Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province
Abstract
1. Introduction
2. Results
2.1. Extraction
2.2. Quantification of Phytoconstituents
2.3. Antioxidant Activity
2.4. Antimycobacterial Activity
2.5. Combinational Effects of Extracts
2.6. Cytotoxicity of Plant Extracts
2.7. Isolation of Bioactive Compounds from R. officinalis Leaves
2.8. Structural Elucidation of Isolated Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Extraction
4.2. Quantification of Phytochemicals (Phenolic, Tannin and Flavonoid Content)
4.2.1. Total Phenolic Content
4.2.2. Total Tannin Content
4.2.3. Total Flavonoid Content
4.3. Quantitative Antioxidant Activity
4.3.1. DPPH Free Radical Scavenging Activity Assay
4.3.2. Ferric Reducing Power (FRP) Assay
4.4. Quantitative Antimycobacterial Activity Assay
4.4.1. Broth Micro-Dilution Assay
4.4.2. The Antibacterial Interaction Effects
4.5. Cell Viability Assay
4.6. Bioassay-Guided Fractionation Using Column Chromatography
4.6.1. Column Chromatography Fractionation
4.6.2. Preparative TLC
4.6.3. Structural Elucidation of Isolated Compounds
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Reactive oxygen species |
XDR | Extensively drug-resistant |
MDR | Multidrug resistant |
NMR | Nuclear magnetic resonance |
WHO | World Health Organization |
TLC | Thin-layer chromatography |
References
- Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S.P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075. [Google Scholar] [CrossRef]
- Dewi, D.N.S.S.; Mertaniasih, N.M.; Soedarsono; Hagino, K.; Yamazaki, T.; Ozeki, Y.; Artama, W.T.; Kobayashi, H.; Inouchi, E.; Yoshida, Y.; et al. Antibodies against native proteins of Mycobacterium tuberculosis can detect pulmonary tuberculosis patients. Sci. Rep. 2023, 13, 12685. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Ferdes, M. Antimicrobial compounds from plants. In Fighting Antimicrobial Resistance; IAPC-OBP: Zagreb, Croatia, 2018; pp. 243–271. [Google Scholar]
- Poro, K.E.; Hoekou, Y.; Pissang, P.; Kpabi, I.; Novidzro, K.M.; Dagnra, A.Y.; Tchacondo, T.; Batawila, K. In vitro antimycobacterial activity of selected medicinal plants against Mycobacterium tuberculosis. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 3201–3208. [Google Scholar] [CrossRef]
- Goossens, S.N.; Sampson, S.L.; Van Rie, A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2020, 34, 10–1128. [Google Scholar] [CrossRef]
- Gomez, G.B.; Siapka, M.; Conradie, F.; Ndjeka, N.; Garfin, A.M.C.; Lomtadze, N.; Avaliani, Z.; Kiria, N.; Malhotra, S.; Cook-Scalise, S.; et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open 2021, 11, e051521. [Google Scholar] [CrossRef]
- Kwon, B.S.; Kim, Y.; Lee, S.H.; Lim, S.Y.; Lee, Y.J.; Park, J.S.; Cho, Y.J.; Yoon, H.I.; Lee, C.T.; Lee, J.H. The high incidence of severe adverse events due to pyrazinamide in elderly patients with tuberculosis. PLoS ONE 2020, 15, e0236109. [Google Scholar] [CrossRef] [PubMed]
- Goethe, E.; Laarmann, K.; Lührs, J.; Jarek, M.; Meens, J.; Lewin, A.; Goethe, R. Critical role of Zur and SmtB in zinc homeostasis of Mycobacterium smegmatis. MSystems 2020, 5, e00880-19. [Google Scholar] [CrossRef]
- Ranjitha, J.; Rajan, A.; Shankar, V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Infect. Public Health 2020, 13, 1255–1264. [Google Scholar]
