Antimicrobial Use in the Animal Sector in Japan from 2011 to 2022
Abstract
:1. Introduction
2. Results
2.1. Sales Amounts of Antimicrobial Agents
2.2. Biomass
2.3. AMU Index (mg/kg Biomass)
2.4. Trend Analysis of mg/kg Biomass
3. Discussion
4. Materials and Methods
4.1. The Sales Amounts of Antimicrobial Agents for Therapeutic Use
4.2. Biomass Calculations
4.3. Statistical Analyses for Trends
4.4. Forecasting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Antimicrobial Resistance. Available online: https://iris.who.int/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1 (accessed on 1 November 2024).
- The Government of Japan. National Action Plan on Antimicrobial Resistance (AMR) 2016–2020. Available online: https://www.mhlw.go.jp/content/10900000/0000138942.pdf (accessed on 1 November 2024).
- The Government of Japan. National Action Plan on Antimicrobial Resistance (AMR) 2023–2027. Available online: https://www.mhlw.go.jp/content/10900000/001096228.pdf (accessed on 1 November 2024).
- World Organisation for Animal Health. Annual Report on Antimicrobial Agents Intended for Use in Animals. Available online: https://www.woah.org/app/uploads/2024/05/woah-amu-report-2024-final.pdf (accessed on 1 November 2024).
- National Veterinary Assay Laboratory; Ministry of Agriculture, Forestry and Fisheries of Japan. Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System 2018–2019. Available online: https://www.maff.go.jp/nval/yakuzai/pdf/JVARM_Report_2018-2019.pdf (accessed on 1 November 2024).
- Jeannin, M.; Magongo, M.; Gochez, D.; Valsson, O.; Erlacher-Vindel, E.; Davies, B.; Arroyo Kuribrena, M.; Yugueros-Marcos, J. Antimicrobial use in animals: A journey towards integrated surveillance. Rev. Sci. Tech. 2023, 42, 201–209. [Google Scholar] [CrossRef] [PubMed]
- European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet). Available online: https://www.ema.europa.eu/en/documents/other/defined-daily-doses-animals-dddvet-and-defined-course-doses-animals-dcdvet-european-surveillance-veterinary-antimicrobial-consumption-esvac_en.pdf (accessed on 1 November 2024).
- European Medicines Agency. Trends in the Sales of Veterinary Antimicrobial Agents in Nine European Countries (2005–2009). Available online: https://www.ema.europa.eu/en/documents/report/trends-sales-veterinary-antimicrobial-agents-nine-european-countries_en.pdf (accessed on 1 November 2024).
- FDA Center for Veterinary Medicine. FDA’s Proposed Method for Adjusting Data on Antimicrobials Sold or Distributed for Use in Food-Producing Animals, Using a Biomass Denominator. Available online: https://www.fda.gov/files/animal%20&%20veterinary/published/FDA%E2%80%99s-Proposed-Method-for-Adjusting-Data-on-Antimicrobials-Sold-or-Distributed-for-Use-in-Food-Producing-Animals-Using-a-Biomass-Denominator--Technical-Paper.pdf (accessed on 1 November 2024).
- The AMR One Health Surveillance Committee. Nippon AMR One Health Report (NAOR) 2023. Available online: https://www.mhlw.go.jp/content/10900000/001268945.pdf (accessed on 1 November 2024).
- Public Health Agency of Canada. Canadian Antimicrobial Resistance Surveillance System Report. Available online: https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/drugs-health-products/canadian-antimicrobial-resistance-surveillance-system-report-2022/canadian-antimicrobial-resistance-surveillance-system-report-2022.pdf (accessed on 1 November 2024).
- Health Policy and Systems Research on Antimicrobial Resistance Network. Thailand’s One Health Report on Antimicrobial Consumption and Antimicrobial Resistance in 2020. Available online: https://cms.thaiamrwatch.net/uploads/Thailand_s_One_Health_Report_on_Antimicrobial_Consumption_and_Antimicrobial_Resistance_in_2020_067ee1ed84.pdf (accessed on 1 November 2024).
- Radke, B.R. Towards an improved estimate of antimicrobial use in animals: Adjusting the “population correction unit” calculation. Can. J. Vet. Res. 2017, 81, 235–240. [Google Scholar]
- DANMAP. 2022—Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. Available online: https://www.danmap.org/-/media/institutter/foedevareinstituttet/danmap-site/report-2022/danmap_2022_low_version-3.pdf (accessed on 1 November 2024).
