Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Overview of Articles in AMR and Antimicrobials in Wastewater in Japan
Subject | Source | Author Year | Detection Method | Studied Bacteria | Resistance Genes | Studied Antimicrobials | Wastewater Treatment Systems |
---|---|---|---|---|---|---|---|
AMR | STP influent | Yanagimoto et al. 2020 [57] | Culture-based | Salmonella spp. | NA | NA | NA |
Hayashi et al. 2019 [31] | Culture-based WGS* | Escherichia coli | aadA1 aadA2 aph(3′)-Ia blaTEM-1 catA1 cmlA1 dfrA5 dfrA12 dfrA17 mcr-1 mdf(A) mdf(B) tet(A) tet(B) tet(M) | NA | NA | ||
Suzuki et al. 2019 [43] | Culture-based WGS | Klebsiella quasipneumoniae | aadA1 arr2 blaCTX-M-2 blaDHA-1 blaKHM-1 blaOXA-10 cmlA5 dfrA14 qnrB4 sul1 | NA | NA | ||
Tanaka et al. 2019 [33] | Culture-based PCR | Escherichia coli | armA blaCTX-M fosA3 mcr-1 mcr-2 mcr-3 rmtB rmtC tetA tetB tetM | NA | NA | ||
Ishiguro et al. 2005 [58] | Culture-based PCR | Salmonella enterica serovar newport | blaCMY | NA | NA | ||
STP effluent | Urase et al. 2020 [30] | Culture-based | Escherichia coli CRE | NA | NA | AS+Chrolination Oxidation ditch process +Chrolination | |
Sekizuka et al. 2019 [41] | Culture-based WGS | Aeromonas hydrophila Aeromonas caviae | aac(6′)-Ia aadA2 blaKPC-2 blaOXA-669 blaOXA-726 blaOXA-780 blaMOX-12 cepS cphA2 mcr-3 mph(A) sul1 tet(E) | NA | NA | ||
Sekizuka et al. 2019 [32] | Culture-based WGS | Escherichia coli | aadA5 aph(3′)-Ia blaCTX-M-55 blaEC blaNDM-5 blaTEM-135 dfrA14 dfrA17 floR fosA3 qnrS1 qnrS2 tet(A) | NA | NA | ||
Sekizuka et al. 2018 [42] | Culture-based WGS | Klebsiella pneumoniae | aac(3)-IIa aac(3)-IId aac(6′)Ib-cr aadA2 aph(3′’)-Ib aph(6)-Id blaKPC-2 blaOXA-1 blaSHV-1 blaTEM-1B catB4 dfrA12 fosA3 fosA6 qacEdelta1 | NA | NA | ||
STP sludge | Miura et al. 2013 [45] | Culture-based WGS | Acidovax sp. | NA | NA | NA | |
Mori et al. 2008 [40] | Metagenomic analysis | NA | ble | NA | NA | ||
Hospital effluent | Eda et al. 2021 [59] | Culture-based WGS | Klebsiella pneumoniae | aac(6′)-Ib blaKPC blaOXA-9-like blaTEM-1A-like | NA | NA | |
Okubo et al. 2019 [34] | Culture-based PCR | Escherichia coli | blaTEM blaSHV blaOXA blaCTX-M tetA tetB tetC tetD tetE tetG | NA | NA | ||
Sakagami et al. 1992 [60] | Culture-based | Staphylococcus aureus | NA | NA | NA | ||
River water | Liu et al. 2020 [39] | Consecutive ultrafiltration PCR | NA | blaTEM tetA tetW sul1 ereA qnrD | NA | NA | |
Suzuki et al. 2019 [61] | Culture-based | Escherichia coli | NA | NA | NA | ||
STP influent/effluent | Suwa et al. 2015 [37] | Culture-based PCR | Escherichia coli | blaTEM blaSHV blaOXA blaCTX-M blaCMY | NA | AS Chlorination | |
STP influent/effluent/sludge | Honda et al. 2020 [29] | Culture-based | Escherichia coli | NA | NA | AS | |
Furukawa et al. 2015 [56] | Culture-based PCR | Enterococcus spp. | vanA vanB | NA | AS Chlorination | ||
STP influent River water | Ogura et al. 2020 [28] | Culture-based WGS | Escherichia coli | aac3-VIa aadA blaCMY blaCTX-M-1 blaCTX-M-8 blaCTX-M-9 blaTEM-1D cmlA tetA tetB tetC | NA | NA | |
Nishiyama et al. 2015 [62] | Culture-based PCR | Enterococcus spp. | vanA vanB vanC1 vanC2/C3 | NA | NA | ||