- Sparks, I.L.; Derbyshire, K.M.; Jacobs, W.R., Jr.; Morita, Y.S. Mycobacterium smegmatis: The vanguard of mycobacterial research. J. Bacteriol. 2023, 205, 22. [Google Scholar] [CrossRef]
- Amaral, E.P.; Vinhaes, C.L.; Oliveira-de-Souza, D.; Nogueira, B.; Akrami, K.M.; Andrade, B.B. The interplay between systemic inflammation, oxidative stress, and tissue remodeling in tuberculosis. Antioxid. Redox Signal. 2021, 34, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Guleria, S.; Razdan, V.K.; Babu, V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 2020, 154, 112569. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Oliveira, M.E.; Cardoso, F.D.C. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Hortic. Bras. 2019, 37, 124–132. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front. Pharmacol. 2020, 10, 1480. [Google Scholar] [CrossRef]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef]
- Prasathkumar, M.; Raja, K.; Vasanth, K.; Khusro, A.; Sadhasivam, S.; Sahibzada, M.U.K.; Gawwad, M.R.A.; Al Farraj, D.A.; Elshikh, M.S. Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of Senna auriculata (L.) Roxb. leaves. Arab. J. Chem. 2021, 14, 103345. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Pandey, D.; Gupta, A.K. Bioactive compound in Curcuma caesia (Roxb.) from Bastar and its spectral analysis by HPLC, UV-Visible, FT-IR, NMR and ESI-MS. Int. J. Pharm. Sci. Res. 2019, 10, 139–147. [Google Scholar]
- Dube, N.P.; Tembu, V.J.; Nyemba, G.R.; Davison, C.; Rakodi, G.H.; Kemboi, D.; de la Mare, J.A.; Siwe-Noundou, X.; Manicum, A.L.E. In vitro cytotoxic effect of stigmasterol derivatives against breast cancer cells. BMC Complement. Med. Ther. 2023, 23, 316. [Google Scholar] [CrossRef] [PubMed]
- Dube, N.P.; Siwe-Noundou, X.; Krause, R.W.; Kemboi, D.; Tembu, V.J.; Manicum, A.L. Review of the traditional uses, Phytochemistry, and pharmacological activities of Rhoicissus Species (Vitaceae). Molecules 2021, 26, 2306. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.R.; Lawal, T.O.; Ayatollahi, S.A.; et al. Medicinal plants used in the treatment of tuberculosis-ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2020, 44, 107629. [Google Scholar] [CrossRef]
- Sunday, B.O. Phytochemical Investigation and Tissue Culture Studies on the South African Knob Trees, Zanthoxylum Capense and Senegalia Nigrescens. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2017. [Google Scholar]
- Komape, N.P.M. Microbiological and Biochemical Studies of Traditional Medicinal Plants Used in Limpopo Province for Anti-Micobacterium tuberculosis Activity. Ph.D. Thesis, University of Limpopo, Polokwane, South Africa, 2019. [Google Scholar]
- Payus, C.M.; Jikilim, C.; Sentian, J. Rainwater chemistry of acid precipitation occurrences due to long-range transboundary haze pollution and prolonged drought events during southwest monsoon season: Climate change driven. Heliyon 2020, 6, e04997. [Google Scholar] [CrossRef]
- Olajuyigbe, O.O.; Afolayan, A.J. Evaluation of combination effects of ethanolic extract of Ziziphus mucronata Willd. subsp. mucronata Willd. and antibiotics against clinically important bacteria. Sci. World J. 2013, 2013, 769594. [Google Scholar] [CrossRef] [PubMed]
