In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development
Abstract
:1. Introduction
2. Results
2.1. Minimum Inhibitory Concentration (MIC) Shifts
2.2. Extended-Spectrum Beta-Lactamase (ESBL) Production Screening
2.3. Sequencing Data Quality
2.4. Antimicrobial Resistance Gene (ARG) Set
2.5. Serotyping and Virulence Factors
2.6. Mutations
3. Discussion
4. Materials and Methods
4.1. Tested Bacterial Strain
4.2. Preparation of the MEGA-Plate
4.3. Antibiotic Susceptibility Testing
4.4. Assessment for ESBL Production
4.5. Next-Generation Sequencing
4.6. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARG | Antibiotic resistance gene |
CLSI | Clinical Laboratory Standards Institute |
ESBL | Extended-spectrum beta-lactamase |
E. coli | Escherichia coli |
MEGA-plate | Microbial evolution and growth arena-plate |
MGE | Mobile genetic element |
MIC | Minimum inhibitory concentration |
SNP | Single-nucleotide polymorphism |
References
- Ruckert, A.; Fafard, P.; Hindmarch, S.; Morris, A.; Packer, C.; Patrick, D.; Weese, S.; Wilson, K.; Wong, A.; Labonté, R. Governing Antimicrobial Resistance: A Narrative Review of Global Governance Mechanisms. J. Public Health Policy 2020, 41, 515–528. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance. Wellcome Trust and HM Government. 2016. Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 13 November 2023).
- Karam, G.; Chastre, J.; Wilcox, M.H.; Vincent, J.-L. Antibiotic Strategies in the Era of Multidrug Resistance. Crit. Care 2016, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- De Graef, E.M.; Decostere, A.; Devriese, L.A.; Haesebrouck, F. Antibiotic Resistance among Fecal Indicator Bacteria from Healthy Individually Owned and Kennel Dogs. Microb. Drug Resist. 2004, 10, 65–69. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Wegener, H.C.; Collignon, P. Resistance in Bacteria of the Food Chain: Epidemiology and Control Strategies. Expert Rev. Anti Infect. Ther. 2008, 6, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The Application of Antibiotics in Broiler Production and the Resulting Antibiotic Resistance in Escherichia coli: A Global Overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Yin, J.; Zhang, N.; Geng, S.; Zhou, X.; Wang, Y.; Gao, S.; Jiao, X. Escherichia coli Isolates from Sick Chickens in China: Changes in Antimicrobial Resistance between 1993 and 2013. Vet. J. 2014, 202, 112–115. [Google Scholar] [CrossRef]
- Hanon, J.-B.; Jaspers, S.; Butaye, P.; Wattiau, P.; Méroc, E.; Aerts, M.; Imberechts, H.; Vermeersch, K.; Van der Stede, Y. A Trend Analysis of Antimicrobial Resistance in Commensal Escherichia coli from Several Livestock Species in Belgium (2011–2014). Prev. Vet. Med. 2015, 122, 443–452. [Google Scholar] [CrossRef]
- Boireau, C.; Morignat, É.; Cazeau, G.; Jarrige, N.; Jouy, É.; Haenni, M.; Madec, J.-Y.; Leblond, A.; Gay, É. Antimicrobial Resistance Trends in Escherichia coli Isolated from Diseased Food-Producing Animals in France: A 14-Year Period Time-Series Study. Zoonoses Public Health 2018, 65, e86–e94. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2016. EFSA J. 2018, 16, e05182. [Google Scholar] [CrossRef]
- European Medicines Agency (EU Body or Agency). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021: Trends from 2010 to 2021: Twelfth ESVAC Report; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-9155-069-2. [Google Scholar]
- Maynard, C.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Heterogeneity among Virulence and Antimicrobial Resistance Gene Profiles of Extraintestinal Escherichia coli Isolates of Animal and Human Origin. J. Clin. Microbiol. 2004, 42, 5444–5452. [Google Scholar] [CrossRef]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.W. FDA Proposes to Ban Cephalosporins from Livestock Feed. Environ. Health Perspect. 2012, 120, a106. [Google Scholar] [CrossRef] [PubMed]
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2018; ISBN 978-1-78985-784-9. [Google Scholar]
- Davis, G.S.; Waits, K.; Nordstrom, L.; Grande, H.; Weaver, B.; Papp, K.; Horwinski, J.; Koch, B.; Hungate, B.A.; Liu, C.M.; et al. Antibiotic-Resistant Escherichia coli from Retail Poultry Meat with Different Antibiotic Use Claims. BMC Microbiol. 2018, 18, 174. [Google Scholar] [CrossRef] [PubMed]