STP effluent Hospital effluent | Gomi et al. 2018 [44] | Culture-based WGS | CPE | blaGES-5 blaGES-6 blaGES-24 blaIMP-8 blaIMP-19 blaKPC-2 blaNDM-5 blaVIM-1 | NA | NA | |
Gomi et al. 2017 [36] | Culture-based WGS | Escherichia coli | blaCTX-M blaSHV blaTEM | NA | NA | ||
STP effluent River water | Iwane et al. 2001 [38] | Culture-based | Escherichia coli | NA | NA | NA | |
STP effluent Hospital effluent River water | Yamashita et al. 2017 [35] | Culture-based | Escherichia coli | NA | NA | NA | |
STP influent/effluent Hospital effluent River water | Azuma et al. 2021 [27] | Culture-based | CRE ESBL MDRA MDRP MRSA VRE | NA | NA | CAS CAS+Chlorination CAS+Ozonation Solar irradication | |
Anti- microbials | STP effluent | Kim et al. 2009 [51] | LC-MS/MS | NA | NA | Azithromycin Clarithromycin Erythrimycin Levofloxacin Nalidixic acid Norfloxacin Sulfadimethoxine Sulfamethoxazole Tetracycline Chlorotetracycline Lincomycin Trimethoprim | UV UV/H2O2 |
STP sludge | Narumiya et al. 2013 [47] | LC-MS/MS | NA | NA | Clarithromycin Roxithromycin Erythrimycin Norfloxiacin Ofloxacin Sulfamethoxazole Trimethoprim | NA | |
Motoyama et al. 2011 [49] | LC-MS/MS | NA | NA | Erythromycin Ciprofloxacin Levofloxacin Sulfadimethoxine Sulfamethoxazole Sulfamonomethoxine Oxytetracycline Chlortetracycline Trimethoprim | NA | ||
STP influent/effluent | Ghosh et al. 2009 [50] | LC-MS/MS | NA | NA | Azithromycin Clarithromycin Roxithromycin Ciprofloxacin Enrofloxacin Levofloxacin Nalidixic acid Norfloxacin Sulfadimethoxine Sulfadimizine Sulfamerazine Sulfamethoxazole Sulfamonomethoxine Tetracycline Lincomycin Salinomycin Trimethoprim | CAS AO A2O | |
Okuda et al. 2008 [52] | LC-MS/MS | NA | NA | NA | CAS Biollogical nutrient removal Ozonation Chlorination | ||
Nakada et al. 2007 [53] | LC-MS/MS | NA | NA | Azithromycin Clarithromycin Roxithromycin Dehydrated erythrimycin Sulfapyridine Sulfamethoxazole Trimethoprim | AS Sand filtration Ozonation | ||
STP influent/effluent/sludge | Matsuo et al. 2011 [48] | LC-MS/MS | NA | NA | Ampicillin Amoxicillin Sulfadimethoxine Sulfamethoxazole Sulfamonomethoxine Trimethoprim | AS | |
Nakada et al. 2010 [55] | GC/MS | NA | NA | Triclosan | AS | ||
Yasojima et al. 2006 [54] | LC-MS/MS | NA | NA | Azithromycin Clarithromycin Levofloxacin | AS | ||
River water | Murata et al. 2011 [8] | LC-MS/MS | NA | NA | Azithromycin Clarithromycin Roxithromycin Dehydrated Erythrimycin Sulfapyridine Sulfadimethoxine Sulfamethoxazole Trimethoprim | NA | |
AMR Anti- microbials | STP influent/effluent Hospital effluent River water | Azuma et al. 2019 [46] | Culture-based LC-MS/MS | CRE ESBL MDRA MDRP MRSA VRE | NA | Azithromycin Cefdinir Ciprofloxacin Clarithromycin Levofloxacin | CAS or A2O +Chrolination or Ozonation |
3.2. AMR in Wastewater in Japan
3.2.1. AMR in STP Influent
3.2.2. AMR in STP Effluent
3.2.3. AMR in STP Sludge
3.2.4. AMR in Hospital Effluent
3.3. Antimicrobials in Wastewater
3.4. Direct Risk of AMR in Wastewater for Humans and Environments in Japan
3.5. Methods for Measuring and Evaluating AMR and Antimicrobials in Wastewater
3.6. Effectiveness of Risk Mitigation Interventions
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 19 May 2022).
