Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health
Abstract
:1. Introduction
2. Results
2.1. Clinical Cases
2.2. Viral Detection and Molecular Characterization of CPV
2.3. Bacterial Detection
2.4. Antimicrobial Susceptibility According to the Disk Diffusion Method
2.5. Antimicrobial Susceptibility According to the Minimum Inhibitory Concentration (MIC)
2.6. Molecular Analysis of β-Lactamase Genes
2.7. Molecular Analysis for Virulence Factors in Enterobacteriaceae, Staphylococcus spp. and Clostridium perfringens (A to E)
2.8. Multidrug-Resistance Evaluation
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Parvovirus PCR and Molecular Characterization of CPV Strains
4.3. Additional Virologic Tests
4.4. Bacterial Isolation
4.5. Disk Diffusion Method
4.6. Determination of Minimum Inhibitory Concentration (MIC)
4.7. Detection of β-Lactamase Genes
4.8. Detection of Genes for Toxins of Staphylococcus spp. and of Clostridium perfringens (A to E)
4.9. Serogroup Identification in E. coli and Virulent Genes’ Identification in Enterobacteriaceae
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carmichael, L.E. An annotated historical account of canine parvovirus. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Pratelli, A.; Cavalli, A.; Martella, V.; Tempesta, M.; Decaro, N.; Carmichael, L.E.; Buonavoglia, C. Canine parvovirus (CPV) vaccination: Comparison of neutralizing antibody responses in pups after inoculation with CPV2 or CPV2b modified live virus vaccine. Clin. Diagn. Lab. Immunol. 2001, 8, 612–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spibey, N.; Greenwood, N.M.; Sutton, D.; Chalmers, W.S.K.; Tarpey, I. Canine parvovirus type 2 vaccine protects against virulent challenge with type 2c virus. Vet. Microbiol. 2008, 128, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voorhees, I.E.H.; Lee, H.; Allison, A.B.; Lopez-Astacio, R.; Goodman, L.B.; Oyesola, O.O.; Omobowale, O.; Fagbohun, O.; Dubovi, E.J.; Hafenstein, S.L.; et al. Limited Intrahost Diversity and Background Evolution Accompany 40 Years of Canine parvovirus Host Adaptation and Spread. J. Virol. 2019, 94, e01162-19. [Google Scholar] [CrossRef]
- Decaro, N.; Buonavoglia, C. Canine parvovirus—A review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet. Microbiol. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.-M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Agbandje-McKenna, M.; Chiorini, J.A.; Mukha, D.V.; Pintel, D.J.; Qiu, J.; Soderlund-Venermo, M.; Tattersall, P.; Tijssen, P.; Gatherer, D.; et al. The family Parvoviridae. Arch. Virol. 2014, 159, 1239–1247. [Google Scholar] [CrossRef]
- Parrish, C.R.; O’Connell, P.H.; Evermann, J.F.; Carmichael, L.E. Natural variation of canine parvovirus. Science 1985, 230, 1046–1048. [Google Scholar] [CrossRef]
- Parrish, C.R.; Aquadro, C.F.; Strassheim, M.L.; Evermann, J.F.; Sgro, J.Y.; Mohammed, H.O. Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. J. Virol. 1991, 65, 6544–6552. [Google Scholar] [CrossRef] [Green Version]
- Buonavoglia, C.; Martella, V.; Pratelli, A.; Tempesta, M.; Cavalli, A.; Buonavoglia, D.; Bozzo, G.; Elia, G.; Decaro, N.; Carmichael, L. Evidence for evolution of Canine parvovirus type 2 in Italy. J. Gen. Virol. 2001, 82, 3021–3025. [Google Scholar] [CrossRef]
