Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals
Abstract
:1. Introduction
2. Results
2.1. Numbers and Species of Probiotic Bacteria
2.2. Contamination of E. coli and Salmonella in Whole Probiotic Products (n = 45)
2.3. Phenotypic AMR in the Bacterial Isolates (n = 64) from Probiotic Products
2.4. Presence of AMR Genes in Whole Probiotic Products (n = 45)
2.5. Transfer of AMR Genes
3. Discussion
4. Materials and Methods
4.1. Sample Collection (n = 45)
4.2. PCR and Nucleotide Sequencing
4.3. Determination of Microbiological Quality (n = 45)
4.3.1. Enumeration, Isolation, and Species Confirmation of Lactobacillus, Bacillus, and Enterococcus (n = 41)
4.3.2. Detection of Clostridium (n = 45)
4.3.3. Determination of Salmonella and E. coli in Whole Probiotic Products (n = 45)
4.4. Determination of AMR Characteristics (n = 45)
4.4.1. Antimicrobial Susceptibility Testing for Probiotic Bacterial Isolates
4.4.2. Detection of AMR Genes in Probiotic Products (n = 45)
4.4.3. Conjugation Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McEwen, S.A.; Fedorka-Cray, P.J. Antimicrobial Use and Resistance in Animals. Clin. Infect. Dis. 2002, 34 (Suppl. S3), S93–S106. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 30 April–1 May 2002; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Wannaprasat, W.; Koowatananukul, C.; Ekkapobyotin, C.; Chuanchuen, R. Quality analysis of commercial probiotic products for food animals. Southeast Asian J. Trop. Med. Public Health 2009, 40, 1103. [Google Scholar] [PubMed]
- Hummel, A.; Holzapfel, W.H.; Franz, C.M. Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Syst. Appl. Microbiol. 2007, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ouoba, L.I.I.; Lei, V.; Jensen, L.B. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria. Int. J. Food Microbiol. 2008, 121, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Cheli, F.; Gallo, R.; Battaglia, D.; Dell’orto, V. EU Legislation on Feed Related Issues: An Update. Ital. J. Anim. Sci. 2013, 12, e48. [Google Scholar] [CrossRef]
- European Commission. Opinion of the Scientific Committee on Animal Nutrition on the Criteria for Assessing the Safety of Micro-Organisms Resistant to Antibiotics of Human Clinical and Veterinary Importance; European Commission: Brussels, Belgium, 2003; Available online: https://ec.europa.eu/food/fs/sc/scan/out108_en.pdf (accessed on 26 January 2024).
- Nuangmek, A.; Rojanasthien, S.; Yamsakul, P.; Tadee, P.; Eiamsam-ang, T.; Thamlikitkul, V.; Tansakul, N.; Suwan, M.; Prasertsee, T.; Chotinun, S.; et al. Perspectives on antimicrobial use in pig and layer farms in thailand: Legislation, policy, regulations and potential. Vet. Integr. Sci. 2021, 19, 1–21. [Google Scholar] [CrossRef]
- CLSI. Performance standards for antimicrobial susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Weese, J.S.; Martin, H. Assessment of commercial probiotic bacterial contents and label accuracy. Can. Vet. J. 2011, 52, 43. [Google Scholar]
- ISO 6887-1; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. International Organisation for Standardization: Geneva, Switzerland, 2017.
- Schleifer, K.H.; Kilpper-Bälz, R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Evol. Microbiol. 1984, 34, 31–34. [Google Scholar] [CrossRef]
- Klare, I.; Konstabel, C.; Werner, G.; Huys, G.; Vankerckhoven, V.; Kahlmeter, G.; Hildebrandt, B.; Müller-Bertling, S.; Witte, W.; Goossens, H. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J. Antimicrob. Chemother. 2007, 59, 900–912. [Google Scholar] [CrossRef]
- Adimpong, D.B.; Sørensen, K.I.; Thorsen, L.; Stuer-Lauridsen, B.; Abdelgadir, W.S.; Nielsen, D.S.; Derkx, P.M.F.; Jespersen, L. Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis. Appl. Environ. Microbiol. 2012, 78, 7903–7914. [Google Scholar] [CrossRef]
- Hoa, N.T.; Baccigalupi, L.; Huxham, A.; Smertenko, A.; Van, P.H.; Ammendola, S.; Ricca, E.; Cutting, S.M. Characterization of Bacillus Species Used for Oral Bacteriotherapy and Bacterioprophylaxis of Gastrointestinal Disorders. Appl. Environ. Microbiol. 2000, 66, 5241–5247. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Casado Muñoz, M.D.C.; Lavilla Lerma, M.L.; Pérez Montoro, B.; Bockelmann, W.; Pichner, R.; Kabisch, J.; Cho, G.-S.; Franz, C.M.A.P.; Galvez, A.; et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 2015, 78, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Wang, M.; Park, C.H.; Kim, E.C.; Jacoby, G.A.; Hooper, D.C. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 3582–3584. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac (6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [PubMed]