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Nadimpalli, M.L.; Marks, S.J.; Montealegre, M.C.; Gilman, R.H.; Pajuelo, M.; Saito, M.; Tsukayama, P.; Njenga, S.M.; Kiiru, J.; Swarthout, J.; et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 2020, 5, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc. Biol. Sci. 2018, 285, 20180332. [Google Scholar] [CrossRef]
- Manaia, C.M.; Rocha, J.; Scaccia, N.; Marano, R.; Radu, E.; Biancullo, F.; Cerqueira, F.; Fortunato, G.; Iakovides, I.C.; Zammit, I.; et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environ. Int. 2018, 115, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Frascaroli, G.; Reid, D.; Hunter, C.; Roberts, J.; Helwig, K.; Spencer, J.; Escudero, A. Pharmaceuticals in Wastewater Treatment Plants: A Systematic Review on the Substances of Greatest Concern Responsible for the Development of Antimicrobial Resistance. Appl. Sci. 2021, 11, 6670. [Google Scholar] [CrossRef]
- Niegowska, M.; Sanseverino, I.; Navarro, A.; Lettieri, T. Knowledge gaps in the assessment of antimicrobial resistance in surface waters. FEMS Microbiol. Ecol. 2021, 97, fiab140. [Google Scholar] [CrossRef]
- Murata, A.; Takada, H.; Mutoh, K.; Hosoda, H.; Harada, A.; Nakada, N. Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Sci. Total Environ. 2011, 409, 5305–5312. [Google Scholar] [CrossRef]
- Aga, D.; Davies, J.; Gandra, S.; Kasprzyk-Hordern, B.; Larsson, J.; McLain, J.; Singer, A.; Snape, J.; Slijkhuis, H.; Sweetman, A.; et al. Initiatives for Addressing Antimicrobial Resistance in the Environment: Current Situation and Challenges; Wellcome Trust: London, UK, 2018. [Google Scholar]
- Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Munk, P.; Njage, P.; Van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef]
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N. Differential Drivers of Antimicrobial Resistance across the World. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef]
- Karanika, S.; Karantanos, T.; Arvanitis, M.; Grigoras, C.; Mylonakis, E. Fecal Colonization with Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors among Healthy Individuals: A Systematic Review and Metaanalysis. Clin. Infect. Dis. 2016, 63, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobsey, M.D.; Abebe, L.; Andremont, A.; Ashbolt, N.J.; de Roda Husman, A.M.; Gin, K.Y.-H.; Hunter, P.R.; Meschke, J.S.; Vilchez, S. Briefing Notes—Antimicrobial Resistance: An Emerging Water, Sanitation and Hygiene Issue; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Triggiano, F.; Calia, C.; Diella, G.; Montagna, M.T.; De Giglio, O.; Caggiano, G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019). Microorganisms 2020, 8, 1567. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Dagot, C.; Chesneau, O.; Bibbal, D.; Labanowski, J.; Vialette, M.; Bouchard, D.; Martin-Laurent, F.; Calsat, L.; Nazaret, S.; et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ. Int. 2022, 159, 107047. [Google Scholar] [CrossRef]
- Fantom, N.; Serajuddin, U. The World Bank’s Classification of Countries by Income; Policy Research Working Paper Series 7528; The World Bank: Washington, DC, USA. Available online: https://openknowledge.worldbank.org/handle/10986/23628 (accessed on 19 May 2022).