- Mohr, A.J.; Leisewitz, A.L.; Jacobson, L.S.; Steiner, J.M.; Ruaux, C.G.; Williams, D.A. Effect of early enteral nutrition on intestinal permeability, intestinal protein loss, and outcome in dogs with severe parvoviral enteritis. J. Vet. Intern. Med. 2003, 17, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Armenise, A.; Trerotoli, P.; Cirone, F.; De Nitto, A.; De Sario, C.; Bertazzolo, W.; Pratelli, A.; Decaro, N. Use of recombinant canine granulocyte-colony stimulating factor to increase leukocyte count in dogs naturally infected by canine parvovirus. Vet. Microbiol. 2019, 231, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, M.; Proksch, A.-L.; Dörfelt, R.; Unterer, S.; Hartmann, K. Therapy of Canine parvovirus infection—Review and current insights. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2020, 48, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Goddard, A.; Leisewitz, A.L. Canine parvovirus. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.Q.; Gomes, L.A.; Santos, I.S.; Alfieri, A.F.; Weese, J.S.; Costa, M.C. Fecal microbiota transplantation in puppies with Canine parvovirus infection. J. Vet. Intern. Med. 2018, 32, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Guevarra, R.B.; Kim, B.-R.; Lee, J.H.; Lee, S.H.; Cho, J.H.; Kim, H.; Cho, J.H.; Song, M.; Lee, J.-H.; et al. Intestinal Microbial Dysbiosis in Beagles Naturally Infected with Canine Parvovirus. J. Microbiol. Biotechnol. 2019, 29, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Hao, X.; Lin, X.; Zheng, Q.; Zhang, W.; Zhou, P.; Li, S. Bacterial diversity in the feces of dogs with CPV infection. Microb. Pathog. 2018, 121, 70–76. [Google Scholar] [CrossRef]
- Otto, C.M.; Drobatz, K.J.; Soter, C. Endotoxemia and tumor necrosis factor activity in dogs with naturally occurring parvoviral enteritis. J. Vet. Intern. Med. 1997, 11, 65–70. [Google Scholar] [CrossRef]
- Botha, W.J.; Schoeman, J.P.; Marks, S.L.; Whitehead, Z.; Annandale, C.H. Prevalence of Salmonella in juvenile dogs affected with parvoviral enteritis. J. S. Afr. Vet. Assoc. 2018, 89, e1–e6. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.O.S.; Dorella, F.A.; Figueiredo, H.C.P.; Costa, É.A.; Pelicia, V.; Ribeiro, B.L.D.; Ribeiro, M.G.; Paes, A.C.; Megid, J.; Lobato, F.C.F. Clostridium perfringens and C. difficile in parvovirus-positive dogs. Anaerobe 2017, 48, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Duijvestijn, M.; Mughini-Gras, L.; Schuurman, N.; Schijf, W.; Wagenaar, J.A.; Egberink, H. Enteropathogen infections in canine puppies: (Co-)occurrence, clinical relevance and risk factors. Vet. Microbiol. 2016, 195, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Rocha Gizzi, A.B.; Oliveira, S.T.; Leutenegger, C.M.; Estrada, M.; Kozemjakin, D.A.; Stedile, R.; Marcondes, M.; Biondo, A.W. Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel. BMC Vet. Res. 2014, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, ARBA-0009-2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO (World Health Organization). Critically Important Antimicrobials for Human Medicine, 6th ed.; WHO Press: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf?ua=1 (accessed on 7 October 2020).