- Robicsek, A.; Strahilevitz, J.; Sahm, D.F.; Jacoby, G.A.; Hooper, D.C. qnr Prevalence in Ceftazidime-Resistant Enterobacteriaceae Isolates from the United States. Antimicrob. Agents Chemother. 2006, 50, 2872–2874. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.D.; Jenabi, A.; Montazeri, E.A. Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains. Kaohsiung J. Med. Sci. 2017, 33, 587–593. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Kromann, S.; Chen, M.; Shi, L.; Meng, H. Antibiotic resistance of Lactobacillus spp. and Streptococcus thermophilus isolated from Chinese fermented milk products. Foodborne Pathog. Dis. 2019, 16, 221–228. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Khemtong, S.; Padungtod, P. Occurrence of qacE/qacED1 genes and their correlation with class 1 integrons in Salmonella enterica isolates from poultry and swine. Southeast Asian J. Trop. Med. Public Health 2007, 38, 855–862. [Google Scholar]
- Chuanchuen, R.; Pathanasophon, P.; Khemtong, S.; Wannaprasat, W.; Padungtod, P. Susceptibilities to Antimicrobials and Disinfectants in Salmonella Isolates Obtained from Poultry and Swine in Thailand. J. Vet. Med. Sci. 2008, 70, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Seifi, S.; Khoshbakht, R. Prevalence of tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. Br. Poult. Sci. 2016, 57, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Song, Y.; Wei, Z.; He, H.; Zhang, A.; Jin, M. Antimicrobial Susceptibility, Tetracycline and Erythromycin Resistance Genes, and Multilocus Sequence Typing of Streptococcus suis Isolates from Diseased Pigs in China. J. Vet. Med. Sci. 2013, 75, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Ojo, K.K.; Ulep, C.; Van Kirk, N.; Luis, H.; Bernardo, M.; Leitao, J.; Roberts, M.C. The mef (A) gene predominates among seven macrolide resistance genes identified in gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob. Agents Chemother. 2004, 48, 3451–3456. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, C.; Piché, L.; Larose, C.; Roy, P.H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 1995, 39, 185–191. [Google Scholar] [CrossRef] [PubMed]
- ISO 15214; Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Emumeration [sic] of Mesophilic Lactic Acid Bacteria: Colony-Count Technique at 30 °C. International Organisation for Standardization: Geneva, Switzerland, 1998.
- ISO 7932; Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Enumeration of Presumptive Bacillus cereus-Colony-Count Technique at 30 °C. International Organisation for Standardization: Geneva, Switzerland, 2004.
- Domig, K.J.; Mayer, H.K.; Kneifel, W. Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp.: 2. Pheno- and genotypic criteria. Int. J. Food Microbiol. 2003, 88, 165–188. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Walker, M.J.; Hornitzky, M.; Chin, J. Development of a group-specific PCR combined with ARDRA for the identification of Bacillus species of environmental significance. J. Microbiol. Methods 2006, 64, 107–119. [Google Scholar] [CrossRef] [PubMed]
- ISO 6579; Microbiology of Food and Animal Feeding Stuffs–Horizontal Method for the Detection of Salmonella spp. International Organisation for Standardization: Geneva, Switzerland, 2002.
- Grimont, P.A.; Weill, F.-X. Antigenic Formulae of the Salmonella Serovars; WHO Collaborating Centre for Reference and Research on Salmonella: Geneva, Switzerland, 2007; Volume 9, pp. 1–166. [Google Scholar]
- Feng, F.; Weagant, S.D.; Grant, M.A.; Burkhardt, W. Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. In Bacteriological Analytical Manual, 8th ed.; U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2002; p. 10903. [Google Scholar]
- Klare, I.; Konstabel, C.; Müller-Bertling, S.; Reissbrodt, R.; Huys, G.; Vancanneyt, M.; Swings, J.; Goossens, H.; Witte, W. Evaluation of New Broth Media for Microdilution Antibiotic Susceptibility Testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Appl. Environ. Microbiol. 2005, 71, 8982–8986. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, European Committee on Antimicrobial Susceptibility Testing. 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 26 January 2024).