- Tchesnokova, V.; Billig, M.; Chattopadhyay, S.; Linardopoulou, E.; Aprikian, P.; Roberts, P.L.; Skrivankova, V.; Johnston, B.; Gileva, A.; Igusheva, I.; et al. Predictive Diagnostics for Escherichia coli Infections Based on the Clonal Association of Antimicrobial Resistance and Clinical Outcome. J. Clin. Microbiol. 2013, 51, 2991–2999. [Google Scholar] [CrossRef] [PubMed]
- Tchesnokova, V.; Avagyan, H.; Billig, M.; Chattopadhyay, S.; Aprikian, P.; Chan, D.; Pseunova, J.; Rechkina, E.; Riddell, K.; Scholes, D.; et al. A Novel 7-Single Nucleotide Polymorphism-Based Clonotyping Test Allows Rapid Prediction of Antimicrobial Susceptibility of Extraintestinal Escherichia coli Directly from Urine Specimens. Open Forum Infect. Dis. 2016, 3, ofw002. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Porter, S.; Thuras, P.; Castanheira, M. The Pandemic H30 Subclone of Sequence Type 131 (ST131) as the Leading Cause of Multidrug-Resistant Escherichia coli Infections in the United States (2011–2012). Open Forum Infect. Dis. 2017, 4, ofx089. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Johnston, B.D.; Porter, S.B.; Clabots, C.; Bender, T.L.; Thuras, P.; Trott, D.J.; Cobbold, R.; Mollinger, J.; Ferrieri, P.; et al. Rapid Emergence, Subsidence, and Molecular Detection of Escherichia coli Sequence Type 1193-FimH64, a New Disseminated Multidrug-Resistant Commensal and Extraintestinal Pathogen. J. Clin. Microbiol. 2019, 57, e01664-18. [Google Scholar] [CrossRef]
- Hardefeldt, L.; Hur, B.; Verspoor, K.; Baldwin, T.; Bailey, K.E.; Scarborough, R.; Richards, S.; Billman-Jacobe, H.; Browning, G.F.; Gilkerson, J. Use of Cefovecin in Dogs and Cats Attending First-Opinion Veterinary Practices in Australia. Vet. Rec. 2020, 187, e95. [Google Scholar] [CrossRef]
- Hornish, R.E.; Kotarski, S.F. Cephalosporins in Veterinary Medicine—Ceftiofur Use in Food Animals. Curr. Top. Med. Chem. 2002, 2, 717–731. [Google Scholar] [CrossRef]
- Cantón, R.; Ruiz-Garbajosa, P. Co-Resistance: An Opportunity for the Bacteria and Resistance Genes. Curr. Opin. Pharmacol. 2011, 11, 477–485. [Google Scholar] [CrossRef]
- Scott, J.; Marusyk, A. Somatic Clonal Evolution: A Selection-Centric Perspective. Biochim. Biophys. Acta Rev. Cancer 2017, 1867, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.C. Epistasis—The Essential Role of Gene Interactions in the Structure and Evolution of Genetic Systems. Nat. Rev. Genet. 2008, 9, 855–867. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Delaney, N.F.; Depristo, M.A.; Hartl, D.L. Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science 2006, 312, 111–114. [Google Scholar] [CrossRef]
- Poelwijk, F.J.; Kiviet, D.J.; Weinreich, D.M.; Tans, S.J. Empirical Fitness Landscapes Reveal Accessible Evolutionary Paths. Nature 2007, 445, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Serene, S.; Chao, H.X.; Gore, J. Hidden Randomness between Fitness Landscapes Limits Reverse Evolution. Phys. Rev. Lett. 2011, 106, 198102. [Google Scholar] [CrossRef] [PubMed]
- Imamovic, L.; Sommer, M.O.A. Use of Collateral Sensitivity Networks to Design Drug Cycling Protocols That Avoid Resistance Development. Sci. Transl. Med. 2013, 5, 204ra132. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lieberman, T.D.; Kishony, R. Alternating Antibiotic Treatments Constrain Evolutionary Paths to Multidrug Resistance. Proc. Natl. Acad. Sci. USA 2014, 111, 14494–14499. [Google Scholar] [CrossRef]
- Nichol, D.; Jeavons, P.; Fletcher, A.G.; Bonomo, R.A.; Maini, P.K.; Paul, J.L.; Gatenby, R.A.; Anderson, A.R.A.; Scott, J.G. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance. PLoS Comput. Biol. 2015, 11, e1004493. [Google Scholar] [CrossRef]
- Toprak, E.; Veres, A.; Michel, J.-B.; Chait, R.; Hartl, D.L.; Kishony, R. Evolutionary Paths to Antibiotic Resistance under Dynamically Sustained Drug Selection. Nat. Genet. 2011, 44, 101–105. [Google Scholar] [CrossRef]
- Rodriguez de Evgrafov, M.; Gumpert, H.; Munck, C.; Thomsen, T.T.; Sommer, M.O.A. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus. Mol. Biol. Evol. 2015, 32, 1175–1185. [Google Scholar] [CrossRef]
