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Abstract: Wastewater contains different kinds of contaminants, including antibiotics and bacterial
isolates with human-generated antibiotic resistances. In industrialized countries most of the
wastewater is processed in wastewater treatment plants which do not only include commercial
wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum
β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant
Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening
in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months
all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most
common resistance mechanism, which was found in different species of Enterobacteriaceae, and in
one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members
of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in
Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas
ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The
results of this study show that these three multiresistant phenotypes were present in activated sludge,
as well as species and genes which were not reported before in the region. The ESBL-harbouring
Gram negative bacilli were most common.
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1. Introduction

Antibiotics in the environment represent a growing concern as their presence can promote the
selection of antibiotic resistant bacteria (ARB) that pose a serious public health threat. ARB can
further spread resistance genes in the environment by the mechanism of horizontal gene transfer
through which environmental bacteria can then mediate pathogens to acquire antibiotic resistance
genes [1–4]. Among the various sources accounting for the spread of ARB, organic wastes, including
wastes of municipal and agricultural origin, have been widely reported to be potent reservoirs of
ARB- harbouring genes for multidrug resistance. Previous studies have pointed out that numerous
ARB and resistant genes have been detected in sewage sludge from municipal wastewater treatment
plants (WWTPs) [4,5]. One predominant antibiotic resistance mechanism is the presence of Extended
Spectrum β-Lactamases (ESBLs). ESBLs are of great microbiological and clinical importance in
Enterobacteriaceae, especially Escherichia coli and Klebsiella spp. and other non-fermenting bacteria
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such as Acinetobacter spp. and Pseudomonas aeruginosa [6,7]. The presence of ESBL in surface water has
been frequently demonstrated all over the world, which leads to the conclusion that if the bacteria in
the water are able to host ESBL genes, then there will be ESBL in the population [8–11]. The spread of
ESBL is enhanced by the localization of most of the ESBL genes on mobile genetic elements which allow
the transmission of resistance genes to strains and species which are better adapted to the surface water
environment. As a consequence of this, environmental bacteria can acquire resistance genes from e.g.,
strains of clinical origin [8–11]. Methicillin resistant Staphylococcus aureus (MRSA) originates from the
clinical setting, as hospital acquired (HA)-MRSA. Nevertheless, MRSA strains started to spread among
the healthy human population (so called community acquired CA-MRSA) and livestock (LA-MRSA)
within the last decades like ESBL [12–14]. MRSA detections from environmental reservoirs, including
surface water, are very rare compared to multiresistant Gram negative bacteria isolation. Although the
population of Staphylococci flushed into the wastewater is high, the survival of Staphylococci in water
environment seems to be much lower than that of Gram negative bacilli. Therefore reports of MRSA
from this reservoir are mainly restricted to areas of high human influence, e.g., hospital waste water
effluent [15–17]. Vancomycin resistant Enterococci (VRE) are one of the first documented antibiotic
resistant bacteria with primary origin in animal farming. The rise of VRE was caused by the use of the
glycopeptide avoparcin as a growth promoter from 1975 on. Although glycopeptide use was banned
in livestock production in the European Union (1996) VRE are still present in animals and can also
be found in hospital settings [18–20]. Hence VRE are present in waste and surface water, it seems
that they are detected mostly sporadically. Furthermore, the number of studies covering this topic is
limited. The aim of the present study was to investigate the presence of multidrug resistant bacteria
such as ESBL-producing Enterobacteriaceae, MRSA and VRE in activated sludge in the second largest
commercial WWTP in Austria.

2. Materials and Methods

2.1. Sample Collection

Activated sludge samples were collected in the period between September 2011 and February
2012, twice a month (except January) from the basin of the incoming untreated waste water at a sewage
treatment plant (>500,000 population equivalent, wastewater load 1200 L/min) at the area of Graz,
Styria/Austria. Wastewater entry into this treatment plant contained mainly domestic waste water and
wastewater from hospitals in the area. The sludge samples were collected using sterile wide-mouth
bottles. They were transported to the laboratory in a cooling box, where they were immediately stored
in a refrigerator at 4–8 ◦C until processing within 24 h. In total, eleven sludge samples were collected
in six measuring series.

2.2. Strain Isolation and Identification

Sludge samples were homogenized by vortexing for two minutes. For qualitative analysis,
an amount of 1 mL from the homogenized sludge sample was suspended in 9 mL sterile saline solution
(0.9% NaCl). In order to reduce the bacterial concentration, a decimal dilution series with saline
solution was prepared.