- ESFA. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Gevers, D.; Huys, G.; Swings, J. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol. Lett. 2003, 225, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Shimada, M.; Mukai, H.; Asada, K.; Kato, I.; Fujino, K.; Sato, T. Detection of alcohol-tolerant hiochi bacteria by PCR. Appl. Environ. Microbiol. 1994, 60, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Dubernet, S.; Desmasures, N.; Guéguen, M. A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol. Lett. 2002, 214, 271–275. [Google Scholar] [CrossRef]
- Kwon, H.S.; Yang, E.H.; Yeon, S.W.; Kang, B.H.; Kim, T.Y. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol. Lett. 2004, 239, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Picard, F.J.; Martineau, F.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR Assay for Rapid Detection of Enterococci. J. Clin. Microbiol. 1999, 37, 3497–3503. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a Genus- and Species-Specific Multiplex PCR for Identification of Enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef]
- Dhalluin, A.; Lemée, L.; Pestel-Caron, M.; Mory, F.; Leluan, G.; Lemeland, J.-F.; Pons, J.-L. Genotypic Differentiation of Twelve Clostridium Species by Polymorphism Analysis of the Triosephosphate Isomerase (tpi) Gene. Syst. Appl. Microbiol. 2003, 26, 90–96. [Google Scholar] [CrossRef]
- Kikuchi, E.; Miyamoto, Y.; Narushima, S.; Itoh, K. Design of Species-Specific Primers to Identify 13 Species of Clostridium Harbored in Human Intestinal Tracts. Microbiol. Immunol. 2002, 46, 353–358. [Google Scholar] [CrossRef]
- Batchelor, M.; Hopkins, K.; Threlfall, E.J.; Clifton-Hadley, F.A.; Stallwood, A.D.; Davies, R.H.; Liebana, E. bla CTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 2005, 49, 1319–1322. [Google Scholar] [CrossRef]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef]
- Muzaheed Doi, Y.; Adams-Haduch, J.M.; Endimiani, A.; Sidjabat, H.E.; Gaddad, S.M.; Paterson, D.L. High prevalence of CTX-M-15-producing Klebsiella pneumoniae among inpatients and outpatients with urinary tract infection in Southern India. J. Antimicrob. Chemother. 2008, 61, 1393–1394. [Google Scholar] [CrossRef] [PubMed]
- Kaase, M.; Lenga, S.; Friedrich, S.; Szabados, F.; Sakinc, T.; Kleine, B.; Gatermann, S. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin. Microbiol. Infect. 2008, 14, 614–616. [Google Scholar] [CrossRef]
- Nakagawa, S.; Taneike, I.; Mimura, D.; Iwakura, N.; Nakayama, T.; Emura, T.; Kitatsuji, M.; Fujimoto, A.; Yamamoto, T. Gene sequences and specific detection for Panton-Valentine leukocidin. Biochem. Biophys. Res. Commun. 2005, 328, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Wachino, J.-I.; Suzuki, S.; Arakawa, Y. Plasmid-Mediated qepA Gene among Escherichia coli Clinical Isolates from Japan. Antimicrob. Agents Chemother. 2008, 52, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, L.M.; Hasman, H.; Xia, S.; Aarestrup, F.M. qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin. Antimicrob. Agents Chemother. 2009, 53, 603–608. [Google Scholar] [CrossRef]
- Rojo-Bezares, B.; Sáenz, Y.; Poeta, P.; Zarazaga, M.; Ruiz-Larrea, F.; Torres, C. Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int. J. Food Microbiol. 2006, 111, 234–240. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Padungtod, P. Antimicrobial Resistance Genes in Salmonella enterica Isolates from Poultry and Swine in Thailand. J. Vet. Med. Sci. 2009, 71, 1349–1355. [Google Scholar] [CrossRef]
- Yan, J.-J.; Wu, J.-J.; Ko, W.-C.; Tsai, S.-H.; Chuang, C.-L.; Wu, H.-M.; Lu, Y.-J.; Li, J.-D. Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J. Antimicrob. Chemother. 2004, 54, 1007–1012. [Google Scholar] [CrossRef]