- The Ministry of Health, Welfare and Sports of the Netherlands. NethMap 2023—Consumption of Antimicrobial Agents and Antimicrobial Resistance Among Medically Important Bacteria in The Netherlands in 2022. Available online: https://www.rivm.nl/bibliotheek/rapporten/2023-0372.pdf (accessed on 1 November 2024).
- ANSES. Sales of Veterinary Medicinal Products Containing Antimicrobials in France in 2022. Available online: https://www.anses.fr/fr/system/files/ANMV-Ra-Antibiotiques2022EN.pdf (accessed on 1 November 2024).
- National Dairy Herd Improvement Association of Japan. Milk Recording Summary. Available online: https://liaj.lin.gr.jp/wp-content/uploads/2024/03/R04matome.pdf (accessed on 1 November 2024).
- Veterinary AMR Center; National Veterinary Assay Laboratory; Ministry of Agriculture, Forestry and Fisheries of Japan. Japanese Veterinary Antimicrobial Resistance Monitoring Annual Report. Available online: https://www.maff.go.jp/nval/yakuzai/pdf/Annual_Report_2020.pdf (accessed on 1 November 2024).
- Harada, K.; Asai, T.; Ozawa, M.; Kojima, A.; Takahashi, T. Farm-level impact of therapeutic antimicrobial use on antimicrobial-resistant populations of Escherichia coli isolates from pigs. Microb. Drug Resist. 2008, 14, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Asai, T.; Kojima, A.; Ishihara, K.; Takahashi, T. Role of coresistance in the development of resistance to chloramphenicol in Escherichia coli isolated from sick cattle and pigs. Am. J. Vet. Res. 2006, 67, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Abe, R.; Fujimoto, K.; Endo, Y.; Sugiura, K. Evaluation of antimicrobial use in dairy cattle, beef cattle and broilers in Japan using dosage-based indicators. J. Vet. Med. Sci. 2021, 83, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Abe, R.; Takagi, H.; Fujimoto, K.; Sugiura, K. Evaluation of the antimicrobial use in pigs in Japan using dosage-based indicators. PLoS ONE 2020, 15, e0241644. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, Y.; Asai, T.; Koike, R.; Tsuyuki, M.; Sugiura, K. Sales of veterinary antimicrobial agents for therapeutic use in food-producing animal species in Japan between 2005 and 2010. Rev. Sci. Tech. 2014, 33, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- National Veterinary Assay Laboratory; Ministry of Agriculture, Forestry and Fisheries of Japan. Annual Report of Sales Amount and Sale Volume of Antibiotics, Synthetic Antibacterials, Anthelmintics and Antiporotozoals. Available online: https://www.maff.go.jp/nval/yakuzai/yakuzai_p3_6.html (accessed on 1 November 2024).
- Ministry of Agriculture, Forestry and Fisheries of Japan. Farm Products Distribution Statistics. Available online: https://www.e-stat.go.jp/stat-search/files?tclass=000001218840&cycle=7&year=20230 (accessed on 1 November 2024).
- Ministry of Agriculture, Forestry and Fisheries of Japan. Livestock Statistics. Available online: https://www.e-stat.go.jp/stat-search/files?tclass=000001211740&cycle=7&year=20230 (accessed on 1 November 2024).
- National Dairy Herd Improvement Association of Japan. Milk Recording Summary. Available online: https://liaj.lin.gr.jp/cowexam/cownew/dairy-cow-capability-test (accessed on 1 November 2024).
- Ministry of Agriculture, Forestry and Fisheries of Japan. Statistical Survey on Marine Fishery Production. Available online: https://www.e-stat.go.jp/stat-search/files?tclass=000001214460&cycle=7&year=20220 (accessed on 1 November 2024).
- Pohlert, T. Package ‘trend’. Available online: https://CRAN.R-project.org/package=trend (accessed on 1 November 2024).
- The Pandas Development Team. pandas-dev/pandas: Pandas. Available online: https://pandas.pydata.org/ (accessed on 1 November 2024).
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; Kuroptev, K.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; et al. Package ‘forecast’. Available online: https://pkg.robjhyndman.com/forecast/ (accessed on 1 November 2024).