- Nichol, D.; Rutter, J.; Bryant, C.; Hujer, A.M.; Lek, S.; Adams, M.D.; Jeavons, P.; Anderson, A.R.A.; Bonomo, R.A.; Scott, J.G. Antibiotic Collateral Sensitivity Is Contingent on the Repeatability of Evolution. Nat. Commun. 2019, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Baym, M.; Lieberman, T.D.; Kelsic, E.D.; Chait, R.; Gross, R.; Yelin, I.; Kishony, R. Spatiotemporal Microbial Evolution on Antibiotic Landscapes. Science 2016, 353, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Kerek, Á.; Török, B.; Jerzsele, Á. MEGA-Plate—New Evolutionary and Coselection Microbiological Method. MÁL 2022, 144, 429–439. [Google Scholar]
- Kerek, Á.; Török, B.; Laczkó, L.; Kardos, G.; Bányai, K.; Somogyi, Z.; Kaszab, E.; Bali, K.; Jerzsele, Á. In Vitro Microevolution and Co-Selection Assessment of Florfenicol Impact on Escherichia coli Resistance Development. Antibiotics 2023, 12, 1728. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-R, L.M.; Konstantinidis, K.T. The Enveomics Collection: A Toolbox for Specialized Analyses of Microbial Genomes and Metagenomes; PeerJ Inc.: London, UK, 2016. [Google Scholar]
- Gu, Y.; Wang, S.; Huang, L.; Sa, W.; Li, J.; Huang, J.; Dai, M.; Cheng, G. Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox. Antibiotics 2020, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.; Mohamed, A.M.T.; Grainge, I.; Rodrigues, C.D.A. FtsK and SpoIIIE, Coordinators of Chromosome Segregation and Envelope Remodeling in Bacteria. Trends Microbiol. 2022, 30, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. AmpC Beta-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Randall, L.P.; Woodward, M.J. The Multiple Antibiotic Resistance (Mar) Locus and Its Significance. Res. Vet. Sci. 2002, 72, 87–93. [Google Scholar] [CrossRef]
- Alekshun, M.N.; Levy, S.B. Regulation of Chromosomally Mediated Multiple Antibiotic Resistance: The Mar Regulon. Antimicrob. Agents Chemother. 1997, 41, 2067–2075. [Google Scholar] [CrossRef]
- Pradel, E.; Pagès, J.-M. The AcrAB-TolC Efflux Pump Contributes to Multidrug Resistance in the Nosocomial Pathogen Enterobacter Aerogenes. Antimicrob. Agents Chemother. 2002, 46, 2640–2643. [Google Scholar] [CrossRef] [PubMed]
- Pos, K.M. Drug Transport Mechanism of the AcrB Efflux Pump. Biochim. Biophys. Acta 2009, 1794, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Eicher, T.; Brandstätter, L.; Pos, K.M. Structural and Functional Aspects of the Multidrug Efflux Pump AcrB. Biol. Chem. 2009, 390, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Ikehata, Y.; Doukyu, N. Improving the Organic Solvent Tolerance of Escherichia coli with Vanillin, and the Involvement of an AcrAB-TolC Efflux Pump in Vanillin Tolerance. J. Biosci. Bioeng. 2022, 133, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Mirbagheri, V.S.; Alishahi, A.; Ahmadian, G.; Petroudi, S.H.H.; Ojagh, S.M.; Romanazzi, G. Recent Findings in Molecular Reactions of E. Coli as Exposed to Alkylated, Nano- and Ordinary Chitosans. Int. J. Biol. Macromol. 2023, 253, 127006. [Google Scholar] [CrossRef]
- Sun, F.; Sun, Y.; Wang, Y.; Yuan, Q.; Xiong, L.; Feng, W.; Xia, P. Role of Penicillin-Binding Protein 1b in the Biofilm Inhibitory Efficacy of Ceftazidime Against Escherichia coli. Curr. Microbiol. 2022, 79, 271. [Google Scholar] [CrossRef]
- Nagakubo, S.; Nishino, K.; Hirata, T.; Yamaguchi, A. The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC. J. Bacteriol. 2002, 184, 4161–4167. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Lewis, K.; Matin, A. EmrR Is a Negative Regulator of the Escherichia coli Multidrug Resistance Pump EmrAB. J. Bacteriol. 1995, 177, 2328–2334. [Google Scholar] [CrossRef]
- Wang, S.; You, C.; Memon, F.Q.; Zhang, G.; Sun, Y.; Si, H. BaeR Participates in Cephalosporins Susceptibility by Regulating the Expression Level of Outer Membrane Proteins in Escherichia coli. J. Biochem. 2021, 169, 101–108. [Google Scholar] [CrossRef]
- Puértolas-Balint, F.; Warsi, O.; Linkevicius, M.; Tang, P.-C.; Andersson, D.I. Mutations That Increase Expression of the EmrAB-TolC Efflux Pump Confer Increased Resistance to Nitroxoline in Escherichia coli. J. Antimicrob. Chemother. 2020, 75, 300–308. [Google Scholar] [CrossRef]
