Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms—A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Farm Population
2.2. Bacteriology of Farm Samples
2.3. Antimicrobial Use Data
2.4. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Background Information on Udder Health and Herd Management
4.3. Total Antimicrobial Use in Defined Daily Dose (DDDvet/Cow/Year)
4.4. Farm Sampling and Bacteriological Culture
- 2 pairs of boot swabs either from the alleyways of freestalls where lactating cows were housed or the slurry passage immediately behind cows in tie-stalls
- 1–2 pooled faecal samples from calf pens or freshly voided faeces if calves defaecated while researchers were present (1–5 calves per sample; 2 pooled samples were taken from farms with >50 head of cattle)
- 1–2 pooled faecal samples from youngstock (>6 months) pens (if youngstock were present on the farm, 1–5 head per sample; 2 pooled samples were taken from farms with >50 head of cattle)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste; HM Government: London, UK, 2015.
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Boeckel, T.P. Van Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Maron, D.F.; Smith, T.J.S.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global. Health 2013, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Sales of Veterinary Antimicrobial agents in 31 European Countries in 2019 and 2020 (11th ESVAC Report); 2021. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2019-2020-trends-2010-2020-eleventh_en.pdf (accessed on 23 December 2021).
- BMG Verordnung des Bundesministers für Gesundheit, mit der ein System zur Überwachung des Vetriebs und Verbrauchs von Antibiotika im Veterinärbereich eingereicht wird (Veterinär-Antibiotika-Mengenströme-VO) sowie die Verordnung über die Einrichtung und Führung der Tierärzteliste. Available online: https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2014_II_83/BGBLA_2014_II_83.pdf (accessed on 1 June 2017).
- Fuchs, R.; Fuchs, K. Bericht über den Vertrieb von Antibiotika in der Veterinärmedizin in Österreich 2016–2020 (Report on Veterinary Antimicrobial Sales/Dispensing in Austria 2016–2020); Graz, Austria, 2021. Available online: https://www.ages.at/download/0/0/f290c2127644b5369881327c484607518e526e66/fileadmin/AGES2015/Themen/AGES_Schwerpunktthemen/Antibiotika/AB_Mengen_AUT_Bericht_2020.pdf (accessed on 22 December 2021).
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Albrich, W.C.; Monnet, D.L.; Harbarth, S. Antibiotic Selection Pressure and Resistance in Streptococcus pneumoniae and Streptococcus pyogenes—Volume 10, Number 3—March 2004—Emerging Infectious Diseases journal—CDC. Emerg. Infect. Dis. 2004, 10, 514–517. [Google Scholar] [CrossRef]
- Gonggrijp, M.A.; Santman-Berends, I.M.G.A.; Heuvelink, A.E.; Buter, G.J.; van Schaik, G.; Hage, J.J.; Lam, T.J.G.M. Prevalence and risk factors for extended-spectrum β-lactamase- and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, K.; Hickman, R.A.; Tepper, V.; Antillón, G.O.; Järhult, J.D.; Emanuelson, U.; Fall, N.; Lewerin, S.S. Antimicrobial Resistance Patterns in Organic and Conventional Dairy Herds in Sweden. Antibiotics 2020, 9, 834. [Google Scholar] [CrossRef] [PubMed]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.-A.; Grobbel, M.; Skladnikiewicz-Ziemer, T.; Thomas, K.; Roesler, U.; Käsbohrer, A. Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef]
- Roschanski, N.; Guenther, S.; Vu, T.T.T.; Fischer, J.; Semmler, T.; Huehn, S.; Alter, T.; Roesler, U. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Eurosurveillance 2017, 22, 17-00032. [Google Scholar] [CrossRef] [Green Version]
- George, A. Antimicrobial resistance, trade, food safety and security (Editorial Commentary). One Health 2018, 5, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Petternel, C.; Galler, H.; Zarfel, G.; Luxner, J.; Haas, D.; Grisold, A.J.; Reinthaler, F.F.; Feierl, G. Isolation and characterization of multidrug-resistant bacteria from minced meat in Austria. Food Microbiol. 2014, 44, 41–46. [Google Scholar] [CrossRef]
- Much, P.; Sun, H. Bericht zur AntibiotikaresistenzÜberwachung gemäß Durchführungsbeschluss der Kommission 2013/652/EU in Österreich, 2019. In Resistenzbericht Österreich AURES 2019; Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz (BMSGPK): Vienna, Austria, 2021; pp. 357–394. [Google Scholar]
- EFSA/ECDC. Annex E—Data on presumptive ESBL-, AmpC- and/or carbapenemase- producing microorganisms and their resistance occurrence (routine and specific monitoring). EFSA J. 2021, 19, 2015–2019. [Google Scholar] [CrossRef]
- EFSA/ECDC. Annex F—Data reported on antimicrobial resistance in MRSA from food- producing animals and derived meat. EFSA J. 2021, 19, 1–17. [Google Scholar] [CrossRef]
- ECDC; EFSA; EMA. Antimicrobial Consumption and Resistance in Bacteria from Humans and Animals Third Joint Inter-Agency Report on Integrated Analysis of Antimicrobial agent Consumption and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-Producing an. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/JIACRA-III-Antimicrobial-Consumption-and-Resistance-in-Bacteria-from-Humans-and-Animals.pdf (accessed on 24 November 2021).