ESBL isolation: 0.1 mL of each homogenized sludge sample was plated on chromID™ ESBL Agar
(bioMérieux, Marcy-l’Etoile, France) and incubated for 24 h at 37 ◦C. Following incubation, ESBL
positive colonies were determined based on the colour reaction of the ESBL-media (according to the
manufacturer’s protocol). Additionally 0.1 mL of the sludge samples was incubated (24 h, 37 ◦C) in
thioglycolate nutrient broth for enrichment, then 10 µL of the material was inoculated on ESBL-media
and incubated for 24 h at 37 ◦C [21].

MRSA isolation: 0.1 mL of the homogenized solutions were plated on oxacillin agar (OXOID Ltd.,
Basingstoke, UK) and incubated for 48 h at 37 ◦C. Following incubation, MRSA positive colonies were
determined based on the colour reaction of the OXA-media. Blue colonies were presumed to be MRSA.
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VRE isolation: For selective enrichment of VRE, an amount of 1 mL from the homogenized sludge
sample was inoculated in 9 mL BBL™ Enterococcosel™ broth (BD, Sparks, MD, USA) containing
6 mg/L Vancomycin. Enterococci growing in the media turn the colour of the media from light brown
to dark brown or black. In order to reduce the bacterial concentration, a decimal dilution series with
saline solution was prepared. Subsequently, 0.1 mL from each of the homogenized solutions were
plated on chromID™ VRE Agar (bioMérieux, Marcy-l’Etoile, France) and incubated for 24 h at 37 ◦C.
VRE positive colonies were determined based on the colour reaction of the VRE-media (according to
the manufacturer’s protocol).

To obtain pure cultures, colonies growing on selective-media were transferred to blood agar
(24 h, 37 ◦C). Identification was done using the Vitek® MS (bioMérieux, Marcy-l’Etoile, France),
an automated microbial identification system using matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) and the biochemical-based VITEK®2 system
(bioMérieux, Marcy-l’Etoile, France).

2.2.1. Characterisation of ESBL Harbouring Gram Negative Bacilli

Identified Enterobacteriaceae were characterized for their resistance pattern by susceptibility
testing according to EUCAST (EUCAST V2.0, 2012) [22], with ampicillin (AM), amoxicillin/clavulanic
acid (AMC), piperacillin/tazobactam (TZP), cefalexin (CN), cefuroxime (CXM), cefoxitin (FOX),
cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), imipenem (IPM), meropenem (MEM),
gentamicin (GM), trimethoprim/sulfamethoxazole (SXT), nalidixic acid (NA), ciprofloxacin (CIP),
moxifloxacin (MOX), tetracycline (TE) and chloramphenicol (C) BD BBLTM Sensi-DiscTM paper discs
(BD, Sparks, MD, USA). The inhibition zone diameters were interpreted according to EUCAST
guidelines, except Enterobacteriaceae tested for tetracycline, chloramphenicol and nalidixic acid, which
were evaluated by the Clinical Laboratory Standards Institute (CLSI, 2011) guidelines [23]. There are
no interpretation guidelines for zone diameters of these three antibiotics according to EUCAST.

E. coli 25299 was used as reference. The inhibition zone diameters were interpreted according to
EUCAST guidelines. The antimicrobials tested and resistance breakpoints applied can be found in the
Supplementary Materials (Table S1).

All isolates were screened for ESBL gene families, blaCTX-M-1group, blaCTX-M-2group, blaCTX-M-9group,
blaGES, blaSHV, blaTEM, and blaVEB by PCR and sequencing as described previously [24,25].
False-positive (not estimated Enterobacteriaceae) strains growing on ESBL-media with a green or
brownish colour were identified as Pseudomonadales and Aeromonadales; we decided to include them
in the study and therefore these strains were also screened for ESBL genes. Identified Pseudomonadales
were characterized for their resistance pattern by susceptibility testing according to EUCAST (EUCAST
V2.0, 2012); piperacilin/tazobactam (TZP), ceftazidime (CAZ), cefepime (FEP), meropenem (MEM),
imipenem (IPM), amikacin (AN), gentamicin (GM), tobramycin (NN), ciprofloxacin (CIP) and
levofloxacin (LEV).