- Törnroth-Horsefield, S.; Gourdon, P.; Horsefield, R.; Brive, L.; Yamamoto, N.; Mori, H.; Snijder, A.; Neutze, R. Crystal Structure of AcrB in Complex with a Single Transmembrane Subunit Reveals Another Twist. Structure 2007, 15, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Xu, Q.S.; Lee, J.Y.; Ankoudinova, I.; Huang, C.; Lou, Y.; DeGiovanni, A.; Kim, R.; Kim, S.-H. Crystal Structure of the Multidrug Efflux Transporter AcrB at 3.1A Resolution Reveals the N-Terminal Region with Conserved Amino Acids. J. Struct. Biol. 2007, 158, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, J.L.; Bourdeau, P.; Sebbag, H.; Person, J.M. Epidemiosurveillance of Antimicrobial Compound Resistance of Staphylococcus Intermedium Clinical Isolates from Canine Pyodermas. Comp. Immunol. Microbiol. Infect. Dis. 1998, 21, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Tang, W.; Luo, L.; Zhang, F.; Cai, C.; Zhang, J.; Wu, X.; Shang, J.; Shu, X.; Wang, T.; et al. Trends and Correlation Between Antimicrobial Resistance and Antibiotics Consumption in a Specialist Children’s Hospital from 2016 to 2021. Infect. Drug Resist. 2022, 15, 5679–5689. [Google Scholar] [CrossRef] [PubMed]
- Toprak, E.; Veres, A.; Yildiz, S.; Pedraza, J.M.; Chait, R.; Paulsson, J.; Kishony, R. Building a Morbidostat: An Automated Continuous-Culture Device for Studying Bacterial Drug Resistance under Dynamically Sustained Drug Inhibition. Nat. Protoc. 2013, 8, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Nichol, D.; Kinose, F.; Abazeed, M.E.; Marusyk, A.; Haura, E.B.; Scott, J.G. Collateral Sensitivity Networks Reveal Evolutionary Instability and Novel Treatment Strategies in ALK Mutated Non-Small Cell Lung Cancer. Sci. Rep. 2017, 7, 1232. [Google Scholar] [CrossRef] [PubMed]
- Drieux, L.; Brossier, F.; Sougakoff, W.; Jarlier, V. Phenotypic Detection of Extended-Spectrum Beta-Lactamase Production in Enterobacteriaceae: Review and Bench Guide. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 90–103. [Google Scholar] [CrossRef]
- Wiegand, I.; Geiss, H.K.; Mack, D.; Stürenburg, E.; Seifert, H. Detection of Extended-Spectrum Beta-Lactamases among Enterobacteriaceae by Use of Semiautomated Microbiology Systems and Manual Detection Procedures. J. Clin. Microbiol. 2007, 45, 1167–1174. [Google Scholar] [CrossRef]
- Fernández De Henestrosa, A.R.; Ogi, T.; Aoyagi, S.; Chafin, D.; Hayes, J.J.; Ohmori, H.; Woodgate, R. Identification of Additional Genes Belonging to the LexA Regulon in Escherichia coli. Mol. Microbiol. 2000, 35, 1560–1572. [Google Scholar] [CrossRef]
- Radman, M.; Taddei, F.; Matic, I. Evolution-Driving Genes. Res. Microbiol. 2000, 151, 91–95. [Google Scholar] [CrossRef]
- Yeiser, B.; Pepper, E.D.; Goodman, M.F.; Finkel, S.E. SOS-Induced DNA Polymerases Enhance Long-Term Survival and Evolutionary Fitness. Proc. Natl. Acad. Sci. USA 2002, 99, 8737–8741. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.; Culebras, E.; Moreno, F.; Baquero, F. Induction of the SOS Response by New 4-Quinolones. J. Antimicrob. Chemother. 1987, 20, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Thomsen, L.E.; Gaggero, C.; Mosseri, R.; Ingmer, H.; Cohen, S.N. SOS Response Induction by Beta-Lactams and Bacterial Defense against Antibiotic Lethality. Science 2004, 305, 1629–1631. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J.; Lederberg, E.M. Replica Plating and Indirect Selection of Bacterial Mutants. J. Bacteriol. 1952, 63, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Caporale, L.H. Natural Selection and the Emergence of a Mutation Phenotype: An Update of the Evolutionary Synthesis Considering Mechanisms That Affect Genome Variation. Annu. Rev. Microbiol. 2003, 57, 467–485. [Google Scholar] [CrossRef] [PubMed]
- Mao, E.F.; Lane, L.; Lee, J.; Miller, J.H. Proliferation of Mutators in A Cell Population. J. Bacteriol. 1997, 179, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Spratt, B.G.; Hanage, W.P.; Feil, E.J. The Relative Contributions of Recombination and Point Mutation to the Diversification of Bacterial Clones. Curr. Opin. Microbiol. 2001, 4, 602–606. [Google Scholar] [CrossRef]
- Guttman, D.S.; Dykhuizen, D.E. Clonal Divergence in Escherichia coli as a Result of Recombination, Not Mutation. Science 1994, 266, 1380–1383. [Google Scholar] [CrossRef]
- Baquero, F.; Negri, M.C.; Morosini, M.I.; Blázquez, J. Antibiotic-Selective Environments. Clin. Infect. Dis. 1998, 27 (Suppl. S1), S5–S11. [Google Scholar] [CrossRef]