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Heal. 2019, 3, e357–e369. [Google Scholar] [CrossRef] [Green Version]
- Firth, C.L.; Laubichler, C.; Schleicher, C.; Fuchs, K.; Käsbohrer, A.; Egger-Danner, C.; Köfer, J.; Obritzhauser, W. Relationship between the probability of veterinary-diagnosed bovine mastitis occurring and farm management risk factors on small dairy farms in Austria. J. Dairy Sci. 2019, 102, 4452–4463. [Google Scholar] [CrossRef] [Green Version]
- EMA Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet): European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2016/04/WC500205410.pdf (accessed on 1 July 2021).
- WHO. Critically Important Antimicrobials for Human Medicine— 5th Revision 2016; Cambridge University Press: Geneva, Switzerland, 2017. [Google Scholar]
- Schmid, A.; Hörmansdorfer, S.; Messelhäusser, U.; Käsbohrer, A.; Sauter-Louis, C.; Mansfeld, R. Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl. Environ. Microbiol. 2013, 79, 3027–3032. [Google Scholar] [CrossRef] [Green Version]
- Heuvelink, A.E.; Gonggrijp, M.A.; Buter, R.G.J.; ter Bogt-Kappert, C.C.; van Schaik, G.; Velthuis, A.G.J.; Lam, T.J.G.M. Prevalence of extended-spectrum and AmpC β-lactamase-producing Escherichia coli in Dutch dairy herds. Vet. Microbiol. 2019, 232, 58–64. [Google Scholar] [CrossRef]
- EFSA/ECDC. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef] [Green Version]
- Santman-Berends, I.M.G.A.; Gonggrijp, M.A.; Hage, J.J.; Heuvelink, A.E.; Velthuis, A.; Lam, T.J.G.M.; van Schaik, G. Prevalence and risk factors for extended-spectrum β-lactamase or AmpC-producing Escherichia coli in organic dairy herds in the Netherlands. J. Dairy Sci. 2017, 100, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Jarrige, N.; Cazeau, G.; Bosquet, G.; Bastien, J.; Benoit, F.; Gay, E. Effects of antimicrobial exposure on the antimicrobial resistance of Escherichia coli in the digestive flora of dairy calves. Prev. Vet. Med. 2020, 185, 105177. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.V.V.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. In Vivo Selection of Resistant E. coli after Ingestion of Milk with Added Drug Residues. PLoS ONE 2014, 9, e115223. [Google Scholar] [CrossRef]
- Pereira, R.V.V.; Carroll, L.M.; Lima, S.; Foditsch, C.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. Impacts of feeding preweaned calves milk containing drug residues on the functional profile of the fecal microbiota. Sci. Rep. 2018, 8, 554. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Biological Hazards; Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Koutsoumanis, K.; Lindqvist, R.; et al. Risk for the development of Antimicrobial Resistance (AMR) due to feeding of calves with milk containing residues of antibiotics. EFSA J. 2017, 15, e04665. [Google Scholar] [CrossRef] [Green Version]
- Firth, C.L.; Kremer, K.; Werner, T.; Käsbohrer, A. The Effects of Feeding Waste Milk Containing Antimicrobial Residues on Dairy Calf Health. Pathogens 2021, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.A.; Duncan, D.; Randall, L.P.; Chappell, S.; Brunton, L.A.; Warner, R.; Coldham, N.G.; Teale, C.J. Longitudinal study of CTX-M ESBL-producing E. coli strains on a UK dairy farm. Res. Vet. Sci. 2016, 109, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Maynou, G.; Terré, M.; Bach, A.; Chester-Jones, H.; Migura-Garcia, L.; Ziegler, D. Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning. J. Dairy Sci. 2017, 100, 7967–7979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awosile, B.; McClure, J.; Sanchez, J.; Rodriguez-Lecompte, J.C.; Keefe, G.; Heider, L.C. Salmonella enterica and extended-spectrum cephalosporin-resistant Escherichia coli recovered from Holstein dairy calves from 8 farms in New Brunswick, Canada. J. Dairy Sci. 2018, 101, 3271–3284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; Vicca, J.; Hermans, K.; Butaye, P. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol. 2010, 144, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Spohr, M.; Rau, J.; Friedrich, A.; Klittich, G.; Fetsch, A.; Guerra, B.; Hammerl, J.A.; Tenhagen, B.A. Methicillin-resistant Staphylococcus aureus (MRSA) in three dairy herds in southwest Germany. Zoonoses Public Health 2011, 58, 252–261. [Google Scholar] [CrossRef]