- Mongalo, N.I.; Mashele, S.S.; Makhafola, T.J. Ziziphus mucronata Willd. (Rhamnaceae): It’s botany, toxicity, phytochemistry and pharmacological activities. Heliyon 2020, 6, e03708. [Google Scholar] [CrossRef] [PubMed]
- Chingwaru, C.; Bagar, T.; Chingwaru, W. Aqueous extracts of Flacourtia indica, Swartzia madagascariensis and Ximenia caffra are strong antibacterial agents against Shigella spp., Salmonella typhi and Escherichia coli O157. S. Afr. J. Bot. 2020, 128, 119–127. [Google Scholar] [CrossRef]
- Chipuwa, M.; Muzandu, K.; Prashar, L.; Muwowo, S. Antioxidant effects of Ximenia Caffra (Olacaceae) methanol leaf extract in cisplatin-induced nephrotoxic rats. Med. J. Zamb. 2024, 51, 110. [Google Scholar]
- Tlaamela, D.M. Ethnobotanical Survey and Biological Activity of Medicinal Plants Used Against Candida Albicans in Aganang Local Municipality. Ph.D. Thesis, University of Limpopo, Polokwane, South Africa, 2019. [Google Scholar]
- Masuku, N.P.; Unuofin, J.O.; Lebelo, S.L. Phytochemical content, antioxidant activities and androgenic properties of four South African medicinal plants. J. Herbmed Pharmacol. 2020, 9, 245–256. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Semenya, S.S.; Maroyi, A. Ethnobotanical survey of plants used by Bapedi traditional healers to treat tuberculosis and its opportunistic infections in the Limpopo Province, South Africa. S. Afr. J. Bot. 2019, 122, 401–421. [Google Scholar] [CrossRef]
- Moreira, S.A.; Alexandre, E.M.; Pintado, M.; Saraiva, J.A. Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Res. Int. 2019, 115, 177–190. [Google Scholar] [CrossRef]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Ćavar Zeljković, S. Influence of extraction solvent on the phenolic profile and bioactivity of two Achillea species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci. 2020, 56, e17129. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
- Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Naidoo, V.; Chikoto, H.; Bekker, L.C.; Eloff, J.N. Antioxidant compounds in Rhoicissus tridentata extracts may explain their antibabesial activity: Research in action. S. Afr. J. Sci. 2006, 102, 198–200. [Google Scholar]
- Kudamba, A.; Kasolo, J.N.; Bbosa, G.S.; Lugaajju, A.; Wabinga, H.; Niyonzima, N.; Ocan, M.; Damani, A.M.; Kafeero, H.M.; Ssenku, J.E.; et al. Phytocphytochemical profiles of Rhoicissus tridentata harvested from the slopes of mountain Elgon, Uganda. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Al-jaafreh, A.M. Evaluation of antioxidant activities of rosemary (Rosmarinus officinalis L.) essential oil and different types of solvent extractions. Biomed. Pharmacol. J. 2024, 17, 323–339. [Google Scholar] [CrossRef]
- Bui, N.T.; Pham, T.L.T.; Nguyen, K.T.; Le, P.H.; Kim, K.H. Effect of extraction solvent on total phenol, flavonoid content, and antioxidant activity of Avicennia officinalis. Res. Appl. Chem. 2021, 12, 2678–2690. [Google Scholar]
- Asman, S.; Zin, S.R.M. Extraction Of Phytochemicals In Morinda citrifolia L. Leaves By Using Different Polarity Solvents. Enhanc. Knowl. Sci. Technol. 2023, 3, 286–291. [Google Scholar]