- Jakobsen, L.; Sandvang, D.; Hansen, L.H.; Bagger-Skjøt, L.; Westh, H.; Jørgensen, C.; Hansen, D.S.; Pedersen, B.M.; Monnet, D.L.; Frimodt-Møller, N.; et al. Characterisation, dissemination and persistence of gentamicin resistant Escherichia coli from a Danish university hospital to the waste water environment. Environ. Int. 2008, 34, 108–115. [Google Scholar] [CrossRef]
- Sandvang, D.; Aarestrup, F.M.; Titilawo, Y.; Obi, L.; Okoh, A.; Nielsen, K.M.; Domingues, S.; da Silva, G.J.; Smith, M.; Do, T.; et al. Characterization of Aminoglycoside Resistance Genes and Class 1 Integrons in Porcine and Bovine Gentamicin-Resistant Escherichia coli. Microb. Drug Resist. 2000, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for Detection of Aminoglycoside Resistance Genes in Enterococci. Antimicrob. Agents Chemother. 2003, 47, 1423–1426. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Koowatananukul, C.; Khemtong, S. Characterization of class 1 integrons with unusual 3′ conserved region from Salmonella enterica isolates. Southeast Asian J. Trop. Med. Public Health 2008, 39, 419–424. [Google Scholar] [PubMed]
- Yu, H.S.; Lee, J.C.; Kang, H.Y.; Jeong, Y.S.; Lee, E.Y.; Choi, C.H.; Tae, S.H.; Lee, Y.C.; Seol, S.Y.; Cho, D.T. Prevalence of dfr genes associated with integrons and dissemination of dfrA17 among urinary isolates of Escherichia coli in Korea. J. Antimicrob. Chemother. 2004, 53, 445–450. [Google Scholar] [CrossRef]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef]
- Phuc Nguyen, M.C.; Woerther, P.L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph (C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.O.; Werckenthin, C.; Schwarz, S.; Roberts, M.C. Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J. Antimicrob. Chemother. 1999, 43, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Mišić, M.; Čukić, J.; Vidanović, D.; Šekler, M.; Matić, S.; Vukašinović, M.; Baskić, D. Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia. Front. Public Health 2017, 5, 200. [Google Scholar] [CrossRef] [PubMed]
- Angot, P.; Vergnaud, M.; Auzou, M.; Leclercq, R. Macrolide resistance phenotypes and genotypes in French clinical isolates of Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Grape, M.; Motakefi, A.; Pavuluri, S.; Kahlmeter, G. Standard and real-time multiplex PCR methods for detection of trimethoprim resistance dfr genes in large collections of bacteria. Clin. Microbiol. Infect. 2007, 13, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Ávila, B.; Díaz, P.; Rivas, L.; Bravo, K.; Astudillo, J.; Bueno, C.; Ulloa, M.T.; Hermosilla, G.; Del Canto, F.; et al. Emergence of Plasmid-Borne dfrA14 Trimethoprim Resistance Gene in Shigella sonnei. Front. Cell. Infect. Microbiol. 2016, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Hochhut, B.; Lotfi, Y.; Mazel, D.; Faruque, S.M.; Woodgate, R.; Waldor, M.K. Molecular Analysis of Antibiotic Resistance Gene Clusters in Vibrio cholerae O139 and O1 SXT Constins. Antimicrob. Agents Chemother. 2001, 45, 2991–3000. [Google Scholar] [CrossRef] [PubMed]
- Toro, C.S.; Farfán, M.; Contreras, I.; Flores, O.; Navarro, N.; Mora, G.C.; Prado, V. Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol. Infect. 2005, 133, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Willems, R.J.L.; Hildebrandt, B.; Klare, I.; Witte, W. Influence of Transferable Genetic Determinants on the Outcome of Typing Methods Commonly Used for Enterococcus faecium. J. Clin. Microbiol. 2003, 41, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Danielsen, M.; Huys, G.; Swings, J. Molecular Characterization of tet (M) Genes in Lactobacillus Isolates from Different Types of Fermented Dry Sausage. Appl. Environ. Microbiol. 2003, 69, 1270–1275. [Google Scholar] [CrossRef]
- Aminov, R.I.; Garrigues-Jeanjean, N.; Mackie, R.I. Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Appl. Environ. Microbiol. 2001, 67, 22–32. [Google Scholar] [CrossRef]