- Schauer, B.; Krametter-Frötscher, R.; Knauer, F.; Ehricht, R.; Monecke, S.; Feßler, A.T.; Schwarz, S.; Grunert, T.; Spergser, J.; Loncaric, I. Diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Austrian ruminants and New World camelids. Vet. Microbiol. 2018, 215, 77–82. [Google Scholar] [CrossRef]
- Krziwanek, K.; Metz-Gercek, S.; Mittermayer, H. Methicillin-resistant staphylococcus aureus ST398 from human patients, Upper Austria. Emerg. Infect. Dis. 2009, 15, 766–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, K.; den Heijer, C.D.J.; George, A.; Apfalter, P.; Maier, M. Prevalence and resistance patterns of commensal S. aureus in community-dwelling GP patients and socio-demographic associations: A cross-sectional study in the framework of the APRES-project in Austria. BMC Infect. Dis. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.J.; Kim, S.S.; Mollenkopf, D.F.; Mathys, D.A.; Schuenemann, G.M.; Daniels, J.B.; Wittum, T.E. Antimicrobial-resistant Enterobacteriaceae recovered from companion animal and livestock environments. Zoonoses Public Health 2018, 65, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Odenthal, S.; Akineden, Ö.; Usleber, E. Extended-spectrum β-lactamase producing Enterobacteriaceae in bulk tank milk from German dairy farms. Int. J. Food Microbiol. 2016, 238, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Geser, N.; Stephan, R.; Hächler, H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res. 2012, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, C.L.; Käsbohrer, A.; Schleicher, C.; Fuchs, K.; Egger-Danner, C.; Mayerhofer, M.; Schobesberger, H.; Köfer, J.; Obritzhauser, W. Antimicrobial consumption on Austrian dairy farms: An observational study of udder disease treatments based on veterinary medication records. PeerJ 2017, 5, e4072. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Piepers, S.; Supré, K.; Dewulf, J.; De Vliegher, S. Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci. 2016, 99, 2118–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- More, S.J.; Clegg, T.A.; McCoy, F. The use of national-level data to describe trends in intramammary antimicrobial usage on Irish dairy farms from 2003 to 2015. J. Dairy Sci. 2017, 100, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pol, M.; Ruegg, P.L. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef]
- Saini, V.; McClure, J.T.; Scholl, D.T.; DeVries, T.J.; Barkema, H.W. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1921–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schabauer, A.; Pinior, B.; Gruber, C.-M.; Firth, C.L.; Käsbohrer, A.; Wagner, M.; Rychli, K.; Obritzhauser, W. The relationship between clinical signs and microbiological species, spa type, and antimicrobial resistance in bovine mastitis cases in Austria. Vet. Microbiol. 2018, 227, 52–60. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F. Multidrug-resistant, Extensively Drug-resistant and Pandrug-resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Firth, C.L. Analysis of antimicrobial use for the treatment of mastitis and antimicrobial resistance of clinically-relevant and commensal bacterial isolates on dairy farms in Austria, University of Veterinary Medicine Vienna, 2018. Available online: https://permalink.obvsg.at/UVW/AC15385467 (accessed on 22 December 2021).