- Collignon, P.J.; McEwen, S.A. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Decaro, N.; Martella, V.; Elia, G.; Desario, C.; Campolo, M.; Lorusso, E.; Colaianni, M.L.; Lorusso, A.; Buonavoglia, C. Tissue distribution of the antigenic variants of Canine parvovirus type 2 in dogs. Vet. Microbiol. 2007, 121, 39–44. [Google Scholar] [CrossRef]
- Mira, F.; Dowgier, G.; Purpari, G.; Vicari, D.; Di Bella, S.; Macaluso, G.; Gucciardi, F.; Randazzo, V.; Decaro, N.; Guercio, A. Molecular typing of a novel Canine parvovirus type 2a mutant circulating in Italy. Infect. Genet. Evol. 2018, 61, 67–73. [Google Scholar] [CrossRef]
- Mira, F.; Canuti, M.; Purpari, G.; Cannella, V.; Di Bella, S.; Occhiogrosso, L.; Schirò, G.; Chiaramonte, G.; Barreca, S.; Pisano, P.; et al. Molecular Characterization and Evolutionary Analyses of Carnivore Protoparvovirus 1 NS1 Gene. Viruses 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Mira, F.; Purpari, G.; Lorusso, E.; Di Bella, S.; Gucciardi, F.; Desario, C.; Macaluso, G.; Decaro, N.; Guercio, A. Introduction of Asian Canine parvovirus in Europe through dog importation. Transbound. Emerg. Dis. 2018, 65, 16–21. [Google Scholar] [CrossRef]
- Mira, F.; Purpari, G.; Di Bella, S.; Colaianni, M.L.; Schirò, G.; Chiaramonte, G.; Gucciardi, F.; Pisano, P.; Lastra, A.; Decaro, N.; et al. Spreading of Canine parvovirus type 2c mutants of Asian origin in southern Italy. Transbound. Emerg. Dis. 2019, 66, 2297–2304. [Google Scholar] [CrossRef]
- Leclercq, R.; Cantón, R.; Brown, D.F.J.; Giske, C.G.; Heisig, P.; MacGowan, A.P.; Mouton, J.W.; Nordmann, P.; Rodloff, A.C.; Rossolini, G.M.; et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013, 19, 141–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardillo, L.; Piegari, G.; Iovane, V.; Viscardi, M.; Alfano, F.; Cerrone, A.; Pagnini, U.; Montagnaro, S.; Galiero, G.; Pisanelli, G.; et al. Lifestyle as Risk Factor for Infectious Causes of Death in Young Dogs: A Retrospective Study in Southern Italy (2015–2017). Vet. Med. Int. 2020, 2020, 6207297. [Google Scholar] [CrossRef] [PubMed]
- Dowgier, G.; Lorusso, E.; Decaro, N.; Desario, C.; Mari, V.; Lucente, M.S.; Lanave, G.; Buonavoglia, C.; Elia, G. A molecular survey for selected viral enteropathogens revealed a limited role of Canine circovirus in the development of canine acute gastroenteritis. Vet. Microbiol. 2017, 204, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.E.; Decaro, N. Canine Viral Enteritis. In Infectious Diseases of Dog and Cat, 4th ed.; Greene, C.E., Ed.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 67–80. [Google Scholar]
- Wilson, S.; Illambas, J.; Siedek, E.; Stirling, C.; Thomas, A.; Plevová, E.; Sture, G.; Salt, J. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c. Vaccine 2014, 32, 5420–5424. [Google Scholar] [CrossRef] [PubMed]
- Larson, L.J.; Schultz, R.D. Do two current Canine parvovirus type 2 and 2b vaccines provide protection against the new type 2c variant? Vet. Ther. 2008, 9, 94–101. [Google Scholar] [PubMed]
- Day, M.J.; Horzinek, M.C.; Schultz, R.D.; Squires, R.A.; Vaccination Guidelines Group (VGG) of the World Small Animal Veterinary Association (WSAVA). WSAVA Guidelines for the vaccination of dogs and cats. J. Small Anim. Pract. 2016, 57, E1–E45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalli, A.; Marinaro, M.; Desario, C.; Corrente, M.; Camero, M.; Buonavoglia, C. In vitro virucidal activity of sodium hypochlorite against Canine parvovirus type 2. Epidemiol. Infect. 2018, 146, 2010–2013. [Google Scholar] [CrossRef] [Green Version]