- Bürgmann, H.; Frigon, D.; Gaze, W.H.; Manaia, C.M.; Pruden, A.; Singer, A.C.; Smets, B.F.; Zhang, T. Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef] [PubMed]
- The AMR One Health Surveilllance Committee, Nippon AMR One Health Report (NAOR) 2020. Available online: https://www.mhlw.go.jp/content/10900000/000885373.pdf (accessed on 19 May 2022).
- Sauer, E.P.; VandeWalle, J.L.; Bootsma, M.J.; McLellan, S.L. Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment. Water Res. 2011, 45, 4081–4091. [Google Scholar] [CrossRef] [PubMed]
- Verhougstraete, M.P.; Martin, S.L.; Kendall, A.D.; Hyndman, D.W.; Rose, J.B. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale. Proc. Natl. Acad. Sci. USA 2015, 112, 10419–10424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschoal, R.P.; Campana, E.H.; Corrêa, L.L.; Montezzi, L.F.; Barrueto, L.R.L.; da Silva, I.R.; Bonelli, R.R.; Castro, L.S.; Picão, R.C. Concentration and Variety of Carbapenemase Producers in Recreational Coastal Waters Showing Distinct Levels of Pollution. Antimicrob. Agents Chemother. 2017, 61, e01963-17. [Google Scholar] [CrossRef] [Green Version]
- Okahisa, H. Management of Wastewater in Japan; Japan Sewage Works Association: Tokyo, Japan, 2021. [Google Scholar]
- Honda, R.; Tachi, C.; Yasuda, K.; Hirata, T.; Noguchi, M.; Hara-Yamamura, H.; Yamamoto-Ikemoto, R.; Watanabe, T. Estimated discharge of antibiotic-resistant bacteria from combined sewer overflows of urban sewage system. NPJ Clean Water 2020, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Chen, Z.; Xu, A.; Gao, Q.; Song, K.; Liu, J.; Hu, H.-Y. Wastewater treatment and reuse situations and influential factors in major Asian countries. J. Environ. Manag. 2021, 282, 111976. [Google Scholar] [CrossRef]
- Japanese Ministry of Environment. National Effluent Standards. Available online: https://www.env.go.jp/en/water/wq/nes.html (accessed on 20 May 2022).
- Azuma, T.; Hayashi, T. Effects of natural sunlight on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in wastewater and river water. Sci. Total Environ. 2021, 766, 142568. [Google Scholar] [CrossRef]
- Ogura, Y.; Ueda, T.; Nukazawa, K.; Hiroki, H.; Xie, H.; Arimizu, Y.; Hayashi, T.; Suzuki, Y. The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. Sci. Rep. 2020, 10, 17880. [Google Scholar] [CrossRef] [PubMed]
- Honda, R.; Tachi, C.; Noguchi, M.; Yamamoto-Ikemoto, R.; Watanabe, T. Fate and seasonal change of Escherichia coli resistant to different antibiotic classes at each stage of conventional activated sludge process. J. Water Health 2020, 18, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Urase, T.; Okazaki, M.; Tsutsui, H. Prevalence of ESBL-producing Escherichia coli and carbapenem-resistant Enterobacteriaceae in treated wastewater: A comparison with nosocomial infection surveillance. J. Water Health 2020, 18, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, W.; Tanaka, H.; Taniguchi, Y.; Iimura, M.; Soga, E.; Kubo, R.; Matsuo, N.; Kawamura, K.; Arakawa, Y.; Nagano, Y.; et al. Acquisition of mcr-1 and Cocarriage of Virulence Genes in Avian Pathogenic Escherichia coli Isolates from Municipal Wastewater Influents in Japan. Appl. Environ. Microbiol. 2019, 85, e01661-19. [Google Scholar] [CrossRef] [PubMed]
- Sekizuka, T.; Inamine, Y.; Segawa, T.; Kuroda, M. Characterization of NDM-5- and CTX-M-55-coproducing Escherichia coli GSH8M-2 isolated from the effluent of a wastewater treatment plant in Tokyo Bay. Infect. Drug Resist. 2019, 12, 2243–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Hayashi, W.; Iimura, M.; Taniguchi, Y.; Soga, E.; Matsuo, N.; Kawamura, K.; Arakawa, Y.; Nagano, Y.; Nagano, N. Wastewater as a Probable Environmental Reservoir of Extended-Spectrum-β-Lactamase Genes: Detection of Chimeric β-Lactamases CTX-M-64 and CTX-M-123. Appl. Environ. Microbiol. 2019, 85, e01740-19. [Google Scholar] [CrossRef]