Animal | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beef cattle | Tons | 29.0 | 22.2 | 23.0 | 20.3 | 23.8 | 25.0 | 25.9 | 33.2 | 33.4 | 58.3 | 59.3 | 58.0 |
%Oral | 71.8 | 63.8 | 64.9 | 64.6 | 57.9 | 58.1 | 57.6 | 62.1 | 62.7 | 80.8 | 80.0 | 79.8 | |
Dairy cattle | Tons | 37.2 | 30.2 | 31.7 | 30.5 | 32.5 | 35.1 | 34.5 | 41.0 | 36.8 | 48.7 | 48.0 | 45.3 |
%Oral | 63.6 | 59.2 | 60.1 | 59.3 | 57.2 | 56.3 | 59.0 | 63.2 | 60.7 | 71.0 | 70.0 | 69.2 | |
Pig | Tons | 490.7 | 489.5 | 502.6 | 490.4 | 503.1 | 513.9 | 541.6 | 471.4 | 450.2 | 421.3 | 410.5 | 391.6 |
%Oral | 95.9 | 95.8 | 96.2 | 96.0 | 96.4 | 96.3 | 96.6 | 96.4 | 96.7 | 96.7 | 96.5 | 96.6 | |
Broiler | Tons | 62.9 | 73.4 | 65.9 | 70.1 | 62.4 | 63.8 | 61.7 | 62.8 | 69.8 | 77.5 | 69.1 | 61.5 |
%Oral | 99.1 | 98.4 | 98.7 | 98.8 | 98.6 | 98.6 | 98.5 | 98.5 | 98.8 | 98.9 | 98.8 | 98.7 | |
Layer | Tons | 32.8 | 21.9 | 23.3 | 23.7 | 19.4 | 19.8 | 15.3 | 15.9 | 17.6 | 17.1 | 9.3 | 9.7 |
%Oral | 99.5 | 98.8 | 99.1 | 99.2 | 99.2 | 99.3 | 99.1 | 99.2 | 99.3 | 99.2 | 98.4 | 98.8 | |
Fish raised in freshwater | Tons | 12.9 | 13.2 | 6.8 | 5.6 | 7.3 | 10.1 | 9.1 | 2.9 | 2.7 | 2.3 | 2.0 | 2.2 |
%Oral | 100.0 | 100.0 | 99.8 | 99.6 | 99.9 | 99.8 | 99.9 | 99.6 | 99.6 | 99.5 | 98.7 | 99.6 | |
Fish raised in seawater | Tons | 117.1 | 113.9 | 112.4 | 93.4 | 123.0 | 143.0 | 159.1 | 164.0 | 217.7 | 204.1 | 190.6 | 197.3 |
%Oral | 100.0 | 98.4 | 97.9 | 99.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | |
Total | Tons | 782.6 | 764.3 | 765.8 | 734.0 | 771.4 | 810.7 | 847.3 | 791.1 | 828.2 | 829.4 | 788.8 | 765.5 |
%Oral | 94.5 | 94.2 | 94.4 | 94.4 | 94.4 | 94.4 | 94.8 | 94.2 | 94.8 | 95.1 | 94.7 | 94.8 |
Animal | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beef cattle | 500.4 | 518.6 | 508.0 | 502.1 | 481.0 | 464.4 | 469.1 | 475.3 | 470.8 | 477.5 | 477.6 | 491.3 |
Dairy cattle | 930.1 | 917.2 | 902.2 | 883.0 | 870.6 | 854.1 | 842.8 | 848.6 | 851.1 | 863.9 | 865.1 | 876.1 |
Pig | 1267.3 | 1297 | 1309.4 | 1263.6 | 1254.3 | 1278.6 | 1272.3 | 1284.1 | 1278.8 | 1306.0 | 1318.2 | 1293.4 |
Broiler | 1783.4 | 1889.2 | 1905.3 | 1946.4 | 1984.0 | 2020.0 | 2063.2 | 2094.3 | 2143.1 | 2173.6 | 2225.6 | 2224.1 |
Layer | 309.4 | 312.9 | 298.1 | 310.6 | 310.6 | 310.4 | 315.5 | 322.1 | 323.2 | 319.6 | 319.9 | 315.9 |
Fish raised in freshwater | 38.9 | 34.0 | 30.5 | 33.9 | 36.3 | 35.2 | 36.8 | 29.8 | 31.2 | 29.1 | 32.9 | 31.4 |
Fish raised in seawater | 231.6 | 250.5 | 243.7 | 238.0 | 246.1 | 247.6 | 247.6 | 249.5 | 248.1 | 251.9 | 256.2 | 236.6 |
Total | 5061.0 | 5219.3 | 5197.1 | 5177.6 | 5183.0 | 5210.2 | 5247.3 | 5303.8 | 5346.4 | 5421.5 | 5495.4 | 5468.8 |
Antimicrobial Class | Antimicrobials |
---|---|
Tetracyclines | Chlortetracycline, Doxycycline, Oxytetracycline |