- Decaro, N.; Buonavoglia, C.; Barrs, V.R. Canine parvovirus vaccination and immunisation failures: Are we far from disease eradication? Vet. Microbiol. 2020, 247, 108760. [Google Scholar] [CrossRef]
- Buchy, P.; Ascioglu, S.; Buisson, Y.; Datta, S.; Nissen, M.; Tambyah, P.A.; Vong, S. Impact of vaccines on antimicrobial resistance. Int. J. Infect. Dis. 2020, 90, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Bloom, D.E.; Black, S.; Salisbury, D.; Rappuoli, R. Antimicrobial resistance and the role of vaccines. Proc. Natl. Acad. Sci. USA 2018, 115, 12868–12871. [Google Scholar] [CrossRef] [Green Version]
- Prittie, J. Canine parvoviral enteritis: A review of diagnosis, management, and prevention. J. Vet. Emerg. Crit. Car. 2004, 14, 167–176. [Google Scholar] [CrossRef]
- Alves, F.; Prata, S.; Nunes, T.; Gomes, J.; Aguiar, S.; Aires da Silva, F.; Tavares, L.; Almeida, V.; Gil, S. Canine parvovirus: A predicting canine model for sepsis. BMC Vet. Res. 2020, 16, 199. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Carvalheira, J.; Parrish, C.R.; Thompson, G. Factors affecting the occurrence of Canine parvovirus in dogs. Vet. Microbiol. 2015, 180, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Marenzoni, M.L.; Calò, P.; Foiani, G.; Tossici, S.; Passantino, G.; Decaro, N.; Mandara, M.T. Porencephaly and Periventricular Encephalitis in a 4-month-old Puppy: Detection of Canine parvovirus Type 2 and Potential Role in Brain Lesions. J. Comp. Pathol. 2019, 169, 20–24. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, Y.; Zeng, X.; Lu, C.; Hou, J. Genotyping and pathobiologic characterization of Canine parvovirus circulating in Nanjing, China. Virol. J. 2013, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Schaudien, D.; Polizopoulou, Z.; Koutinas, A.; Schwab, S.; Porombka, D.; Baumgärtner, W.; Herden, C. Leukoencephalopathy associated with parvovirus infection in Cretan hound puppies. J. Clin. Microbiol. 2010, 48, 3169–3175. [Google Scholar] [CrossRef] [Green Version]
- Schwab, S.; Herden, C.; Seeliger, F.; Papaioannou, N.; Psalla, D.; Polizopulou, Z.; Baumgärtner, W. Non-suppurative meningoencephalitis of unknown origin in cats and dogs: An immunohistochemical study. J. Comp. Pathol. 2007, 136, 96–110. [Google Scholar] [CrossRef]
- Schoeman, J.P.; Goddard, A.; Leisewitz, A.L. Biomarkers in Canine parvovirus enteritis. N. Z. Vet. J. 2013, 61, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Venn, E.C.; Preisner, K.; Boscan, P.L.; Twedt, D.C.; Sullivan, L.A. Evaluation of an outpatient protocol in the treatment of canine parvoviral enteritis. J. Vet. Emerg. Crit. Care 2017, 27, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Mylonakis, M.E.; Kalli, I.; Rallis, T.S. Canine parvoviral enteritis: An update on the clinical diagnosis, treatment, and prevention. Vet. Med. Auckl 2016, 7, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Barbarossa, A.; Casadio, C.; Diegoli, G.; Fontana, M.C.; Giunti, M.; Miraglia, V.; Rambaldi, J.; Rubini, M.; Torresani, G.; Trambajolo, G.; et al. LINEE GUIDA Uso Prudente Dell’antibiotico Negli Animali da Compagnia. 2018. Available online: https://www.alimenti-salute.it/sites/default/files/Linee%20Guida%20PETs%202018.pdf (accessed on 22 November 2021).