- Okubo, T.; Hasegawa, T.; Fukuda, A.; Thapa, J.; Usui, M.; Tamura, Y.; Yamaguchi, H. Screening of hospital-manhole sewage using MacConkey agar with cefotaxime reveals extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Int. J. Antimicrob. Agents 2019, 54, 831–833. [Google Scholar] [CrossRef]
- Yamashita, N.; Katakawa, Y.; Tanaka, H. Occurrence of antimicrobial resistance bacteria in the Yodo River basin, Japan and determination of beta-lactamases producing bacteria. Ecotoxicol. Environ. Saf. 2017, 143, 38–45. [Google Scholar] [CrossRef]
- Gomi, R.; Matsuda, T.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Ichiyama, S.; Yoneda, M. Occurrence of Clinically Important Lineages, Including the Sequence Type 131 C1-M27 Subclone, among Extended-Spectrum-beta-Lactamase-Producing Escherichia coli in Wastewater. Antimicrob. Agents Chemother. 2017, 61, e00564-17. [Google Scholar] [CrossRef] [Green Version]
- Suwa, M. Investigation of antibiotic resistance Escherichia coli in wastewater treatment plants. J. Biomed. Sci. Biosaf. 2015, 27, 7–11. [Google Scholar]
- Iwane, T.; Urase, T.; Yamamoto, K. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol. 2001, 43, 91–99. [Google Scholar] [CrossRef]
- Liu, M.; Hata, A.; Katayama, H.; Kasuga, I. Consecutive ultrafiltration and silica adsorption for recovery of extracellular antibiotic resistance genes from an urban river. Environ. Pollut. 2020, 260, 114062. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Mizuta, S.; Suenaga, H.; Miyazaki, K. Metagenomic Screening for Bleomycin Resistance Genes. Appl. Environ. Microbiol. 2008, 74, 6803–6805. [Google Scholar] [CrossRef] [Green Version]
- Sekizuka, T.; Inamine, Y.; Segawa, T.; Hashino, M.; Yatsu, K.; Kuroda, M. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan. Environ. Microbiol. Rep. 2019, 11, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekizuka, T.; Yatsu, K.; Inamine, Y.; Segawa, T.; Nishio, M.; Kishi, N.; Kuroda, M. Complete Genome Sequence of a blaKPC-2-Positive Klebsiella pneumoniae Strain Isolated from the Effluent of an Urban Sewage Treatment Plant in Japan. Msphere 2018, 3, e00314-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Ida, M.; Kubota, H.; Ariyoshi, T.; Murakami, K.; Kobayashi, M.; Kato, R.; Hirai, A.; Suzuki, J.; Sadamasu, K. Multiple β-Lactam Resistance Gene-Carrying Plasmid Harbored by Klebsiella quasipneumoniae Isolated from Urban Sewage in Japan. Msphere 2019, 4, e00391-19. [Google Scholar] [CrossRef] [Green Version]
- Gomi, R.; Matsuda, T.; Yamamoto, M.; Chou, P.-H.; Tanaka, M.; Ichiyama, S.; Yoneda, M.; Matsumura, Y. Characteristics of Carbapenemase-Producing Enterobacteriaceae in Wastewater Revealed by Genomic Analysis. Antimicrob. Agents Chemother. 2018, 62, e02501-17. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.; Kusada, H.; Kamagata, Y.; Hanada, S.; Kimura, N. Genome Sequence of the Multiple-β-Lactam-Antibiotic-Resistant Bacterium Acidovorax sp. Strain MR-S7. Genome Announc. 2013, 1, e00412-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, T.; Otomo, K.; Kunitou, M.; Shimizu, M.; Hosomaru, K.; Mikata, S.; Ishida, M.; Hisamatsu, K.; Yunoki, A.; Mino, Y.; et al. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. Sci. Total Environ. 2019, 657, 476–484. [Google Scholar] [CrossRef]
- Narumiya, M.; Nakada, N.; Yamashita, N.; Tanaka, H. Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. J. Hazard. Mater. 2013, 260, 305–312. [Google Scholar] [CrossRef]