- Ng, L.-K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Call, D.R.; Bakko, M.K.; Krug, M.J.; Roberts, M.C. Identifying Antimicrobial Resistance Genes with DNA Microarrays. Antimicrob. Agents Chemother. 2003, 47, 3290–3295. [Google Scholar] [CrossRef]
- Melville, C.M.; Scott, K.P.; Mercer, D.K.; Flint, H.J. Novel tetracycline resistance gene, tet (32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens. Antimicrob. Agents Chemother. 2001, 45, 3246–3249. [Google Scholar] [CrossRef]
- Patterson, A.J.; Rincon, M.T.; Flint, H.J.; Scott, K.P. Mosaic Tetracycline Resistance Genes Are Widespread in Human and Animal Fecal Samples. Antimicrob. Agents Chemother. 2007, 51, 1115–1118. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Zhou, Y.; Li, J.; Yin, W.; Wang, S.; Zhang, S.; Shen, J.; Shen, Z.; Wang, Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef] [PubMed]
Product | Labelling Information | Observation in This Study | ||||||
---|---|---|---|---|---|---|---|---|
Strains | Number a | Strains | Number | Strain ID | Specific Species | AMR Patterns | AMR Genes | |
P1 | B. licheniformis B. subtilis | 1.9 × 1011 | Bacillus spp. | 2.14 × 109 | B1.1 | B. subtilis | - | |
B1.3 | Members of the B. subtilis cluster b | - | ||||||
B1.5 | B. sphaericus | CHL-CLI-ERY | ||||||
P2 | B. subtilis | 1.48 × 1011 | Bacillus spp. | 9.2 × 1010 | B2.1 | B. subtilis | - | |
B2.2 | Members of the B. subtilis cluster | - | ||||||
B2.3 | Other Bacillus species | - | ||||||
P3 | B. licheniformis B. subtilis | 10.04 × 1010 4.76 × 1010 | Bacillus spp. | 9.4 × 1010 | B3.1 | B. subtilis | - | oqxAB |
B3.3 | Members of the B. subtilis cluster | - | ||||||
P4 | B. subtilis | 4 × 1011 | Bacillus spp. | 7.65 × 1011 | B4.1 | Members of the B. subtilis cluster | - | oqxAB, aadA2, sul1 |
P5 | B. subtilis | 4 × 1011 | Bacillus spp. | 7.2 × 1012 | B5.1 | Members of the B. subtilis cluster | - | sul1 |
P6 | B. subtilis S. faecium | 5 × 109 5 × 109 | Bacillus spp. Enterococcus spp. | 7.2 × 1010 9.2 × 1011 | B6.1 | B. licheniformis | CHL-CLI-ERY | qnrD, tetA, tetM |
E6.1 | E. faecium | SUL | ||||||
P7 | L. acidophilus L. plantarum B. subtilis B. licheniformis | 1 × 109 1 × 109 1 × 109 1 × 109 | Lactobacillus spp. Bacillus spp. | 1.88 × 109 8.4 × 1013 | B7.1 | L. plantarum | AMP-CIP-TRI-VAN | |
L7.1 | L. rhamnosus | VAN | ||||||
L7.2 | L. casei-group c | AMP-CHL-TRI-VAN | ||||||
L7.4. | Members of the B. subtilis cluster | |||||||
P8 | E. faecium | 8.4 × 1011 | Enterococcus spp. | 3.85 × 1015 | E8.1 | E. faecium | SUL | |
P9 | B. amyloliquefaciens | 1 × 1013 | Bacillus spp. | 2.01 × 1013 | B9.1 | Members of the B. subtilis cluster | - | |
P10 | B. subtilis | 1 × 1013 | Bacillus spp. | 6 × 1013 | B10.1 | Members of the B. subtilis cluster | - | |
P11 | B. licheniformis | 1.6 × 1012 | Bacillus spp. | 5.6 × 1012 | B11.1 | B. licheniformis | CHL-CLI-ERY | |
P12 | B. coagulans B. subtilis L. acidophilus | 1.5 × 1012 1 × 1012 1.5 × 1012 | Bacillus spp. | 1.31 × 107 | B12.1 | Members of the B. subtilis cluster | - | blaOXA-1-like, aac(6′)-Ib-cr, qnrB, aadA1, aadA2, strA-strB, aac(3)-II, tetA, catA, dfrA14, sul1 |
B12.2 | B. sphaericus | SUL-TRI | ||||||
P13 | B. licheniformis B. subtilis | 2.56 × 1011 | Bacillus spp. | 2.3 × 1011 | B13.1 | B. licheniformis | CHL-CLI-ERY | strA-strB, aadE, tetM |
B13.3 | B. subtilis | - | ||||||
P14 | E. faecium | 5 × 1014 | Enterococcus spp. | 1.85 × 1014 | E14.1 | E. faecium | SUL | |
P15 | C. butyricum | 1.25 × 1012 | Clostridium spp. | NT | - | C. butyricum | NT | |
P16 | C. butyricum | 5 × 108 | Clostridium spp. | NT | - | C. butyricum | NT | |
P17 | C. butyricum | 5 × 108 | Clostridium spp. | NT | - | C. butyricum | NT | |
P18 | B. licheniformis | 1.6 × 1013 | Bacillus spp. | 8.4 × 1013 | B18.1 | B. licheniformis | CHL-CLI | |
P19 | B. subtilis | 1 × 1013 | Bacillus spp. | 4.9 × 1013 | B19.1 | Other Bacillus species | - | |
