voropaeva, N.M.; Belkova, N.L.; Nemchenko, U.M.; Grigorova, E.V.; Kungurtseva, E.A.; Noskova, O.A.; Chemezova, N.N.; Savilov, E.D. Identification of Infectious Diseases Patterns in the Combined Use of Bacteriological Diagnostics and MALDI Biotyper. Acta Biomed. Sci. 2020, 5, 88–94. (In Russian) [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available online: http://www.eucast.org (accessed on 24 January 2025).
- Belkova, N.L.; Klimenko, E.S.; Nemchenko, U.M.; Grigorova, E.V.; Sitnikova, K.O.; Zugeeva, R.E.; Smurova, N.E.; Chemezova, N.N.; Savilov, E.D. Biological properties and genetic structure of clinic isolates of Klebsiella pneumoniae species. Acta Biomed. Sci. 2024, 9, 53–63. (In Russian) [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Rissman, A.I.; Mau, B.; Biehl, B.S.; Darling, A.E.; Glasner, J.D.; Perna, N.T. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009, 25, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- The Comprehensive Antibiotic Resistance Database. Available online: https://card.mcmaster.ca/analyze/rgi (accessed on 24 January 2025).
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
Indicators | IMB25 | IMB100 | IMB54 | IMB82 | IMB102 | IMB105 | IMB101 | IMB103 | IMB104 |
---|---|---|---|---|---|---|---|---|---|
Strain description | |||||||||
Date of isolation | 20 May 2021 | 15 October 2021 | 6 August 2021 | 15 October 2021 | 29 March 2022 | 19 July 2022 | 29 March 2022 | 29 March 2022 | 19 July 2022 |
Patient | P1 | P1 | P2 | P2 | P2 | P2 | P3 | P4 | P5 |
Susceptibility to antibiotics | |||||||||
Piperacillin/tazobactam | I | R | I | I | I | I | R | I | I |
Ceftazidime | I | I | I | I | I | I | I | I | I |
Meropenem | R | S | R | S | S | S | S | S | S |
Ciprofloxacin | I | I | I | I | I | I | I | I | I |
Amikacin | R | S | S | S | S | S | S | S | S |
Indicators | IMB25 | IMB100 | IMB54 | IMB82 | IMB102 | IMB105 | IMB101 | IMB103 | IMB104 |
---|---|---|---|---|---|---|---|---|---|
Patient | P1 | P2 | P3 | P4 | P5 | ||||
Genome assembly | |||||||||
Number of reads | 50,189,120 | 36,044,976 | 37,282,953 | 33,293,656 | 5,815,755 | 13,477,896 | 12,369,102 | 3,737,929 | 14,328,761 |
Number of scaffolds | 235 | 258 | 241 | 264 | 322 | 274 | 121 | 278 | 487 |
N50 | 67,136 | 65,489 | 63,297 | 56,717 | 328,046 | 298,770 | 255,738 | 550,311 | 238,191 |
Genome annotation | |||||||||
GC, % | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 65 |
Number of CDSs | 5539 | 5548 | 5493 | 5510 | 5874 | 5874 | 5895 | 5910 | 5935 |
Number of rRNA genes | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 12 | 11 |
Number of tRNA genes | 72 | 72 | 70 | 72 | 69 | 69 | 64 | 66 | 64 |
Number of plasmids | 3 | 3 | 2 | 2 | 0 | 0 | 2 | 0 | 1 |
MLST | |||||||||
ST | 1641 | 1641 | 532 | 555 | 555 | 555 | 554 | 379 | 970 |
acsA | 11 | 11 | 5 | 16 | 16 | 16 | 16 | 39,345 | 6 |
aroE | 10 | 10 | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
guaA | 1 | 1 | 5 | 30 | 30 | 30 | 12 | 11 | 11 |
mutL | 3 | 3 | 5 | 11 | 11 | 11 | 3 | 28 | 3 |
nuoD | 27 | 27 | 5 | 3 | 3 | 3 | 2 | 4 | 4 |
ppsA | 4 | 4 | 20 | 20 | 20 | 20 | 15 | 4 | 3 |
Indicators | IMB25 | IMB100 | IMB54 | IMB82 | IMB102 | IMB105 | IMB101 | IMB103 | IMB104 |
---|---|---|---|---|---|---|---|---|---|
Patient | P1 | P2 | P3 | P4 | P5 | ||||
BlaOXA | 396 * | 396 | 906 | 486 | 486 | 486 | 494 | 904 | 50 |
PDC-3 | +ch | +ch | nd | +ch | +ch | +ch | +ch | +ch | nd |
PDC-1 | nd | nd | nd | nd | nd | nd | nd | nd | +ch |
PDC-59 | nd | nd | +ch | nd | nd | nd | nd | nd | nd |
adeF | nd | nd | nd | nd | nd | nd | nd | +ch | nd |
crpP | nd | nd | +ch | nd | nd | nd | +ch | nd | +ch |
armR | nd | nd | nd | +ch | +ch | +ch | nd | +ch | +ch |
kpnF | nd | +ch | nd | nd | nd | nd | nd | nd | nd |
aph(6)-Id | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
aph(3″)-Ib | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
aac(6′)-Ib9 | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
armA | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
dfrB4 | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
fosA8 | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
sul1 | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
qacEdelta1 | +pl | nd | nd | nd | nd | nd | nd | nd | nd |
qacJ | nd | nd | nd | +pl | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkova, N.; Nemchenko, U.; Klimenko, E.; Smurova, N.; Zugeeva, R.; Sukhoreva, M.; Sinkov, V.; Savilov, E. Resistance of Pseudomonas aeruginosa to Antibiotics During Long-Term Persistence in Patients with Cystic Fibrosis. Antibiotics 2025, 14, 302. https://doi.org/10.3390/antibiotics14030302
Belkova N, Nemchenko U, Klimenko E, Smurova N, Zugeeva R, Sukhoreva M, Sinkov V, Savilov E. Resistance of Pseudomonas aeruginosa to Antibiotics During Long-Term Persistence in Patients with Cystic Fibrosis. Antibiotics. 2025; 14(3):302. https://doi.org/10.3390/antibiotics14030302
Chicago/Turabian StyleBelkova, Natalia, Uliana Nemchenko, Elizaveta Klimenko, Nadezhda Smurova, Raisa Zugeeva, Marina Sukhoreva, Viacheslav Sinkov, and Evgenij Savilov. 2025. "Resistance of Pseudomonas aeruginosa to Antibiotics During Long-Term Persistence in Patients with Cystic Fibrosis" Antibiotics 14, no. 3: 302. https://doi.org/10.3390/antibiotics14030302
APA StyleBelkova, N., Nemchenko, U., Klimenko, E., Smurova, N., Zugeeva, R., Sukhoreva, M., Sinkov, V., & Savilov, E. (2025). Resistance of Pseudomonas aeruginosa to Antibiotics During Long-Term Persistence in Patients with Cystic Fibrosis. Antibiotics, 14(3), 302. https://doi.org/10.3390/antibiotics14030302