- Uwineza, P.A.; Waśkiewicz, A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Tripathi, A.; Kalita, J.; Kant, S.; Misra, U.K. Oxidative stress and ER stress are related to severity of tubercular infection. Microb. Pathog. 2022, 172, 105764. [Google Scholar] [CrossRef] [PubMed]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Budzianowska, A.; Totoń, E.; Romaniuk-Drapała, A.; Kikowska, M.; Budzianowski, J. Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago lanceolata L. Life 2023, 13, 556. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.D.; Dauda, J.A.; Daniel, O.A.; Nayo, R.O.; Maji, D.C.; Umar, I.; Wada, H.A. Assessment of Free Radical Scavenging Potency and In-vitro Antioxidant Analysis of Ximenia caffra (Sour Plum) Leaf. Covenant J. Phys. Life Sci. 2021, 9, 1–2. [Google Scholar]
- Ngibad, K.; Herawati, D.; Aisyah, S.D.; Triarini, L.J.; Pratama, M.R.F. Total Flavonoid, Total Phenolic contents and Antioxidant activity of Methanol and n-hexane extract from purple passion fruit peel. Res. J. Pharm. Technol. 2023, 16, 1247–1253. [Google Scholar] [CrossRef]
- Nyila, M.A. Ximenia caffra Sond. the magic wild indigenous plant that offers immense contribution as food and medicine. Nat. Prod. Res. 2025, 1–13. [Google Scholar] [CrossRef]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med. 2014, 14, 225. [Google Scholar] [CrossRef]
- Ouknin, M.; Aghraz, A.; Chibane, M.; Boumezzourh, A.; Costa, J.; Majidi, L. Enzyme inhibitory, antioxidant activity and phytochemical analysis of essential oil from cultivated Rosmarinus officinalis. J. Food Meas. Charact. 2021, 15, 3782–3790. [Google Scholar] [CrossRef]
- Tshikalange, T.E.; Mamba, P.; Adebayo, S.A. Antimicrobial, antioxidant and cytotoxicity studies of medicinal plants used in the treatment of sexually transmitted diseases. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1891–1895. [Google Scholar]
- Baloyi, I.T.; Cosa, S.; Combrinck, S.; Leonard, C.M.; Viljoen, A.M. Anti-quorum sensing and antimicrobial activities of South African medicinal plants against uropathogens. S. Afr. J. Bot. 2019, 122, 484–491. [Google Scholar] [CrossRef]
- Dheyab, A.S.; Kanaan, M.Q.; Hussein, N.A.; AlOmar, M.K.; Sabran, S.F.; Abu Bakar, M.F. Antimycobacterial Activity of Rosmarinus officinalis (Rosemary) Extracted by Deep Eutectic Solvents. Separations 2022, 9, 271. [Google Scholar] [CrossRef]
- Becer, E.; Altundağ, E.M.; Güran, M.; Vatansever, H.S.; Ustürk, S.; Hanoğlu, D.Y.; Başer, K.H.C. Composition and antibacterial, anti-inflammatory, antioxidant, and anticancer activities of Rosmarinus officinalis L. essential oil. S. Afr. J. Bot. 2023, 160, 437–445. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef] [PubMed]
- Wa Ilunga, E.N.; Kitambala, M.M.; Muya, K.; Lachenaud, O.; Maloba, J.M.; Simbi, J.B.L.; Fontaine, V. Ethnobotanical survey and antimycobacterial activities of plants used against tuberculosis in Lubumbashi, DR Congo. Trop. Med. Health 2025, 53, 64. [Google Scholar] [CrossRef] [PubMed]
- Salem, O.; Szwajkowska-Michałek, L.; Przybylska-Balcerek, A.; Szablewski, T.; Cegielska-Radziejewska, R.; Świerk, D.; Stuper-Szablewska, K. New Insights into Bioactive Compounds of Wild-Growing Medicinal Plants. Appl. Sci. 2023, 13, 13196. [Google Scholar] [CrossRef]
- Yazdeli, M.Z.; Ghazaei, C.; Maraghi, E.T.; Bakhshi, A.; Shukohifar, M. Evaluation of antibacterial synergism of methanolic extract of Dracocephalum kotschyi and Trachyspermum ammi. Malays. J. Med. Sci. 2021, 28, 64. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2022, 62, 5658–5677. [Google Scholar] [CrossRef]