P20 | B. subtilis | 1 × 1013 | Bacillus spp. | 2.15 × 1013 | B20.1 | B. subtilis | - | |
P21 | B. subtilis | 1 × 1013 | Bacillus spp. | 3.7 × 1013 | B21.1 | B. subtilis | - | |
P22 | B. subtilis | 1 × 1012 | Bacillus spp. | 3.2 × 1012 | B22.1 | Members of the B. subtilis cluster | - | |
P23 | B. subtilis | 1 × 1012 | Bacillus spp. | 5.05 × 1012 | B23.1 | Members of the B. subtilis cluster | - | |
P24 | B. cereus toyoi | 1 × 1013 | Bacillus spp. | 6.3 × 1012 | B24.1 | Other Bacillus species | CHL-SUL-TET-TRI | |
P25 | B. cereus toyoi | 1 × 1013 | Bacillus spp. | 2.85 × 1012 | B25.1 | Other Bacillus species | CHL-SUL-TET-TRI | |
P26 | B. licheniformis | 3.2 × 1012 | Bacillus spp. | 3.7 × 1012 | B26.1 | B. licheniformis | CHL-CLI-ERY | |
P27 | B. subtilis | 1.48 × 1011 | Bacillus spp. | 8.3 × 1010 | B27.1 | B. subtilis | - | |
B27.1 | Members of the B. subtilis cluster | - | ||||||
P28 | B. subtilis | 7.5 × 1010 | Bacillus spp. | 4.55 × 1010 | B28.1 | Members of the B. subtilis cluster | - | |
B28.5 | Other Bacillus species | - | ||||||
P29 | B. subtilis | 7.5 × 1010 | Bacillus spp. | 3.85 × 1010 | B29.1 | Other Bacillus species | - | |
P30 | B. subtilis B. licheniformis | 1.48 × 1011 | Bacillus spp. | 5.35 × 1010 | B30.2 | B. subtilis | - | |
B30.4 | Members of the B. subtilis cluster | - | ||||||
B30.5 | Other Bacillus species | - | ||||||
P31 | B. subtilis B. licheniformis L. acidophilus L. casei S. faecium | 6.5 × 1010 5.8 × 1010 6 × 109 1 × 109 1.5 × 109 | Bacillus spp. | 1.93 × 1010 | B31.1 | Members of the B. subtilis cluster | - | ant(4′)-Ia |
B31.4 | Other Bacillus species | - | ||||||
P32 | B. subtilis B. licheniformis L. acidophilus L. casei S. faecium | 6.5 × 1010 5.8 × 1010 6 × 109 1 × 109 1.5 × 109 | Bacillus spp. | 2.45 × 1010 | B32.1 | Members of the B. subtilis cluster | - | ant(4′)-Ia, mefA |
B32.4 | Other Bacillus species | - | ||||||
P33 | B. subtilis | 4.7 × 108 | Bacillus spp. | 3.25 × 1010 | B33.1 | B. sphaericus | SUL-TRI | |
B33.3 | Members of B. subtilis cluster | - | ||||||
B33.4 | Other Bacillus species | SUL-TRI | ||||||
P34 | B. subtilis | 4.7 × 108 | Bacillus spp. | 1.65 × 108 | B34.1 | B. sphaericus | SUL-TRI | |
P35 | B. subtilis | 2 × 1011 | Bacillus spp. | 3.9 × 1011 | B35.1 | Members of the B. subtilis cluster | - | |
P36 | B. subtilis | 2 × 1011 | Bacillus spp. | 4.65 × 1011 | B36.1 | Members of the B. subtilis cluster | - | |
P37 | B. subtilis | 2 × 1011 | Bacillus spp. | 3.3 × 1011 | B37.1 | B. licheniformis | CHL-CLI-ERY | |
B37.3 | Members of the B. subtilis cluster | - | ||||||
P38 | B. licheniformis | 3.2 × 1012 | Bacillus spp. | 1.8 × 1012 | B38.1 | B. licheniformis | CHL-CLI | oqxAB, ant(4′)-Ia, catA, mefA |
P39 | B. licheniformis | 3.2 × 1012 | Bacillus spp. | 1.7 × 1012 | B39.1 | B. licheniformis | CHL-CLI | ant(4′)-Ia, aac(6′)-aph(2″), catA, mefA |
P40 | B. licheniformis | 3.2 × 1012 | Bacillus spp. | 2.45 × 1012 | B40.1 | B. licheniformis | CHL-CLI | ant(4′)-Ia, aph(3′)-IIIa, catA |
P41 | Lactic acid bacteria | 1.34 × 1012 | Lactobacillus spp. | 2.7 × 1011 | L41.1 | L. delbrueckii | AMP-CIP-KAN-STR-TET-TRI-VAN | tetM, tetL |
Other lactic acid species | - | |||||||
P42 | C. butyricum | 5 × 108 | Clostridium spp. | NT | - | C. butyricum | NT | qnrS, qnrD, ant(4′)-Ia, mefA |
P43 | B. licheniformis B. subtilis B. pumilus E. faecium E. faecalis | ≥1 × 1012 ≥1 × 1011 | Bacillus spp. Enterococcus spp. | 2.12 × 1012 1.54 × 1011 | B43.1 | Members of the B. subtilis cluster | - | blaSHV,, oqxAB, qnrS, aadA2, strA-strB, aac(3)-II, tetA, tetB, dfrA12, dfrA14, sul1, vanC |
E43.1 | E. faecium | SUL | ||||||
P44 | Lactic acid bacteria B. subtilis | ≥7 × 1012 ≥3 × 1012 | Lactobacillus spp. Bacillus spp. | 8.1 × 1011 7.35 × 1012 | B44.1 | Other Lactobacillus species, | AMP-CIP-KAN-STR-TET-TRI-VAN | oqxAB, aac(6′)-Ib-cr, aadA2, aac(6′)-aph(2″), dfrA12, sul1 |