- Escher, M.; Vanni, M.; Intorre, L.; Caprioli, A.; Tognetti, R.; Scavia, G. Use of antimicrobials in companion animal practice: A retrospective study in a veterinary teaching hospital in Italy. J. Antimicrob. Chemoter. 2011, 66, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbarossa, A.; Rambaldi, J.; Miraglia, V.; Giunti, M.; Diegoli, G.; Zaghini, A. Survey on antimicrobial prescribing patterns in small animal veterinary practice in Emilia Romagna, Italy. Vet. Rec. 2017, 181, 69. [Google Scholar] [CrossRef] [PubMed]
- Chirollo, C.; Nocera, F.P.; Piantedosi, D.; Fatone, G.; Della Valle, G.; De Martino, L.; Cortese, L. Data on before and after the Traceability System of Veterinary Antimicrobial Prescriptions in Small Animals at the University Veterinary Teaching Hospital of Naples. Animals 2021, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Mazzaferro, E.M. Update on Canine Parvoviral Enteritis. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 1307–1325. [Google Scholar] [CrossRef] [PubMed]
- Chaitman, J.; Ziese, A.-L.; Pilla, R.; Minamoto, Y.; Blake, A.B.; Guard, B.C.; Isaiah, A.; Lidbury, J.A.; Steiner, J.M.; Unterer, S.; et al. Fecal Microbial and Metabolic Profiles in Dogs with Acute Diarrhea Receiving Either Fecal Microbiota Transplantation or Oral Metronidazole. Front. Vet. Sci. 2020, 7, 192. [Google Scholar] [CrossRef] [PubMed]
- Tauro, A.; Beltran, E.; Cherubini, G.B.; Coelho, A.T.; Wessmann, A.; Driver, C.J.; Rusbridge, C.J. Metronidazole-induced neurotoxicity in 26 dogs. Aust. Vet. J. 2018, 96, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Kilian, E.; Suchodolski, J.S.; Hartmann, K.; Mueller, R.S.; Wess, G.; Unterer, S. Long-term effects of Canine parvovirus infection in dogs. PLoS ONE 2018, 13, e0192198. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Antimicrobial Resistance: Global Report on Surveillance 2014. 2014. Available online: https://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/ (accessed on 7 October 2020).
- WHO (World Health Organization). WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. 2017. Available online: https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/cia_guidelines/en/ (accessed on 7 October 2020).
- WHO (World Health Organization). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 7 October 2020).
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef]
- Alikhani, M.Y.; Asl, H.M.; Khairkhah, M.; Farajnia, S.; Aslani, M.M. Phenotypic and genotypic characterization of Escherichia Coli O111 serotypes. Gastroenterol. Hepatol. Bed Bench 2011, 4, 147–152. [Google Scholar] [PubMed]
- Kim, S.; Kim, S.-H.; Kim, J.; Shin, J.-H.; Lee, B.-K.; Park, M.-S. Occurrence and distribution of various genetic structures of class 1 and class 2 integrons in Salmonella enterica isolates from foodborne disease patients in Korea for 16 years. Foodborne Pathog. Dis. 2011, 8, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Gaastra, W.; Kusters, J.G.; van Duijkeren, E.; Lipman, L.J.A. Escherichia fergusonii. Vet. Microbiol. 2014, 172, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Gullett, J.C.; Westblade, L.F.; Green, D.A.; Whittier, S.; Burd, E.M. The Brief Case: Too beta to be a “B”. J. Clin. Microbiol. 2017, 55, 1604–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, M.D.; Matos, S.C.; Pomba, C.; Lübke-Becker, A.; Wieler, L.H.; Preziuso, S.; Melo-Cristino, J.; Ramirez, M. Multilocus sequence analysis of Streptococcus canis confirms the zoonotic origin of human infections and reveals genetic exchange with Streptococcus dysgalactiae subsp. equisimilis. J. Clin. Microbiol. 2013, 51, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Kuwamoto, R. A case of canine salmonellosis due to Salmonella infantis. J. Vet. Med. Sci. 1999, 61, 71–72. [Google Scholar] [CrossRef] [Green Version]