- Andremont, A. Commensal Flora May Play Key Role in Spreading Antibiotic Resistance. ASM News 2003, 69, 601–607. [Google Scholar]
- Blair, J.M.A.; Piddock, L.J.V. Structure, Function and Inhibition of RND Efflux Pumps in Gram-Negative Bacteria: An Update. Curr. Opin. Microbiol. 2009, 12, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, C.; Xie, J. The Underling Mechanism of Bacterial TetR/AcrR Family Transcriptional Repressors. Cell Signal 2013, 25, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Telke, A.A.; Olaitan, A.O.; Morand, S.; Rolain, J.-M. SoxRS Induces Colistin Hetero-Resistance in Enterobacter Asburiae and Enterobacter Cloacae by Regulating the AcrAB-TolC Efflux Pump. J. Antimicrob. Chemother. 2017, 72, 2715–2721. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Riquelme, F.; Calatrava-Hernández, E.; Gutiérrez-Soto, M.; Expósito-Ruiz, M.; Navarro-Marí, J.M.; Gutiérrez-Fernández, J. Clinical Relevance of Antibiotic Susceptibility Profiles for Screening Gram-Negative Microorganisms Resistant to Beta-Lactam Antibiotics. Microorganisms 2020, 8, 1555. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Bae, I.K.; Kim, J.; Jeong, S.H.; Yong, D.; Kim, J.M.; Lee, K. Resistance to Carbapenems in Sequence Type 11 Klebsiella Pneumoniae Is Related to DHA-1 and Loss of OmpK35 and/or OmpK36. J. Med. Microbiol. 2012, 61, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-Mediated Resistance Is Going Wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11 th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Volume CLSI Standards M07. [Google Scholar]
- Sahin-Tóth, J.; Kovács, E.; Tóthpál, A.; Juhász, J.; Forró, B.; Bányai, K.; Havril, K.; Horváth, A.; Ghidán, Á.; Dobay, O. Whole Genome Sequencing of Coagulase Positive Staphylococci from a Dog-and-Owner Screening Survey. PLoS One 2021, 16, e0245351. [Google Scholar] [CrossRef] [PubMed]
- Muzzey, D.; Evans, E.A.; Lieber, C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr. Genet. Med. Rep. 2015, 3, 158–165. [Google Scholar] [CrossRef]
- Mihály, Z.; Győrffy, B. Következő generációs szekvenálási technológiák kifejlődése és alkalmazásai = Next generation sequencing technologies (NGST) development and applications. Orvosi Hetil. 2011, 152, 55–62. [Google Scholar] [CrossRef]
- Thrash, A.; Arick, M.; Peterson, D.G. Quack: A Quality Assurance Tool for High Throughput Sequence Data. Anal. Biochem. 2018, 548, 38–43. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simao, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef] [PubMed]
- Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast Reference-Free Genome Profiling from Short Reads. Bioinformatics 2017, 33, 2202–2204. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of Mobile Genetic Elements Associated with Antibiotic Resistance in Salmonella Enterica Using a Newly Developed Web Tool: MobileElementFinder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [CrossRef]
- Krawczyk, P.S.; Lipinski, L.; Dziembowski, A. PlasFlow: Predicting Plasmid Sequences in Metagenomic Data Using Genome Signatures. Nucleic Acids Res. 2018, 46, e35. [Google Scholar] [CrossRef]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C.Y. Mlplasmids: A User-Friendly Tool to Predict Plasmid- and Chromosome-Derived Sequences for Single Species. Microb. Genom. 2018, 4, e000224. [Google Scholar] [CrossRef]
- Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: Mining Viral Signal from Microbial Genomic Data. PeerJ 2015, 3, e985. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Allesøe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A Novel Web Tool for WGS-Based Detection of Antimicrobial Resistance Associated with Chromosomal Point Mutations in Bacterial Pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed]
- Bessonov, K.; Laing, C.; Robertson, J.; Yong, I.; Ziebell, K.; Gannon, V.P.J.; Nichani, A.; Arya, G.; Nash, J.H.E.; Christianson, S. ECTyper: In Silico Escherichia coli Serotype and Species Prediction from Raw and Assembled Whole-Genome Sequence Data. Microb. Genom. 2021, 7, 000728. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Escherichia coli Genome Assembly ASM2099549v1. Available online: https://www.ncbi.nlm.nih.gov/data-hub/assembly/GCF_020995495.1/ (accessed on 13 November 2023).