- Mensah, M.L.; Komlaga, G.; Forkuo, A.D.; Firempong, C.; Anning, A.K.; Dickson, R.A. Toxicity and safety implications of herbal medicines used in Africa. In Herbal Medicine; National Library of Medicine: Bethesda, MD, USA, 2019; p. 63. [Google Scholar]
- Avolio, F.; Martinotti, S.; Khavinson, V.K.; Esposito, J.E.; Giambuzzi, G.; Marino, A.; Mironova, E.; Pulcini, R.; Robuffo, I.; Bologna, G.; et al. Peptides regulating proliferative activity and inflammatory pathways in the monocyte/macrophage THP-1 cell line. Int. J. Mol. Sci. 2022, 23, 3607. [Google Scholar] [CrossRef]
- Shah, P.T.; Tufail, M.; Wu, C.; Xing, L. THP-1 cell line model for tuberculosis: A platform for in vitro macrophage manipulation. Tuberculosis 2022, 136, 102243. [Google Scholar] [CrossRef]
- Mansour, B.; Shaheen, N.; Kmail, A.; Haggag, N.; Saad, B. Rosmarinus officinalis L, Eriobotrya japonica and Olea europaea L attenuate adipogenesis in 3T3-L1-derived adipocytes and inflammatory response in LPS-induced THP-1-derived macrophages. Biointerface Res. Appl. Chem. 2022, 13, 343. [Google Scholar]
- Rathore, S.; Mukhia, S.; Kapoor, S.; Bhatt, V.; Kumar, R.; Kumar, R. Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci. Rep. 2022, 12, 3305. [Google Scholar] [CrossRef]
- Ahmed, R.N.; Jumah, S.S.; Arekemase, M.O.; Agbabiaka, T.O.; Adam, A.I.; Adejoro, D.O. Serial exhaustive extraction: Influence of solvent polarity on antibacterial activity of extracts of leaves of Tithonia diversifolia. Nig. J. Pure Appl. Sci. 2017, 30, 2987–2996. [Google Scholar]
- Malviya, N.; Malviya, S. Bioassay guided fractionation-an emerging technique influence the isolation, identification and characterization of lead phytomolecules. Int. J. Hosp. Pharm. 2017, 2, 5. [Google Scholar] [CrossRef]
- Ingle, K.P.; Deshmukh, A.G.; Padole, D.A.; Dudhare, M.S.; Moharil, M.P.; Khelurkar, V.C. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017, 6, 32–36. [Google Scholar]
- Luhata, L.P.; Usuki, T. Antibacterial activity of β-sitosterol isolated from the leaves of Odontonema strictum (Acanthaceae). Bioorg. Med. Chem. Lett. 2021, 48, 128248. [Google Scholar]
- Ododo, M.M.; Choudhury, M.K.; Dekebo, A.H. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus 2016, 5, 1201. [Google Scholar] [CrossRef]
- Nandi, S.; Nag, A.; Khatua, S.; Sen, S.; Chakraborty, N.; Naskar, A.; Acharya, K.; Calina, D.; Sharifi-Rad, J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother. Res. 2024, 38, 592–619. [Google Scholar] [CrossRef]
- Gupta, E. β-Sitosterol: Predominant phytosterol of therapeutic potential. In Innovations in Food Technology: Current Perspectives and Future Goals; Springer: Berlin/Heidelberg, Germany, 2020; pp. 465–477. [Google Scholar]
- Gaspar, A.; Garrido, E.M.P.; Borges, F.; Garrido, J.M. Biological and medicinal properties of natural chromones and chromanones. ACS Omega 2024, 9, 21706–21726. [Google Scholar] [CrossRef]
- Nawrot-Modranka, J.; Nawrot, E.; Graczyk, J. In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. Eur. J. Med. Chem. 2006, 41, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Bai, N.; He, K.; Roller, M.; Lai, C.S.; Shao, X.; Pan, M.H.; Ho, C.T. Flavonoids and phenolic compounds from Rosmarinus officinalis. J. Agric. Food Chem. 2010, 58, 5363–5367. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed]
- Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004, 65, 3249–3254. [Google Scholar] [CrossRef] [PubMed]
- Yueh-Hsiung, K.; Ping-Hung, L.; Yung-shun, W. Four new compounds from the seeds of Cassia fistula. J. Nat. Prod. 2002, 65, 1165–1167. [Google Scholar] [CrossRef]
- Fernando, L.A.M.; Wickramasingha, W.G.D.; Jayasinghe, S. Synthesis of derivatives of β-sitosterol and evaluation of their anti-bacterial activity. Ceylon J. Sci. 2021, 50, 497–503. [Google Scholar] [CrossRef]
- Djemgou, P.C.; Gatsing, D.; Tchuendem, M.; Ngadjui, B.T.; Tane, P.; Ahmed, A.A.; Gamal-Eldeen, A.M.; Adoga, G.I.; Hirata, T.; Mabry, T.J. Antitumor and immunostimulatory activity of two chromones and other constituents from Cassia petersiana. Nat. Prod. Commun. 2006, 1, 1934578X0600101109. [Google Scholar] [CrossRef]
- Konishi, T.; Konoshima, T.; Shimada, Y.; Kiyosawa, S. Six New 2-(2-Phenylethyl)chromones from Agarwood. Chem. Pharm. Bull. 2002, 50, 419–422. [Google Scholar] [CrossRef]
- Levchenko, K.S.; Chudov, K.A.; Zinoviev, E.V.; Lyssenko, K.A.; Demin, D.U.; Poroshin, N.O.; Shmelin, P.S.; Grebennikov, E.P. Synthesis of unsymmetrical 4-oxo-2-vinyl-4H-chromene-3-carbonitrile dyes via Knoevenagel reaction. Tetrahedron Lett. 2018, 59, 2788–2792. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, M.; Zhu, X.; Zhang, J.; Xu, J.; Jiang, W. Chemical composition and antioxidant activity of petroleum ether fraction of Rosmarinus officinalis. Heliyon 2023, 9, e21316. [Google Scholar] [CrossRef]
- Uttu, A.J.; Sallau, M.S.; Ibrahim, H.; Iyun, O.R.A. Isolation, characterization, and docking studies of campesterol and β-sitosterol from Strychnos innocua (Delile) root bark. J. Taibah Univ. Med. Sci. 2023, 18, 566–578. [Google Scholar] [CrossRef]
- Koma, P.L. The In Vitro Antimycobacterial Activities of Extracts and Isolated Compounds from Selected Medicinal Plants Against Mycobacterium smegmatis. Master’s Thesis, University of Limpopo, Polokwane, South Africa, 2022. [Google Scholar]
- Tambe, V.D.; Bhambar, R.S. Estimation of total phenol, tannin, alkaloid, and flavonoid in Hibiscus Tiliaceus Linn. wood extracts. Res. Rev. J. Pharmacogn. Phytother. 2014, 2, 2321–6182. [Google Scholar]
- Chigayo, K.; Mojapelo, P.E.L.; Moleele, S.M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac. J. Trop. Biomed. 2016, 6, 1037–1043. [Google Scholar] [CrossRef]
- Vijayalakshmi, M.; Ruckmani, K. Ferric reducing anti-oxidant power assay in plant extract. Bangladesh J. Pharmacol. 2016, 11, 570–572. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. J. Med. Plant Nat. Prod. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, S.F.; Viljoen, A.M. In vitro evidence of phyto-synergy for plant part combinations of Croton gratissimus (Euphorbiaceae) used in African traditional healing. J. Ethnopharmacol. 2008, 119, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014, 23, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Safar, R.; Doumandji, Z.; Saidou, T.; Ferrari, L.; Nahle, S.; Rihn, B.H.; Joubert, O. Cytotoxicity and global transcriptional responses induced by zinc oxide nanoparticles NM 110 in PMA-differentiated THP-1 cells. Toxicol. Lett. 2019, 308, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kotze, M.; Eloff, J.N. Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S. Afr. J. Bot. 2002, 6, 62–67. [Google Scholar] [CrossRef]