- Chomel, B.B. Emerging and Re-Emerging Zoonoses of Dogs and Cats. Animals 2014, 4, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Purpari, G.; Mira, F.; Di Bella, S.; Di Pietro, S.; Giudice, E.; Guercio, A. Investigation on Canine parvovirus circulation in dogs from Sicily (Italy) by biomolecular assay. Acta Vet. Beogr. 2018, 68, 80–94. [Google Scholar]
- Touihri, L.; Bouzid, I.; Daoud, R.; Desario, C.; El Goulli, A.F.; Decaro, N.; Ghorbel, A.; Buonavoglia, C.; Bahloul, C. Molecular characterization of canine parvovirus-2 variants circulating in Tunisia. Virus Genes 2009, 38, 249–258. [Google Scholar] [CrossRef]
- Battilani, M.; Modugno, F.; Mira, F.; Purpari, G.; Di Bella, S.; Guercio, A.; Balboni, A. Molecular epidemiology of Canine parvovirus type 2 in Italy from 1994 to 2017: Recurrence of the CPV-2b variant. BMC Vet. Res. 2019, 15, 393. [Google Scholar] [CrossRef]
- Ogbu, K.I.; Mira, F.; Purpari, G.; Nwosuh, C.; Loria, G.R.; Schirò, G.; Chiaramonte, G.; Tion, M.T.; Di Bella, S.; Ventriglia, G.; et al. Nearly full-length genome characterization of Canine parvovirus strains circulating in Nigeria. Transbound. Emerg. Dis. 2020, 67, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Pérez, R.; Calleros, L.; Marandino, A.; Sarute, N.; Iraola, G.; Grecco, S.; Blanc, H.; Vignuzzi, M.; Isakov, O.; Shomron, N.; et al. Phylogenetic and genome-wide deep-sequencing analyses of Canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain. PLoS ONE 2014, 9, e111779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martella, V.; Decaro, N.; Elia, G.; Buonavoglia, C. Surveillance activity for Canine parvovirus in Italy. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Visser, I.K.; Mamaev, L.; Goatley, L.; van Bressem, M.F.; Osterhaust, A.D. Dolphin and porpoise morbilliviruses are genetically distinct from phocine distemper virus. Virology 1993, 193, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.L.; Huang, G.; Qiu, W.; Zhong, Z.H.; Xia, X.Z.; Yin, Z. Detection and differentiation of CAV-1 and CAV-2 by polymerase chain reaction. Vet. Res. Commun. 2001, 25, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Pratelli, A.; Martella, V.; Decaro, N.; Tinelli, A.; Camero, M.; Cirone, F.; Elia, G.; Cavalli, A.; Corrente, M.; Greco, G.; et al. Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy. J. Virol. Methods 2003, 110, 9–17. [Google Scholar] [CrossRef]
- Freeman, M.M.; Kerin, T.; Hull, J.; McCaustland, K.; Gentsch, J. Enhancement of detection and quantification of rotavirus in stool using a modified real-time RT-PCR assay. J. Med. Virol. 2008, 80, 1489–1496. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-010-2. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 25th ed.; CLSI supplement M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; ISBN 978-1-56238-989-5/978-1-56238-990-1. [Google Scholar]