L44.1 | Members of the B. subtilis cluster | - | ||||||
P45 | Lactic acid bacteria B. subtilis | ≥7 × 1012 ≥3 × 1012 | Lactobacillus spp. Bacillus spp. | 1.85 × 1012 9.8 × 1012 | B45.1 | Other Lactobacillus species | AMP-CIP-KAN-STR-TET-TRI-VAN | oqxAB, aac(6′)-Ib-cr, aadA2, aac(6′)-aph(2″), dfrA12, sul1 |
L45.1 | Members of the B. subtilis cluster | - |
Strain (n) | Distribution of MICs (μg/mL) | No. of Resistant Isolates | Distribution of MICs (μg/mL) | No. of Resistant Isolates | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | ≥1024 | ≤0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | ≥1024 | |||
AMP | CHL | |||||||||||||||||||||||||||||
B. subtilis (8) | 8 | 0 | 7 | 1 | 0 | |||||||||||||||||||||||||
B. licheniformis (9) | 8 | 1 | 0 | 8 | 1 | 9 | ||||||||||||||||||||||||
B. sphaericus (4) | 3 | 1 | 0 | 2 | 1 | 1 | 1 | |||||||||||||||||||||||
Other Bacillus spp. (10) | 10 | 0 | 3 | 5 | 2 | 2 | ||||||||||||||||||||||||
Members of B. subtilis cluster (23) | 23 | 0 | 1 | 5 | 17 | 0 | ||||||||||||||||||||||||
E. faecium (4) | 4 | 0 | 4 | 0 | ||||||||||||||||||||||||||
L. casei-group (1) | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
L. plantarum (1) | 1 | 1 | 1 | 0 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 1 | 1 | 0 | ||||||||||||||||||||||||||
Other Lactobacillus species (2) | 2 | 2 | 2 | 0 | ||||||||||||||||||||||||||
Subtotal | 52 | 1 | 1 | 4 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 5 | 7 | 35 | 4 | 9 | 1 | 2 | 0 | 0 | 0 | 0 | 13 |
CIP | CLI | |||||||||||||||||||||||||||||
B. subtilis (8) | 8 | 0 | 2 | 1 | 3 | 2 | 0 | |||||||||||||||||||||||
B. licheniformis (9) | 9 | 0 | 3 | 5 | 1 | 9 | ||||||||||||||||||||||||
B. sphaericus (4) | 4 | 0 | 2 | 1 | 1 | 1 | ||||||||||||||||||||||||
Other Bacillus spp. (10) | 10 | 0 | 3 | 4 | 3 | 0 | ||||||||||||||||||||||||
Members of B. subtilis cluster (23) | 23 | 0 | 2 | 13 | 7 | 0 | 1 | 0 | ||||||||||||||||||||||
E. faecium (4) | 4 | 0 | 1 | 2 | 1 | 0 | ||||||||||||||||||||||||
L. casei-group (1) | 1 | 0 | 0 | |||||||||||||||||||||||||||
L. plantarum (1) | 1 | 1 | 1 | 0 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 0 | |||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 1 | 0 | |||||||||||||||||||||||||||
Other Lactobacillus species (2) | 2 | 2 | 0 | |||||||||||||||||||||||||||
Subtotal | 54 | 4 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 4 | 7 | 19 | 16 | 3 | 3 | 1 | 1 | 3 | 5 | 1 | 0 | 0 | 0 | 0 | 10 |
ERY | GEN | |||||||||||||||||||||||||||||
B. subtilis (8) | 8 | 0 | 8 | 0 | ||||||||||||||||||||||||||
B. licheniformis (9) | 4 | 5 | 5 | 5 | 4 | 0 | ||||||||||||||||||||||||
B. sphaericus (4) | 3 | 1 | 1 | 3 | 1 | 0 | ||||||||||||||||||||||||
Other Bacillus spp. (10) | 7 | 1 | 2 | 0 | 8 | 2 | 0 | |||||||||||||||||||||||
Members of B. subtilis cluster (23) | 22 | 1 | 0 | 23 | 0 | |||||||||||||||||||||||||
E. faecium (4) | 4 | 0 | 4 | 0 | ||||||||||||||||||||||||||
L. casei-group (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. plantarum (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
Other Lactobacillus species (2) | 2 | 0 | 1 | 1 | 0 | |||||||||||||||||||||||||
Subtotal | 10 | 44 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 6 | 24 | 30 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
KAN | MER | |||||||||||||||||||||||||||||
B. subtilis (8) | 8 | 0 | 8 | 0 | ||||||||||||||||||||||||||
B. licheniformis (9) | 9 | 0 | 9 | 0 | ||||||||||||||||||||||||||
B. sphaericus (4) | 4 | 0 | 4 | 0 | ||||||||||||||||||||||||||
Other Bacillus spp. (10) | 10 | 0 | 10 | 0 | ||||||||||||||||||||||||||
Members of B. subtilis cluster (23) | 23 | 0 | 23 | 0 | ||||||||||||||||||||||||||
E. faecium (4) | 4 | 0 | 3 | 1 | 0 | |||||||||||||||||||||||||