Macrolides | Erythromycin, Gamithromycin, Josamycin, Mirosamycin, Terdecamycin, Tildipirosin, Tilmicosin, Tulathromycin, Tylosin, Tylvalosin |
Penicillins | Amoxicillin, Ampicillin, Aspoxicillin, Benzylpenicillin, Cloxacillin, Dicloxacillin, Mecillinam, Nafcillin, Tobicillin |
Sulfonamides | Sulfachlorpyridazine, Sulfadimethoxine, Sulfadimidine, Sulfadoxine, Sulfamethoxazole, Sulfamonomethoxine, Sulfamoyldapsone, Sulfaquinoxaline, Sulfisozole |
Aminoglycosides | Apramycin, Dihydrostreptomycin, Fradiomycin (Neomycin), Gentamicin, Kanamycin, Spectinomycin, Streptomycin |
Thiamphenicols | Florfenicol, Thiamphenicol |
Lincosamides | Lincomycin, Pirlimycin |
Peptides | Colistin |
Other synthetic antibacterials | Miloxacin, Ormetoprim, Trimethoprim |
Fluoroquinolones | Danofloxacin, Difloxacin, Enrofloxacin, Marbofloxacin, Norfloxacin, Ofloxacin, Orbifloxacin |
Cephalosporins | Cefalonium, Cefapirin, Cefazolin, Cefquinome, Ceftiofur, Cefuroxime |
Other quinolones | Oxolinic acid |
Antifungals | Nanafrocin |
Furans | Nifurstyrenic acid |
Others | Bicozamycin, Fosfomycin, Tiamulin, Valnemulin |
Animal Species | Data Source | Calculation |
---|---|---|
Beef cattle | Carcass weight from the Farm products distribution statistics, MAFF [28] | |
Dairy cattle | ||
Pig | Carcass weight from the Farm products distribution statistics, MAFF [28] | |
Broiler | Live weights at time of slaughter from the Farm products distribution statistics, MAFF [28] | |
Layer | ||
Fish raised in seawater | Production volume from the Statistical Survey on Marine Fishery Production, MAFF [31] | |
Fish raised in freshwater | Production volume from the Statistical Survey on Marine Fishery Production, MAFF [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosoi, Y.; Matsuda, M.; Kawanishi, M.; Harada, S.; Kumakawa, M.; Sekiguchi, H.; Asai, T.; Sekiya, T. Antimicrobial Use in the Animal Sector in Japan from 2011 to 2022. Antibiotics 2024, 13, 1204. https://doi.org/10.3390/antibiotics13121204
Hosoi Y, Matsuda M, Kawanishi M, Harada S, Kumakawa M, Sekiguchi H, Asai T, Sekiya T. Antimicrobial Use in the Animal Sector in Japan from 2011 to 2022. Antibiotics. 2024; 13(12):1204. https://doi.org/10.3390/antibiotics13121204
Chicago/Turabian StyleHosoi, Yuta, Mari Matsuda, Michiko Kawanishi, Saki Harada, Mio Kumakawa, Hideto Sekiguchi, Tetsuo Asai, and Tatsuro Sekiya. 2024. "Antimicrobial Use in the Animal Sector in Japan from 2011 to 2022" Antibiotics 13, no. 12: 1204. https://doi.org/10.3390/antibiotics13121204
APA StyleHosoi, Y., Matsuda, M., Kawanishi, M., Harada, S., Kumakawa, M., Sekiguchi, H., Asai, T., & Sekiya, T. (2024). Antimicrobial Use in the Animal Sector in Japan from 2011 to 2022. Antibiotics, 13(12), 1204. https://doi.org/10.3390/antibiotics13121204