- Kim, J.; Jeon, S.; Rhie, H.; Lee, B.; Park, M.; Lee, H.; Lee, J.; Kim, S. Rapid Detection of Extended Spectrum β-Lactamase (ESBL) for Enterobacteriaceae by use of a Multiplex PCR-based Method. Infect. Chemother. 2009, 41, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Vitale, M.; Gaglio, S.; Galluzzo, P.; Cascone, G.; Piraino, C.; Di Marco Lo Presti, V.; Alduina, R. Antibiotic Resistance Profiling, Analysis of Virulence Aspects and Molecular Genotyping of Staphylococcus aureus Isolated in Sicily, Italy. Foodborne Pathog. Dis. 2018, 15, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Baums, C.G.; Schotte, U.; Amtsberg, G.; Goethe, R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 2004, 100, 11–16. [Google Scholar] [CrossRef]
- Bai, J.; Paddock, Z.D.; Shi, X.; Li, S.; An, B.; Nagaraja, T.G. Applicability of a multiplex PCR to detect the seven major Shiga toxin-producing Escherichia coli based on genes that code for serogroup-specific O-antigens and major virulence factors in cattle feces. Foodborne Pathog. Dis. 2012, 9, 541–548. [Google Scholar] [CrossRef] [PubMed]
Species | Family | Order | Number of Isolates | Tissue Sample |
---|---|---|---|---|
Gram-negative | ||||
Escherichia coli | Enterobacteriaceae | Enterobacteriales | 19 | Brain, heart, intestine, kidney, lymph nodes, liver, spleen |
Klebsiella pneumoniae | 4 | Brain, intestine, liver, spleen | ||
Enterobacter cloacae | 2 | Brain, intestine | ||
Enterobacter gergoviae | 2 | Brain, intestine | ||
Escherichia fergusonii | 1 | Intestine | ||
Proteus mirabilis | 1 | Intestine | ||
Salmonella enterica | 1 | Intestine | ||
Pseudomonas aeruginosa | Pseudomonadaceae | Pseudomonadales | 1 | Intestine |
Gram-positive | ||||
Clostridium perfringens | Clostridiaceae | Clostridiales | 3 | Intestine, liver, spleen |
Enterococcus faecium | Enterococcaceae | Lactobacillales | 2 | Brain, lymph nodes |
Enterococcus faecalis | 1 | Intestine | ||
Streptococcus canis | Streptococcaceae | Lactobacillales | 2 | Brain, lung |
Streptococcus pseudoporcinus | 1 | Intestine | ||
Staphylococcus lentus | Staphylococcaceae | Bacillales | 1 | Lung |
Staphylococcus sciuri | 1 | Brain | ||
Staphylococcus xylosus | 1 | Brain |
Bacterial Isolates | Dog ID. | AMC | AMP | CFR | CL | CXM | CVN | CRO | CEQ | MET | ATM | IPM | SP | DA | CN | VA | CT | ENR | MAR | MPZ | C | DO | SXT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli (n = 19) | 1 | I | R | R | R | R | R | I | R | R | S | S | R a | R a | R | R a | S | S | S | R | S | I | R |
3 | I | R | R | R | R | R | S | R | R | S | I | R a | R a | R | R a | I | S | S | R | S | S | S | |
4 | I | R | R | R | R | R | R | R | R | R | I | R a | R a | I | R a | I | I | S | R | S | I | R | |
5 | S | S | R | R | R | I | S | R | R | I | S | R a | R a | I | R a | S | S | S | R | S | S | S | |
6 | S | S | R | R | R | I | S | R | R | I | S | R a | R a | R | R a | S | S | S | R | S | S | S | |
7 | S | R | R | R | R | I | S | R | R | S | S | R a | R a | R | R a | S | S | S | R | S | R | R | |
8 | S | R | R | R | R | I | S | R | R | I | S | R a | Ra | R | R a | S | S | S | R | S | S | R | |
9 | I | R | R | R | R | R | S | R | R | I | S | R a | R a | I | R a | S | S | S | R | S | S | S | |
10 | R | R | R | R | R | R | S | R | R | S | S | R a | R a | R | R a | S | R | R | R | R | R | R | |
11 | I | R | R | R | R | I | S | R | R | I | S | R a | R a | R | R a | S | R | R | R | S | S | S | |