- Blázquez, J. Hypermutation as a Factor Contributing to the Acquisition of Antimicrobial Resistance. Clin. Infect. Dis. 2003, 37, 1201–1209. [Google Scholar] [CrossRef]
Sample | AMX | CTX | ENR | COL | OTC | PSA | FLO | NEO | CFR | CFT | CFQ |
---|---|---|---|---|---|---|---|---|---|---|---|
µg/mL | |||||||||||
0× AMX | 4 | 0.03 | 0.003 | 0.5 | 2 | 8 | 16 | 16 | 0.25 | 0.06 | 0.06 |
1× AMX | 4 | 0.125 | 0.003 | 0.5 | 2 | 8 | 16 | 16 | 0.25 | 0.25 | 0.125 |
10× AMX | 8 | 0.25 | 0.007 | 0.5 | 2 | 8 | 16 | 16 | 0.25 | 0.25 | 0.125 |
100× AMX | 256 | 8 | 0.06 | 128 | 2 | 256 | 16 | 64 | 16 | 4 | 2 |
1000× AMX | 256 | 8 | 0.06 | 512 | 2 | 256 | 16 | 64 | 16 | 4 | 8 |
Sample | CTX | AMX | ENR | COL | FLO | OTC | PSA | NEO | CFR | CFT | CFQ |
---|---|---|---|---|---|---|---|---|---|---|---|
µg/mL | |||||||||||
0× CTX | 0.03 | 8 | 0.003 | 0.5 | 16 | 2 | 8 | 16 | 0.25 | 0.06 | 0.06 |
1× CTX | 0.125 | 8 | 0.003 | 0.5 | 16 | 2 | 8 | 16 | 0.25 | 0.06 | 0.06 |
10× CTX | 0.25 | 32 | 0.03 | 0.5 | 128 | 4 | 16 | 16 | 0.25 | 0.06 | 0.06 |
100× CTX | 4 | >512 | 0.125 | 8 | 256 | 4 | 32 | 64 | 16 | 8 | 4 |
1000× CTX | 16 | >512 | 0.125 | 32 | 256 | 16 | 64 | 128 | 64 | 32 | 8 |
Sample | CTZ | CTZ + CLA | Difference | CTX | CTX + CLA | Difference |
---|---|---|---|---|---|---|
(µg/mL) | (µg/mL) | |||||
0× AMX | 0.03 | 0.03 | 0× | 0.03 | 0.03 | 0× |
1× AMX | 0.06 | 0.03 | 2× | 0.125 | 0.06 | 2× |
10× AMX | 0.25 | 0.125 | 2× | 0.25 | 0.125 | 2× |
100× AMX | 64 | 32 | 2× | 8 | 2 | 4× |
1000× AMX | 64 | 32 | 2× | 8 | 2 | 4× |
Sample | CTZ | CTZ + CLA | Difference | CTX | CTX + CLA | Difference |
---|---|---|---|---|---|---|
(µg/mL) | (µg/mL) | |||||
0× CTX | 0.03 | 0.03 | 1× | 0.03 | 0.03 | 1× |
1× CTX | 0.03 | 0.03 | 1× | 0.125 | 0.125 | 1× |
10× CTX | 0.06 | 0.06 | 1× | 0.25 | 0.125 | 2× |
100× CTX | 8 | 4 | 2× | 4 | 2 | 2× |
1000× CTX | 8 | 8 | 1× | 16 | 8 | 2× |
Mutation Type | 0× AMX | 1× AMX | 10× AMX | 100× AMX | 1000× AMX | |
---|---|---|---|---|---|---|
Complex * | Identified | 121 | 119 | 116 | 115 | 117 (+1) |
All | 311 | 286 | 193 | 290 | 294 | |
Deletion | Identified | 20 | 20 | 20 | 19 | 20 |
All | 41 | 41 | 42 | 41 | 41 | |
Insertion | Identified | 4 | 4 | 4 | 3 | 5 (+1) |
All | 14 | 15 | 15 | 13 | 15 | |
SNP ** | Identified | 786 | 781 | 774 | 781 (+6) | 789 (+5) |
All | 1447 | 1364 | 1393 | 1381 | 1410 |
Mutation Type | 0× CTX | 1× CTX | 10× CTX | 100× CTX | 1000× CTX | |
---|---|---|---|---|---|---|
Complex * | Identified | 116 | 120 | 118 (+1) | 117 (+3) | 116 (+2) |
All | 311 | 309 | 327 | 297 | 305 | |
Deletion | Identified | 19 | 20 | 20 | 23 (+4) | 22 (+3) |
All | 38 | 37 | 38 | 42 | 41 | |
Insertion | Identified | 3 | 3 | 3 | 16 (+13) | 14 (+11) |
All | 12 | 12 | 13 | 42 | 33 | |
SNP ** | Identified | 774 | 779 (+7) | 784 (+13) | 928 (+161) | 927 (+174) |
All | 1448 | 1486 | 1585 | 1641 | 1656 |
Gene | 1 | 2 | 3 | 4 | 5 | Nucleotide Acid Replacement | Effect | Product |
---|---|---|---|---|---|---|---|---|
COMPLEX | ||||||||
vgrG | x | AGG-CGT | synonymous variant c.1228_1230delAGGinsCGT p.411 | type VI secretion system tip protein | ||||
INSERTIO | ||||||||
ftsK | x | A-T | frameshift variant c.2256_2257insT p. Gln753fs | DNA translocase | ||||
SNPs | ||||||||
ampC | x | x | undefined | ampC-promoter n.-11C>T | undefined | |||
frdD | x | x | G-A | missense variant c.353C>T p. Thr118Ile | fumarate reductase subunit | |||