2.2.2. Determination of VRE

After isolation and identification of suspected VRE colonies antibiotic susceptibility was
determined for ampicillin (AM), vancomycin (VA), teicoplanin (TEC), linezolid (LZD), tigecycline
(TGC) and trimethoprim/sulfamethoxazole (SXT) by disc diffusion test according to the EUCAST
guidelines (EUCAST V2.0, 2012). E. faecalis DSM20478 was used as reference. The minimal inhibition
concentration (MIC) for 22 antibiotics was assigned by VITEK®2 using the AST-P586 card (bioMérieux,
Marcy-l’Etoile, France). Resistance to the glycopeptides vancomycin and teicoplanin was confirmed by
Etest (bioMérieux, Marcy-l’Etoile, France) according to the manufacturer’s instructions. The detection
of the vancomycin resistance genes (vanA/vanB) was performed by real time PCR applying the Light
cycler VRE Detection Kit (Roche, Branchburg, NJ, USA).
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2.2.3. Determination of MRSA

MRSA isolates were characterized for their resistance pattern by susceptibility testing
according to EUCAST (EUCAST V2.0, 2012), tested with penicillin (P), cefoxitin (FOX), tetracycline
(TE), erythromycin (E), clindamycin (CL), norfloxacin (NOR), amicazin (AN), gentamicin (GM),
trimethoprim/sulfamethoxazole (SXT), fusidic acid (FA), rifampicin (RIF), linezolid (LZD) and
mupirocin (MUP) using BD BBLTM Sensi-DiscTM paper discs (BD, Sparks, MD, USA). Staphylococcus
aureus DSM799 was used as reference. PCR amplification was used to determine SCCmec type
and presence of the Panton-Valentine-Leukozidin (PVL)-gene [26,27]. Spa typing was performed as
described previously [28].

3. Results

All eleven investigated sludge samples revealed at least one kind of the screened multiresistant
bacteria. In detail, ten of the eleven samples were positive for ESBL-harbouring Enterobacteriacea
(82%), three samples were positive for MRSA (27%) and four samples for VRE (36%).

3.1. ESBL Gram Negative Bacilli Isolates

In total, 117 Enterobacteriaceae were screened for multidrug resistance phenotypically. Genetic
analysis revealed 32 different positive isolates consisting of 21 E. coli, seven Klebsiella pneumoniae, three
Enterobacter sp. and one Raoultella ornithinolytica (Table 1). Members of the CTX-M gene family were
the most predominant ESBL genes.

The most detected ESBL gene was blaCTX-M-15, which was present in twelve (28.6%) of the 32
isolates followed by blaCTX-M-1, which was found in six (14.3%) isolates. In addition, five (11.9%) of the
isolates harboured the blaCTX-M-14, three (7.1%) blaCTX-M-3, and one (2.4%) the blaCTX-M-38 gene. The
non-CTX-M ESBL genes blaSHV-2 and blaSHV-12 were detected in four isolates from activated sludge.

Bacteria with ESBL phenotypes frequently carry additional antibiotic resistances. For the purpose
of phenotypic differentiation, all ESBL E. coli isolates were tested for their susceptibility to 19 antibiotics.
The antibiotic resistances of each of the investigated isolates are listed in Table 1.

No ESBL-producing Enterobacteriaceae showed resistance to tigecycline, amikacin and the
carbapenems imipenem and meropenem. Penicillin-inhibitor combinations such as amoxicillin/clavulanic
acid (53.1%, 17 of 32) and piperacillin/tazobactam (9.4%, 3 of 32) showed reduced efficacy against the
ESBL producing Enterobacteriaceae. The cephamycin cefoxitin revealed resistance to eight (25%) isolates.

The most common co-resistance rates among the ESBL producing Enterobacteriaceae isolates to
non-beta lactam antibiotics were detected for the quinolones, nalidixic acid 75% (24 of 32), ciprofloxacin
56.3% (18 of 32) and moxifloxacin 53.1% (17 of 32). The co-resistance for tetracycline was as high
as 53.1% (17 of 32) and for the drug combination trimethoprim/sulfamethoxazole 50% (16 of 32).
Co-resistance rates to aminoglycoside compounds were low with 34.4% (11 of 32) for gentamicin and
0% for amikacin.