Plant Name | Family Name | Common Names | Parts Used | Traditional Use | References |
---|---|---|---|---|---|
Ziziphus mucronata (UNIN 1220383) | Rhamnaceae | Buffalo thorn (Eng.); umphafa, (isiZulu); umphafa (isiXhosa); mokgalô, moonaona (N Sotho) | Leaves, roots, and bark | Body pains, cough, respiratory infections, and chest problems | [22] |
Zanthoxylum capense (UNIN 1220384) | Rutaceae | small knobwood (Eng.); umnungamabele (isiZulu); monokwane (Sotho) | Leaves, roots, and bark | Cough | [24] |
Ximenia caffra (UNIN 1220385) | Olacaceae | Sour plum (Eng.) umThunduluka-obmvu (Zulu); Morokologa (Northern Sotho) | Leaves and roots | Treat constipation, leprosy, and stomach pains | [31] |
Rosmarinus officinalis (UNIN 1220072) | Lamiaceae | Rosemary | leaves | Chest pain, cough, and fever | [33,34] |
Rhoicissus tridentata (UNIN 1220077) | Vitaceae | Wild grape (English), isinwazi (IsiZulu), and umnxeba (isiXhosa) | Tubers, leaves, and stem (wood) | Crushed, mixed with warm water and taken orally to treat TB-related symptoms | [33] |
Solvents | Total Phenolic mg GAE/g Extract | Total Tannin mg GAE/g Extract | Total Flavonoid (mg QE/g Extract |
---|---|---|---|
Zanthoxylum capense | |||
H | 5.19 ± 1.57 a | 5.06 ± 0.81 a,b | 2.68 ± 0.57 a,b |
D | 20.98 ± 3.72 a | 9.15 ± 1.51 a,b,c,d | 34.60 ± 2.18 g,h,i |
A | 27.80 ± 2.97 a,b | 2.69 ± 1.41 a | 17.07 ± 10.41 c,d,e,f |
M | 12.74 ± 0.67 a | 0.77 ± 0.18 a | 6.45 ± 1.10 a,b,c |
W | 14.54 ± 1.58 a | 13.51 ± 0.34 a,b,c,d,e | −4.69 ± 0.57 a |
Rhoicissus tridentata | |||
H | 256.42 ± 15.18 h | 31.66 ± 1.22 f,g | 8.02 ± 1.40 b,c,d |
D | 139.80 ± 15.59 e,f | 23.49 ± 4.26 d,e,f | 20.00 ± 2.12 d,e,f |
A | 139.26 ± 17.07 e,f | 26.90 ± 2.91 e,f,g | 0.64 ± 0.16 a,b |
M | 236.28 ± 20.57 h | 52.52 ± 8.67 h | 6.40 ± 1.00 a,b,c |
W | 335.20 ± 8.26 i | 103.48 ± 7.36 i | 6.40 ± 3.44 a,b,c |
Ziziphus mucronata | |||
H | 36.34 ± 6.92 a,b,c | 9.96 ± 1.22 a,b,c,d | 2.16 ± 1.27 a,b |
D | 66.57 ± 4.96 c,d | 13.71 ± 2.37 a,b,c,d,e | 23.82 ± 1.41 f,g |
A | 37.15 ± 2.96 a,b,c | 10.07 ± 0.22 a,b,c,d | 9.59 ± 1.81 b,c,d,e |
M | 63.58 ± 8.22 b,c,d | 6.10 ± 0.45 a,b | 4.99 ± 0.50 a,b,c |
W | 84.76 ± 7.68 d | 7.77 ± 3.72 a,b,c | 6.89 ± 0.42 a,b,c |
Rosmarinus officinalis | |||
H | 180.80 ± 11.91 g | 50.06 ± 6.99 h | 35.33 ± 0.42 g,h,i |
D | 126.67 ± 2.26 e | 20.05 ± 6.37 b,c,d,e,f | 20.68 ± 4.99 e,f |
A | 149.43 ± 3.19 e.f,g | 34.37 ± 10.10 f,g | 35.91 ± 4.18 g,h,i |
M | 177.71 ± 30.34 f,g | 22.83 ± 12.50 c,d,e,f | 45.90 ± 11.04 j |
W | 32.71 ± 1.14 a,b,c | 10.10 ± 1.51 a,b,c,d | 4.69 ± 0.27 a,b |
Ximenia caffra | |||
H | 133.78 ± 7.89 e | 9.53 ± 0.58 a,b,c,d | 19.90 ± 2.36 d,e,f |
D | 147.01 ± 13.94 e,f,g | 3.53 ± 0.41 a | 7.45 ± 2.22 b,c |
A | 163.27 ± 9.69 e,f,g | 10.17 ± 1.66 a,b,c,d | 35.28 ± 4.40 g,h,i |
M | 229.76 ± 27.82 h | 11.50 ± 1.74 a,b,c,d | 37.16 ± 3.77 h,j |
W | 225.62 ± 4.01 h | 41.48 ± 6.85 g,h | 28.79 ± 3.87 f,g,h |
Plant Species | Solvent | DPPH Free Radical Scavenging Activity | Ferric Reducing Antioxidant Power Activity | ||
---|---|---|---|---|---|
EC50 (µg/mL) | R2 | EC50 (µg/mL) | R2 | ||
Z. mucronata | H | 28.08 | 0.98 | 299.5 | 0.95 |
D | 8.709 | 0.97 | 297.3 | 0.97 | |
A | 79.96 | 0.97 | 305.5 | 0.94 | |