- Firth, C.L.; Käsbohrer, A.; Egger-Danner, C.; Fuchs, K.; Pinior, B.; Roch, F.F.; Obritzhauser, W. Comparison of defined course doses (DCDvet) for blanket and selective antimicrobial dry cow therapy on conventional and organic farms. Animals 2019, 9, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA/ECDC Annex A—Materials and methods: The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, 6490. [CrossRef]
- Murakami, K.; Minamide, W.; Wada, K.; Nakamura, E.; Teraoka, H.; Watanabe, S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 2240–2244. [Google Scholar] [CrossRef] [Green Version]
- Cuny, C.; Layer, F.; Strommenger, B.; Witte, W. Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS ONE 2011, 6, e24360. [Google Scholar] [CrossRef] [Green Version]
HIGH (N = 25) | LOW (N = 25) | |||
---|---|---|---|---|
DDDvet/Cow/Year | ||||
Range | 2.47–8.04 3.82 4.35 | 0.01–0.63 0.31 0.29 | ||
Median | ||||
Mean | ||||
Freestall (n = 17) | Tie-stall (n = 8) | Freestall (n = 16) | Tie-stall (n = 9) | |
Production system | ||||
Conventional | 12 | 5 | 11 | 3 |
Organic | 2 | 0 | 5 | 2 |
No answer given # | 3 | 3 | 0 | 4 |
Waste milk * routinely fed to calves | ||||
Yes | 12 | 3 | 9 | 3 |
No | 2 | 2 | 7 | 2 |
No answer given # | 3 | 3 | 0 | 4 |
ESBL-producing E. coli present on farm | ||||
Cowshed boot swabs | 2 | 1 | 3 | 1 |
Calf samples | 3 | 1 | 5 | 2 |
Youngstock samples | 2 | 2 | 0 | 0 |
Total number of farms with at least one positive ESBL-producing E. coli sample | 3 | 2 | 6 | 2 |
Total number of farms where all three samples were ESBL-producing E. coli positive | 2 | 1 | 0 | 0 |
Proportion of Overall Antimicrobial Treatments (%) Based on Total DDDvet/Cow/Year | Proportion of Antimicrobial Treatments by Disease Indication | ||
---|---|---|---|
Non-HPCIA * | HPCIA * | ||
ESBL-POSITIVE FARMS (N = 13) | |||
Respiratory disease | 13.2% | 54.8% | 45.2% |
Musculoskeletal/Locomotory disease | 5.2% | 32.5% | 67.5% |
Udder disease (excluding DCT #) | 52.2% | 79.0% | 21.0% |
Reproductive disorders | 20.4% | 99.4% | 0.6% |
Other diseases | 9.0% | 47.8% | 52.2% |
ESBL-NEGATIVE FARMS (N = 37) | |||
Respiratory disease | 12.4% | 78.1% | 21.9% |
Musculoskeletal/Locomotory disease | 8.4% | 10.6% | 89.4% |
Udder disease (excluding DCT #) | 54.1% | 37.4% | 62.6% |
Reproductive disorders | 16.4% | 95.2% | 4.8% |
Other diseases | 8.6% | 45.4% | 54.6% |
High AMU Group ≥2.47 DDDvet/Cow/Year | Low AMU Group ≤0.63 DDDvet/Cow/Year | Total | |
---|---|---|---|
ESBL-producing E. coli—positive | 5 (6.5) | 8 (6.5) | 13 |
ESBL-producing E. coli—negative | 20 (18.5) | 17 (18.5) | 37 |
Total | 25 | 25 | 50 |
≤20 Dairy Cows | >20 Dairy Cows | Total | |
---|---|---|---|
ESBL-producing E. coli—positive | 5 (6.2) | 8 (6.8) | 13 |
ESBL-producing E. coli—negative | 19 (17.8) | 18 (19.2) | 37 |
Total | 24 | 26 | 50 |
Waste Milk Fed to Calves | Waste Milk NOT Fed to Calves | Total | |
---|---|---|---|
ESBL-producing E. coli—positive | 5 | 4 | 9 |
ESBL-producing E. coli—negative | 22 | 9 | 31 |
Total | 27 | 13 | 40 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firth, C.L.; Käsbohrer, A.; Pless, P.; Koeberl-Jelovcan, S.; Obritzhauser, W. Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms—A Pilot Study. Antibiotics 2022, 11, 124. https://doi.org/10.3390/antibiotics11020124
Firth CL, Käsbohrer A, Pless P, Koeberl-Jelovcan S, Obritzhauser W. Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms—A Pilot Study. Antibiotics. 2022; 11(2):124. https://doi.org/10.3390/antibiotics11020124
Chicago/Turabian StyleFirth, Clair L., Annemarie Käsbohrer, Peter Pless, Sandra Koeberl-Jelovcan, and Walter Obritzhauser. 2022. "Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms—A Pilot Study" Antibiotics 11, no. 2: 124. https://doi.org/10.3390/antibiotics11020124
APA StyleFirth, C. L., Käsbohrer, A., Pless, P., Koeberl-Jelovcan, S., & Obritzhauser, W. (2022). Analysis of Antimicrobial Use and the Presence of Antimicrobial-Resistant Bacteria on Austrian Dairy Farms—A Pilot Study. Antibiotics, 11(2), 124. https://doi.org/10.3390/antibiotics11020124