- Matsuo, H.; Sakamoto, H.; Arizono, K.; Shinohara, R. Behavior of Pharmaceuticals in Waste Water Treatment Plant in Japan. Bull. Environ. Contam. Toxicol. 2011, 87, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, M.; Nakagawa, S.; Tanoue, R.; Sato, Y.; Nomiyama, K.; Shinohara, R. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere 2011, 84, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, G.C.; Okuda, T.; Yamashita, N.; Tanaka, H. Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation. Water Sci. Technol. 2009, 59, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Yamashita, N.; Tanaka, H. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J. Hazard. Mater. 2009, 166, 1134–1140. [Google Scholar] [CrossRef]
- Okuda, T.; Kobayashi, Y.; Nagao, R.; Yamashita, N.; Tanaka, H.; Tanaka, S.; Fujii, S.; Konishi, C.; Houwa, I. Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan. Water Sci. Technol. 2008, 57, 65–71. [Google Scholar] [CrossRef]
- Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007, 41, 4373–4382. [Google Scholar] [CrossRef]
- Yasojima, M.; Nakada, N.; Komori, K.; Suzuki, Y.; Tanaka, H. Occurrence of levofloxacin, clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Sci. Technol. 2006, 53, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Nakada, N.; Yasojima, M.; Okayasu, Y.; Komori, K.; Suzuki, Y. Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants. Water Sci. Technol. 2010, 61, 1739–1747. [Google Scholar] [CrossRef]
- Furukawa, T.; Hashimoto, R.; Mekata, T. Quantification of vancomycin-resistant enterococci and corresponding resistance genes in a sewage treatment plant. J. Environ. Sci. Health. A. Toxic Hazard. Subst. Environ. Eng. 2015, 50, 989–995. [Google Scholar] [CrossRef]
- Yanagimoto, K.; Yamagami, T.; Uematsu, K.; Haramoto, E. Characterization of Salmonella Isolates from Wastewater Treatment Plant Influents to Estimate Unreported Cases and Infection Sources of Salmonellosis. Pathogens 2020, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, F.; Kyota, Y.; Mochizuki, M.; Fuseda, T.; Omoya, S.; Izumiya, H.; Watanabe, H. Comparison of Multidrug-resistant Salmonella enterica Serovar Newport Isolates from a Patient and Sewages in Fukui Prefecture. Kansenshogaku Zasshi 2005, 79, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eda, R.; Maehana, S.; Hirabayashi, A.; Nakamura, M.; Furukawa, T.; Ikeda, S.; Sakai, K.; Kojima, F.; Sei, K.; Suzuki, M.; et al. Complete genome sequencing and comparative plasmid analysis of KPC-2-producing Klebsiella pneumoniae isolated from hospital sewage water in Japan. J. Glob. Antimicrob. Resist. 2021, 24, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Sakagami, Y.; Asano, Y.; Yokoyama, H. Antibiotic and disinfectant susceptibility of Staphylococci isolated from hospital wastewater treatment facilities. J. Antibact. Antifung. Agents 1991, 19, 517–521. [Google Scholar]
- Suzuki, Y.; Hashimoto, R.; Xie, H.; Nishimura, E.; Nishiyama, M.; Nukazawa, K.; Ishii, S. Growth and antibiotic resistance acquisition of Escherichia coli in a river that receives treated sewage effluent. Sci. Total Environ. 2019, 690, 696–704. [Google Scholar] [CrossRef]
- Nishiyama, M.; Iguchi, A.; Suzuki, Y. Identification of Enterococcus faecium and Enterococcus faecalis as vanC-type Vancomycin-Resistant Enterococci (VRE) from sewage and river water in the provincial city of Miyazaki, Japan. J. Environ. Sci. Health 2015, 50, 16–25. [Google Scholar] [CrossRef]
- Haller, L.; Chen, H.; Ng, C.; Le, T.H.; Koh, T.H.; Barkham, T.; Sobsey, M.; Gin, K.Y.-H. Occurrence and characteristics of extended-spectrum β-lactamase- and carbapenemase- producing bacteria from hospital effluents in Singapore. Sci. Total Environ. 2018, 615, 1119–1125. [Google Scholar] [CrossRef]
- Hrenovic, J.; Ivankovic, T.; Ivekovic, D.; Repec, S.; Stipanicev, D.; Ganjto, M. The fate of carbapenem-resistant bacteria in a wastewater treatment plant. Water Res. 2017, 126, 232–239. [Google Scholar] [CrossRef]