Two ESBL-producing isolates were resistant to three antibiotics and 26 of the isolates were resistant
to more than three antibiotic classes, which lead to a number of 28 ESBL isolates that could be assigned
as multidrug resistant (Table 1).

Additional 25 Pseudomonadales were isolated from the ESBL screening plates but genetic
analysing showed no positive confirmation for ESBL genes. Only one Aeromonas spp. isolate was tested
positive for the ESBL gene blaPER-1. This isolate revealed resistance to ceftazidime and meropenem.
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Table 1. Detected resistance genes and resistance pattern of all isolates. Non E. coli Enterobacteriaceae are automatically set resistant to AM according EUCAST.

Isolate ID Sample Date Species Resistance Genes Resistance Pattern a

ESBL-01 KS1 2011-09 E. coli blaCTX-M-15, blaTEM-1
b AM, AMC, CN, CXM, FOX, CTX, GM, SXT, CIP, MXF, CAZ, FEP, TE, NA

ESBL-02 KS5 2011-10 E. coli blaCTX-M-15 AM, AMC, CN, CXM, CTX, CIP, MXF, CAZ, FEP, TE, NA
ESBL-03 KS5 2011-10 E. coli blaCTX-M-1, blaTEM-1 AM, CN, CXM, CTX, GM, SXT, TE, C
ESBL-04 KS5 2011-10 E. coli blaTEM-1 AM, CN, CXM, CTX, SXT, CIP, CAZ, FEP, TE, NA, C
ESBL-05 KS5 2011-10 E. coli blaCTX-M-1 AM, AMC, CN, CXM, CTX, SXT, CIP, MXF, NA, C
ESBL-06 KS5 2011-10 E. coli blaCTX-M-1 AM, CN, CXM, CTX, FEP
ESBL-07 KS6 2011-11 E. coli blaCTX-M-15 AM, CN, CXM, CTX, SXT, CIP, MXF, CAZ, FEP, TE, NA, C
ESBL-08 KS6 2011-11 E. coli blaCTX-M-3 AM, AMC, CN, CXM, CTX, SXT, CIP, MXF, FEP, TE, NA, C
ESBL-09 KS6 2011-11 E. coli blaCTX-M-3, blaTEM-1 AM, AMC, CN, CXM, FOX, CTX
ESBL-10 KS7 2011-12 E. coli blaCTX-M-14, blaTEM-1 AM, CN, CXM, CTX, CIP, MXF, NA
ESBL-11 KS7 2011-12 E. coli blaCTX-M-3, blaTEM-1 AM, CN, CXM, CTX, FEP, NA
ESBL-12 KS7 2011-12 E. coli blaCTX-M-1 AM, CN, CXM, CTX, GM, SXT, CIP, MXF, CAZ, FEP, TE, NA
ESBL-13 KS7 2011-12 E. coli blaCTX-M-15, blaTEM-1 AM, CN, CXM, CTX, FEP
ESBL-14 KS7 2011-12 E. coli blaCTX-M-1, blaTEM-1 AM, CN, CXM, CTX, SXT, FEP, TE
ESBL-15 KS7 2011-12 E. coli blaCTX-M-14 AM, AMC, CN, CXM, CTX, TE, NA
ESBL-16 KS7 2011-12 E. coli blaCTX-M-14, blaTEM-1 AM, AMC, CN, CXM, CTX, TE, NA
ESBL-17 KS8 2011-12 E. coli blaCTX-M-14, blaTEM-1 AM, AMC, CN, CXM, CTX, CIP, MXF, CAZ, TE, NA
ESBL-18 KS9 2012-01 E. coli blaCTX-M-38 AM, AMC, CN, CXM, FOX, CTX, GM, CIP, MXF, TZP, CAZ, FEP, TE, NA
ESBL-19 KS10 2012-02 E. coli blaCTX-M-1 AM, CN, CXM, CTX, SXT, FEP, TE
ESBL-20 KS11 2012-04 E. coli blaCTX-M-15, blaSHV-11