kbaZ | x | G-C | synonymous variant c.243G>C p. Pro81Pro | tagatose-bisphosphate aldolase subunit | ||||
yhhZ | x | C-A | missense variant c.528C>A p. Ser176Arg | Hcp1 family type VI secretion system effector | ||||
ugpC | x | G-C | synonymous variant c.261C>G p. Leu87Leu | sn-glycerol 3-phosphate ABC transporter ATP binding protein | ||||
aceF | x | T-C | synonymous variant c.387T>C p. Asp129Asp synonymous variant c.399T>C p. Ala133Ala | pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase | ||||
ompN | x | A-G | synonymous variant c.75T>C p. Tyr25Tyr | porin | ||||
pta | x | G-T | missense variant c.208C>A p. Pro70Thr | phosphate acetyltransferase | ||||
tyrB | x | A-G | synonymous variant c.426A>G p. Gly142Gly | aromatic amino acid transaminase | ||||
acrB | x | A-T | missense variant c.145T>A p. Tyr49Asn | efflux RND transporter permease | ||||
vgrG | x | C-T A-G T-G | missense variant c.1454C>T p. Thr485Ile synonymous variant c.1236A>G p. Ser412Ser synonymous variant c.1437T>G p. Gly479Gly | type VI secretion system tip protein |
Gene | 1 | 2 | 3 | 4 | 5 | Nucleotide Acid Replacement | Effect | Product |
---|---|---|---|---|---|---|---|---|
ampC | x | x | x | GCC-CCA GTA-GAA CGG-GGG CGC-CAC | ampC-promoter p.A2P ampC-promoter p.V4E ampC-promoter p.R11G ampC-promoter p.R8H | A->P amino acid change V->E amino acid change R->G amino acid change R->H amino acid change | ||
ampC | x | x | undefined | ampC-promoter n.32T>A | T->A amino acid change Phenotype amoxicillin, amoxicillin-clavulanic acid, ampicillin, ampicillin-clavulanic acid, cefixime, cefotaxime, cefoxitin, ceftazidime, piperacillin resistance because of beta-lactamase enzyme production. | |||
sstT | x | x | T-GG | frameshift variant & missense variant c.1042delTinsGG p. Ser348fs | Serin/threonine transporter | |||
adk | x | x | GAAAG-TAAAT GAAA-TAAT | missense variant c.420_424delGAAAGinsTAAAT p. Val142Leu missense variant c.420_423delGAAAinsTAAT p. Lys141Asn | adenylate kinase | |||
kbaY | x | TCAT-CCAT | synonymous variant c.75_78delTCATinsCCAC p.27 | tagatose-bisphosphate aldolase subunit | ||||
fdoH | x | CTGGAA-GGGCAT | missense variant c.76_81delTTCCAGinsATGCCC p. PheGln26MetPro | formate dehydrogenase O subunit beta |
Gene | 1 | 2 | 3 | 4 | 5 | Nucleotide Acid Replacement | Effect | Product |
---|---|---|---|---|---|---|---|---|
mutL | x | x | AGCTGGC-A | disruptive inframe deletion c.215_220delTGGCGC p.Leu72_Ala73del | DNA mismatch repair endonuclease | |||
vat | x | x | AC-A | frameshift variant c.1483delG p. Val495fs | vacuolating autotransporter toxin | |||
ybiO | x | x | CT-C | frameshift variant c.138delA p. Ala47fs | mechanosensitive channel protein | |||
vceG | x | GA-G | frameshift variant c.1013delA p. Asn338fs | cell division protein |
Gene | 1 | 2 | 3 | 4 | 5 | Nucleotide Acid Replacement | Effect | Product |
---|---|---|---|---|---|---|---|---|
narQ | x | x | C-CT | frameshift variant c.49dupT p. Tyr17fs | nitrate/nitrite two-component system sensor histidine kinase | |||
nfeF | x | x | C-CG | frameshift variant c.16dupC p. Arg6fs | NADPH-dependent ferric chelate reductase | |||
rnpB | x | x | T-TC | intragenic variant n.1764344_1764345insC | RNase P RNA component class A | |||
rsxD | x | x | T-TC | frameshift variant c.274dupC p. Leu92fs | electron transport complex subunit | |||