L. casei-group (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. plantarum (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 1 | 1 | 0 | ||||||||||||||||||||||||||
Other Lactobacillus species (2) | 1 | 1 | 2 | 2 | 0 | |||||||||||||||||||||||||
Subtotal | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 4 | 0 | 3 | 56 | 1 | 2 | 0 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RIF | STR | |||||||||||||||||||||||||||||
B. subtilis (8) | 8 | 0 | 8 | 0 | ||||||||||||||||||||||||||
B. licheniformis (9) | 9 | 0 | 9 | 0 | ||||||||||||||||||||||||||
B. sphaericus (4) | 4 | 0 | 3 | 1 | 0 | |||||||||||||||||||||||||
Other Bacillus spp. (10) | 10 | 0 | 7 | 3 | 0 | |||||||||||||||||||||||||
Members of B. subtilis cluster (23) | 23 | 0 | 22 | 1 | 0 | |||||||||||||||||||||||||
E. faecium (4) | 4 | 0 | 4 | 0 | ||||||||||||||||||||||||||
L. casei-group (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. plantarum (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 0 | 1 | 1 | ||||||||||||||||||||||||||
Other Lactobacillus species (2) | 2 | 0 | 1 | 1 | 2 | |||||||||||||||||||||||||
Subtotal | 58 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53 | 4 | 1 | 0 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 3 |
SUL | TET | |||||||||||||||||||||||||||||
B. subtilis (8) | 6 | 2 | 0 | 4 | 3 | 1 | 0 | |||||||||||||||||||||||
B. licheniformis (9) | 6 | 1 | 1 | 1 | 0 | 5 | 2 | 1 | 1 | 0 | ||||||||||||||||||||
B. sphaericus (4) | 1 | 3 | 3 | 3 | 1 | 0 | ||||||||||||||||||||||||
Other Bacillus spp. (10) | 2 | 1 | 3 | 1 | 3 | 3 | 2 | 1 | 3 | 2 | 2 | 2 | ||||||||||||||||||
Members of B. subtilis cluster (23) | 1 | 6 | 4 | 12 | 0 | 6 | 2 | 3 | 12 | 0 | ||||||||||||||||||||
E. faecium (4) | 4 | 4 | 4 | 0 | ||||||||||||||||||||||||||
L. casei-group (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. plantarum (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 1 | 0 | ||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 0 | 1 | 1 | ||||||||||||||||||||||||||
Other Lactobacillus species (2) | 2 | 0 | 2 | 2 | ||||||||||||||||||||||||||
Subtotal | 0 | 0 | 15 | 11 | 5 | 16 | 0 | 1 | 0 | 1 | 5 | 0 | 0 | 10 | 10 | 24 | 2 | 0 | 2 | 4 | 10 | 16 | 1 | 2 | 2 | 0 | 1 | 0 | 0 | 5 |
TRI | VAN | |||||||||||||||||||||||||||||
B. subtilis (8) | 8 | 0 | 8 | 0 | ||||||||||||||||||||||||||
B. licheniformis (9) | 9 | 0 | 9 | 0 | ||||||||||||||||||||||||||
B. sphaericus (4) | 1 | 1 | 2 | 3 | 3 | 1 | 0 | |||||||||||||||||||||||
Other Bacillus spp. (10) | 3 | 2 | 2 | 3 | 3 | 6 | 1 | 2 | 1 | 0 | ||||||||||||||||||||
Members of B. subtilis cluster (23) | 18 | 3 | 1 | 1 | 0 | 22 | 1 | 0 | ||||||||||||||||||||||
E. faecium (4) | 4 | 0 | 4 | 0 | ||||||||||||||||||||||||||
L. casei-group (1) | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
L. plantarum (1) | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
L. rhamnosus (1) | 1 | 0 | 1 | 1 | ||||||||||||||||||||||||||
L. delbrueckii (1) | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
Other Lactobacillus species (2) | 1 | 1 | 2 | 2 | 2 | |||||||||||||||||||||||||
Subtotal | 43 | 5 | 3 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 | 2 | 0 | 11 | 0 | 48 | 7 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, H.M.; Prathan, R.; Hein, S.T.; Chuanchuen, R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics 2024, 13, 148. https://doi.org/10.3390/antibiotics13020148
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics. 2024; 13(2):148. https://doi.org/10.3390/antibiotics13020148
Chicago/Turabian StyleTran, Hoang My, Rangsiya Prathan, Si Thu Hein, and Rungtip Chuanchuen. 2024. "Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals" Antibiotics 13, no. 2: 148. https://doi.org/10.3390/antibiotics13020148
APA StyleTran, H. M., Prathan, R., Hein, S. T., & Chuanchuen, R. (2024). Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics, 13(2), 148. https://doi.org/10.3390/antibiotics13020148