b, blaTEM-1 AM, CN, CXM, CTX, CAZ, FEP
ESBL-21 KS11 2012-04 E. coli blaCTX-M-14 AM, CN, CXM, CTX, SXT, CIP, MXF, NA
ESBL-22 KS1 2011-09 E. kobei blaSHV-2 AM, AMC, CN, CXM, FOX, CTX, GM, CAZ, FEP, NA, C
ESBL-23 KS4 2011-09 E. kobei blaSHV-2 AM, AMC, CN, CXM, FOX, CTX, GM, CAZ, NA, C
ESBL-24 KS9 2012-01 E. cloacae blaCTX-M-15, blaTEM-1 AM, AMC, CN, CXM, FOX, CTX, GM, SXT, CIP, MXF, TZP, CAZ, TE, NA
ESBL-25 KS2 2011-09 K. pneumoniae blaCTX-M-14, blaSHV-2 AM, CN, CXM, CTX, GM, SXT, FEP
ESBL-26 KS6 2011-11 K. pneumoniae blaSHV-12 AM, CN, CXM, CTX, CIP, MXF, CAZ, NA, C
ESBL-27 KS7 2011-12 K. pneumoniae blaCTX-M-15, blaSHV-1

b, blaTEM-1 AM, AMC, CN, CXM, CTX, GM, SXT, CIP, MXF, CAZ, TE, NA
ESBL-28 KS7 2011-12 K. pneumoniae blaCTX-M-15, blaSHV-1, blaTEM-1 AM, AMC, CN, CXM, CTX, GM, SXT, CIP, MXF, CAZ, FEP, TE, NA
ESBL-29 KS8 2011-12 K. pneumoniae blaCTX-M-15, blaSHV-11 AM, AMC, CN, CXM, FOX, CTX, SXT, CIP, MXF, CAZ, FEP, NA, C
ESBL-30 KS9 2012-01 K. pneumoniae blaCTX-M-15, blaSHV-1, blaTEM-1 AM, CN, CXM, CTX, CIP, MXF, NA, TE
ESBL-31 KS11 2012-04 K. pneumoniae blaCTX-M-15, blaSHV-11 AM, AMC, CN, CXM, CTX, GM, SXT, CIP, MXF, CAZ, TE, NA
ESBL-32 KS11 2012-04 R. ornithinolytika blaSHV-2 AM, AMC, CN, CXM, FOX, CTX, TZP, CAZ, NA
ESBL-33 KS7 2011-12 Aeromonas. sp. blaPER-1 CAZ, MEM
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Table 1. Cont.

Isolate ID Sample Date Species Resistance Genes Resistance Pattern a

VRE-01 KS4 2001-09 E. faecium vanA AM, TEC, VA, SXT
VRE-02 KS7 2011-12 E. faecium vanA AM, TEC, VA, SXT
VRE-03 KS8 2011-12 E. faecium vanA AM, TEC, VA, SXT
VRE-04 KS10 2012-02 E. faecium vanA AM, TEC, VA

MRSA-01 KS3 2011-09 S. aureus mecA P, FOX, E, NOR, GM
MRSA-02 KS5 2011-10 S. aureus mecA P, FOX
MRSA-03 KS6 2011-11 S. aureus mecA P, FOX, E, CC, NOR, GM

a AM, ampicillin; AMC, amoxicillin/clavulanic acid; TZP, piperacillin/tazobactam; CN, cephalexin; CXM, cefuroxime; FOX, cefoxitin; CTX, cefotaxime; CAZ, ceftazidime; FEP, cefepime;
MEM, meropenem; CIP, ciprofloxacin; MXF, moxifloxacin; GM, gentamicin; SXT, trimethoprim/sulfamethoxazole; TE, tetracycline; NA, nalidixic acid; C, chloramphenicol; TEC, teicoplanin;
VA, vancomycin; P, penicillin; E, erythromycin; NOR, norfloxacin. b Resistance genes blaTEM-1, blaSHV-1 and blaSHV-11 encoding non-extended-spectrum-β-lactamases.
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3.2. MRSA

Three MRSA isolates from three different activated sludge samples were detected. All three
isolates harboured the mecA gen but were tested negative for PVL. Spa typing revealed one t032, with
resistance to erythromycin, norfloxacin and gentamycin and one t067 with resistance to erythromycin,
clindamycin and norfloxacin. The third MRSA with spa type t6613 was susceptible to all tested non
beta-lactam antibiotics (Table 1).

3.3. VRE

VRE could be detected in four of eleven (36%) activated sludge samples represented by
one Enterococcus isolate each. All four isolates were identified as Enterococcus faecium and
harboured the vanA gene. All isolates showed highly similar resistance patterns. They were all
resistant to ampicillin, teicoplanin, and vancomycin; three isolates showed additional resistance to
trimethoprim/sulfamethoxazole (Table 1).