ptsP | x | x | T-TG | frameshift variant c.268dupC p. His90fs | phosphoenolpyruvate--protein phosphotransferase | |||
ubiC | x | x | T-TG | frameshift variant c.420dupG p. Arg141fs | chorismate lyase | |||
msrA | x | x | T-TG | frameshift variant c.367dupC p. Gln123fs | peptide-methionine (S)-S-oxide reductase | |||
ytfR | x | x | C-CA | frameshift variant c.1230dupA p. Val411fs | sugar ABC transporter ATP-binding protein | |||
gudP | x | T-TC | frameshift variant c.927dupG p. Ile310fs | galactarate/glucarate/glycerate transporter | ||||
yicI | x | C-CG | frameshift variant c.1065dupC p. Val356fs | alpha-xylosidase | ||||
maeA | x | G-GT | frameshift variant c.21dupA p. Gln8fs | malate dehydrogenase | ||||
xapB | x | C-CT | frameshift variant c.564dupA p. Ala189fs | xanthosine/proton symporter | ||||
hypF | x | G-GC | frameshift variant c.1544dupG p. Glu516fs | carbamoyl transferase | ||||
phoP | x | A-AT | frameshift variant c.601dupA p. Ile201fs | two-component system response regulator | ||||
tssI | x | A-AG | frameshift variant c.1976dupG p. Val660fs | type VI secretion system tip protein TssI/VgrG | ||||
marR | x | C-CA | frameshift variant c.377dupA p. Asn126fs | multiple antibiotic resistance transcriptional regulator |
Gene | 1 | 2 | 3 | 4 | 5 | Nucleotide Acid Replacement | Effect | Product |
---|---|---|---|---|---|---|---|---|
acrR | x | x | x | T-C | missense variant c.458T>C p. Met153Thr | multidrug efflux transporter transcriptional repressor | ||
ampC | x | x | C-T | missense variant c.922G>A p. Ala308Thr | cephalosporin-hydrolyzing class C beta-lactamase EC-5 | |||
acrB | x | x | G-C C-T | missense variant c.1693C>G p. Pro565Ala missense variant c.2906G>A p. Arg969Gln | efflux RND transporter permease | |||
robA | x | x | C-T | missense variant c.467G>A p. Arg156His synonymous variant c.849G>A p. Leu283Leu | MDR efflux pump acrAB transcriptional activator | |||
mrcA | x | x | G-A | missense variant c.772G>A p. Ala258Thr | peptidoglycan glycosyltransferase/peptidoglycan DD-transpeptidase | |||
mdtB | x | G-A | missense variant c.805G>A p. Ala269Thr | multidrug efflux RND transporter permease subunit | ||||
emrR | x | T-C | missense variant c.478T>C p. Ser160Pro | multidrug efflux transporter emrAB transcriptional repressor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerek, Á.; Török, B.; Laczkó, L.; Somogyi, Z.; Kardos, G.; Bányai, K.; Kaszab, E.; Bali, K.; Jerzsele, Á. In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development. Antibiotics 2024, 13, 247. https://doi.org/10.3390/antibiotics13030247
Kerek Á, Török B, Laczkó L, Somogyi Z, Kardos G, Bányai K, Kaszab E, Bali K, Jerzsele Á. In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development. Antibiotics. 2024; 13(3):247. https://doi.org/10.3390/antibiotics13030247
Chicago/Turabian StyleKerek, Ádám, Bence Török, Levente Laczkó, Zoltán Somogyi, Gábor Kardos, Krisztián Bányai, Eszter Kaszab, Krisztina Bali, and Ákos Jerzsele. 2024. "In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development" Antibiotics 13, no. 3: 247. https://doi.org/10.3390/antibiotics13030247
APA StyleKerek, Á., Török, B., Laczkó, L., Somogyi, Z., Kardos, G., Bányai, K., Kaszab, E., Bali, K., & Jerzsele, Á. (2024). In Vitro Microevolution and Co-Selection Assessment of Amoxicillin and Cefotaxime Impact on Escherichia coli Resistance Development. Antibiotics, 13(3), 247. https://doi.org/10.3390/antibiotics13030247