- Lamba, M.; Graham, D.W.; Ahammad, S.Z. Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. Environ. Sci. Technol. 2017, 51, 13906–13912. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S. A View on 20 Years of Antimicrobial Resistance in Japan by Two National Surveillance Systems: The National Epidemiological Surveillance of Infectious Diseases and Japan Nosocomial Infections Surveillance. Antibiotics 2021, 10, 1189. [Google Scholar] [CrossRef]
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 717809. [Google Scholar] [CrossRef]
- Galler, H.; Feierl, G.; Petternel, C.; Reinthaler, F.F.; Haas, D.; Habib, J.; Kittinger, C.; Luxner, J.; Zarfel, G. Multiresistant Bacteria Isolated from Activated Sludge in Austria. Int. J. Environ. Res. Public Health 2018, 15, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, A.; Aga, D.S.; Wester, A.L. Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices. Environ. Int. 2020, 141, 105796. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, A.; Yahara, K.; Shibayama, K. Trends and patterns of national antimicrobial consumption in Japan from 2004 to 2016. J. Infect. Chemother. 2018, 24, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Larsson, D.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.F.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef]
- Ng, C.; Tay, M.; Tan, B.; Le, T.-H.; Haller, L.; Chen, H.; Koh, T.H.; Barkham, T.M.S.; Thompson, J.R.; Gin, K.Y.-H. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. Front. Microbiol. 2017, 8, 2200. [Google Scholar] [CrossRef] [Green Version]
- Sano, D.; Wester, A.L.; Schmitt, H.; Amarasiri, M.; Kirby, A.; Medlicott, K.; de Roda Husman, A.M. Updated research agenda for water, sanitation and antimicrobial resistance. J. Water Health 2020, 18, 858–866. [Google Scholar] [CrossRef]
- Gibson, J.; Drake, J.; Karney, B. UV Disinfection of Wastewater and Combined Sewer Overflows. Adv. Exp. Med. Biol. 2017, 996, 267–275. [Google Scholar] [CrossRef]
- Herraiz-Carboné, M.; Cotillas, S.; Lacasa, E.; de Baranda, C.S.; Riquelme, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. A review on disinfection technologies for controlling the antibiotic resistance spread. Sci. Total Environ. 2021, 797, 149150. [Google Scholar] [CrossRef]
- Nishiyama, M.; Praise, S.; Tsurumaki, K.; Baba, H.; Kanamori, H.; Watanabe, T. Prevalence of Antibiotic-Resistant Bacteria ESKAPE among Healthy People Estimated by Monitoring of Municipal Wastewater. Antibiotics 2021, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Hayashi, T. On-site chlorination responsible for effective disinfection of wastewater from hospital. Sci. Total Environ. 2021, 776, 145951. [Google Scholar] [CrossRef] [PubMed]
- Ohmagari, N. National Action Plan on Antimicrobial Resistance (AMR) 2016-2020 and relevant activities in Japan. Glob. Health Med. 2019, 1, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, H.; Nishiyama, M.; Watanabe, T.; Kanamori, H. Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antibiotics 2022, 11, 849. https://doi.org/10.3390/antibiotics11070849
Baba H, Nishiyama M, Watanabe T, Kanamori H. Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antibiotics. 2022; 11(7):849. https://doi.org/10.3390/antibiotics11070849
Chicago/Turabian StyleBaba, Hiroaki, Masateru Nishiyama, Toru Watanabe, and Hajime Kanamori. 2022. "Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives" Antibiotics 11, no. 7: 849. https://doi.org/10.3390/antibiotics11070849
APA StyleBaba, H., Nishiyama, M., Watanabe, T., & Kanamori, H. (2022). Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antibiotics, 11(7), 849. https://doi.org/10.3390/antibiotics11070849