4. Discussion

The omnipresence of ESBL in environmental population of Enterobacteriaceae is widely
demonstrated. The findings of this study go in full concordance with prior results. This includes also
the isolated species (mostly E. coli) and the detected genes (CTX-M family) being dominant [8,11,29,30].

Other studies concerning E. coli from sewage sludge also reported tetracycline,
ampicillin/clavulanic acid and trimethoprim/sulfamethoxazole as antibiotics with the highest non-
susceptibility rate. These antibiotics showed the highest non-susceptibility in ESBL E. coli from
Austrian sewage sludge as well [31,32]. Regarding co-resistance, the isolates did not show a reduced
occurrence as can be observed in ESBL isolates from surface waters, without direct wastewater
influence. Resistance to quinolones was very common and most of the isolates could be classified
as multiresistant (resistance to three or more tested antibiotic classes). Environment and residence
time in the WWTP seem not to favour a potential adaptation process in the ESBL population. The
permanent entry of ARB from different sources in the activated sludge basin and the horizontal gene
transfer are the dominant factors for the composition of resistant bacteria. Selection pressure due to
different substances, does not seem to have enough time in this environment to contribute to resistance
development [9,10,30,33–37]. Therefore, the isolates of this study reflect rather the situation of clinical
ESBL isolates where this kind of co-resistance and multiresistance is dominant. Interestingly the
majority of the ESBL Enterobacteriaceae isolates remained susceptible to the tested 4th generation
cephalosporin (cefepim).

The isolation of a PER-1 producing Aeromonas spp. is more remarkable. There are reports of PER-1
based ESBL (also in Aeromonas) in European surface waters, nevertheless clinical isolates with this
enzyme are reported rarely. In Austria, this is the first PER-1 producer documented so far [38,39].

The MRSA isolates from the sewage sludge can be linked to hospital settings. A multiresistant
phenotype including the aminoglycoside gentamicin is a typical characteristic of hospital acquired
(HA)-MRSA. T032 is a common spa type of the ST22-MRSA-IV (Barnim epidemic MRSA strain). It is the
most prevalent HA-MRSA in Europe and has spread in Austria since the beginning of this decade. The
second gentamicin resistant (t067) isolate can be linked to the so called paediatric clone. The resistance
pattern of this MRSA isolate, with the exotic spa type t6613, showed similarity with CA-MRSA, but did
not harbour the genes for the PVL toxin [40,41].

In general MRSA isolates from surface water are rather rare, with only low number of analysed
isolates. Therefore an estimation which of the three MRSA types is more dominant in water
environment is difficult to make [15,16,42,43].

VRE isolates showed nearly identical features in terms of species, gene and resistance pattern.
Likewise MRSA, VRE isolates were only investigated and isolated in few studies compared to studies
with ESBL isolates. This is remarkable because in contrast to Staphylococci, Enterococci have a
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much better ability to survive in surface water and they are indicator bacteria for water quality
assessment [44–46]. Therefore, the exclusivity of vanA isolates is more likely to be based on the low
number of sludge isolates. Furthermore other environmental VRE isolates from Austria revealed also
vanB [44–49].

However, there is much evidence that confirms the presence of diverse and plentiful ARB in
fertilizer produced from livestock animals [50,51]. There appears to be significant variability on
wastewater management across different industrialized countries. In high income countries sewer
connectivity is generally high, whereas in many middle and low income countries sewer connectivity
is low and untreated sewage is discharged mainly to surface water bodies [52,53].

5. Conclusions

Wastewater treatment plants serve as a collection basin of multiresistant bacteria. In the investigated
activated sludge samples all three screened multiresistant phenotypes were present, with ESBL
harbouring Gram negative bacilli representing the most common ones. The study shows for the first
time in Austria, the presence of VRE in WWTP and the first detection of a PER-1 mediated ESBL. All
these multiresistant bacteria have the potential to spread in other ecological niches and therefore further
monitoring and measures for reduction should be taken into consideration.

Supplementary Materials: The following tables are available online at www.mdpi.com/1660-4601/15/3/479/s1,
Table S1: Antibiotics, disk content and breakpoints used for disk susceptibility testing according to the EUCAST
guidelines (EUCAST V2.0, 2012).
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