M | 33.80 | 0.98 | 309.8 | 0.97 | |
W | 20.47 | 0.97 | 332.9 | 0.98 | |
X. caffra | H | 0.0094 | 0.98 | 2.490 | 0.94 |
D | 0.0039 | 0.94 | 2.164 | 0.99 | |
A | 151.3 | 0.96 | 0.481 | 0.96 | |
M | 10.19 | 0.96 | 2.442 | 0.93 | |
W | 11.78 | 0.97 | 2.484 | 0.95 | |
R. officinalis | H | 0.0063 | 0.96 | 310.5 | 0.96 |
D | 8.601 | 0.97 | 274.9 | 0.97 | |
A | 4.979 | 0.99 | 272.9 | 0.97 | |
M | 0.0073 | 0.96 | 309.8 | 0.94 | |
W | 197.0 | 0.98 | 353.4 | 0.99 | |
R. tridentata | H | 0.0058 | 0.93 | 238.4 | 0.87 |
D | 1014 | 0.97 | 297.5 | 0.97 | |
A | 29.54 | 0.94 | 286.7 | 0.97 | |
M | 33.98 | 0.99 | 301.6 | 0.97 | |
W | 19.88 | 0.99 | 144.5 | 0.97 | |
Z. capense | H | 137.4 | 0.92 | 76.37 | 0.87 |
D | 209.2 | 0.99 | 212.0 | 0.96 | |
A | - | - | 288.5 | 0.98 | |
M | - | - | 310.9 | 0.98 | |
W | - | - | 326.3 | 0.89 | |
Ascorbic acid | 0.0038 | 0.96 | 3.042 | 0.93 |
Plant Species | ||||||
---|---|---|---|---|---|---|
Solvent | Z. mucronata | R. officinalis | R. tridentata | X. caffra | Z. capense | Rifampicin |
Hexane | >2.5 | 0.08 | 0.16 | 0.31 | >2.5 | 0.08 |
Dichloromethane | >2.5 | 0.08 | 0.31 | >2.5 | >2.5 | |
Acetone | 1.25 | 0.08 | >2.5 | >2.5 | >2.5 | |
Methanol | 1.25 | 0.08 | >2.5 | >2.5 | >2.5 | |
Water | >2.5 | >2.5 | >2.5 | >2.5 | >2.5 | |
Average | 2.0 | 0.56 | 1.59 | 2.06 | 2.5 |
Combination | MIC (mg/mL) | FIC (i) | FIC (ii) | FIC Index | Outcome |
---|---|---|---|---|---|
RO:RT | 0.63 | 7.81 | 4.01 | 11.82 | Antagonistic |
RO:ZM | 0.63 | 7.81 | 0.25 | 8.06 | Antagonistic |
RO:XC | 0.63 | 7.81 | 0.20 | 9.81 | Antagonistic |
RO:ZC | 0.63 | 7.81 | 0.25 | 8.06 | Antagonistic |
RT:ZM | 2.50 | 16.03 | 1.00 | 17.03 | Antagonistic |
RT:XC | 2.50 | 16.03 | 8.00 | 24.03 | Antagonistic |
RT:ZC | 2.50 | 16.03 | 1.00 | 17.03 | Antagonistic |
ZM:XC | 2.50 | 1.00 | 8.00 | 9.00 | Antagonistic |
ZM:ZC | 2.50 | 1.00 | 1.00 | 2.00 | Indifferent |
XC:ZC | 2.50 | 8.00 | 1.00 | 9.00 | Antagonistic |
Extract | MIC Value (mg/mL) |
---|---|
n-Hexane 1 (H1) | 0.182 |
n-Hexane 2 (H2) | 0.156 |
n-Hexane 3 (H3) | 0.156 |
Dichloromethane 1 (D1) | 0.3125 |
Dichloromethane 2 (D2) | 0.3125 |
Dichloromethane 3 (D3) | 0.3125 |
Acetone 1 (A1) | 1.125 |
Acetone 2 (A2) | 2.5 |
Acetone 3 (A3) | 2.5 |
Methanol 1 (M1) | 1.875 |
Methanol 2 (M2) | 2.5 |
Methanol 3 (M3) | 2.5 |
Negative control (Acetone) | >2.5 |
Positive control (Rifampicin) | 0.08 |
Isolated compounds | |
Compound 1 | 0.125 |
Compound 2 | 0.25 |
Rifampicin | 0.002 |
Acetone | >0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koma, P.L.; Matotoka, M.M.; Mazimba, O.; Masoko, P. Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province. Antibiotics 2025, 14, 965. https://doi.org/10.3390/antibiotics14100965
Koma PL, Matotoka MM, Mazimba O, Masoko P. Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province. Antibiotics. 2025; 14(10):965. https://doi.org/10.3390/antibiotics14100965
Chicago/Turabian StyleKoma, Potsiso L., Mashilo M. Matotoka, Ofentse Mazimba, and Peter Masoko. 2025. "Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province" Antibiotics 14, no. 10: 965. https://doi.org/10.3390/antibiotics14100965
APA StyleKoma, P. L., Matotoka, M. M., Mazimba, O., & Masoko, P. (2025). Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province. Antibiotics, 14(10), 965. https://doi.org/10.3390/antibiotics14100965