13 | S | I | R | R | R | R | S | R | R | R | S | R a | R a | I | R a | I | I | S | R | S | R | S | |
14 | S | R | S | R | R | S | S | R | R | S | S | R a | R a | R | R a | S | S | S | R | I | R | R | |
15 | S | S | S | R | R | S | S | R | R | S | I | R a | R a | S | R a | S | S | S | R | S | S | S | |
16 | S | S | R | S | R | R | S | R | R | R | I | R a | R a | R | R a | S | S | S | R | S | S | S | |
17 | S | S | S | S | R | S | S | R | R | I | S | R a | R a | I | R a | S | S | S | R | S | S | S | |
19 | R | R | R | R | R | R | R | R | R | R | S | R a | R a | R | R a | S | R | R | R | R | I | R | |
20 | S | S | S | S | R | S | S | R | R | S | S | R a | R a | S | R a | S | S | S | R | S | S | S | |
22 | R | R | R | R | R | I | S | R | R | R | R | R a | R a | R | R a | S | R | R | R | R | I | S | |
23 | S | S | S | S | R | S | S | R | R | R | S | R a | R a | S | R a | S | I | S | R | S | S | S | |
Klebsiella pneumoniae (n = 4) | 6 | S | R a | R | R | R | S | S | R | R | S | S | R a | R a | R | R a | S | S | S | R | S | I | R |
10 | I | R a | R | R | R | R | S | R | R | S | S | R a | R a | S | R a | S | I | S | R | S | R | S | |
12 | I | R a | R | R | R | R | R | R | R | R | S | R a | R a | S | R a | S | I | S | R | S | R | R | |
22 | R | R a | R | R | R | R | R | R | R | R | S | R a | R a | R | R a | S | R | I | R | S | I | R | |
Enterobacter cloacae (n = 2) | 2 | R | R a | R | R | R | R | R | R | R | R | S | R a | R a | S | R a | S | I | R | R | S | I | R |
13 | S | S a | R | R | R | I | S | R | R | I | S | R a | R a | I | R a | S | S | I | R | S | R | S | |
Enterobacter gergoviae (n = 2) | 5 | S | R a | R | R | R | I | S | R | R | I | S | R a | R a | S | R a | S | I | S | R | S | I | S |
9 | S | R a | R | S | R | S | S | R | R | S | S | R a | R a | S | R a | S | S | S | R | S | S | S | |
Escherichia fergusoni (n = 1) | 21 | S | S | S | S | R | S | S | R | R | S | S | R a | R a | S | R a | R | S | S | R | S | R | S |
Proteus mirabilis (n = 1) | 20 | S | S | S | S | R | S | S | R | R | S | S | R a | R a | S | R a | S | S | S | R | S | R a | S |
Salmonella enterica (n = 1) | 3 | S | R | R | R | R | I | S | R | R | I | S | R a | R a | R | R a | I | S | S | R | S | S | S |
Pseudomonas aeruginosa (n = 1) | 12 | R a | R a | R a | R a | R a | R | S | R | R | R | I | R a | R a | S | R a | S | S | S | R | S a | S a | R |
Bacterial Isolates | Dog ID. | AMC | AMP | CFR | CL | CXM | CVN | CRO | CEQ | MET | ATM | IPM | SP | DA | CN | VA | CT | ENR | MAR | MPZ | C | DO | SXT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clostridium perfringens (n = 3) | 2 | S | R | R | R | R | R | R | R | R | R a | S | R | R | R | S | R a | I | S | R | S | I | R |
3 | S | S | S | S | R | I | S | R | S | R a | S | I | S | R | S | R a | S | S | S | S | S | R | |
20 | S | S | S | S | S | R | S | R | S | R a | S | I | S | R | S | R a | S | S | S | S | S | S | |
Enterococcus faecium (n = 2) | 4 | I | R | R a | R a | R a | R a | R a | R a | R | R a | R | I a | R | R | S | R a | R | R | R | S | I | I a |
12 | I | R | R a | R a | R a | R a | R a | R a | R | R a | R | I a | I | R | S | R a | R | R | R | S | I | R a | |
Enterococcus faecalis (n = 1) | 9 | S | S | S a | R a | R a | R a | Ia | R a | R | R a | S | R a | R a | S | S | R a | R | R | R | S | R | R a |
Staphylococcus lentus (n = 1) | 20 | S | S | S | S | S | S | S | R | S a | R a | S | I | I | S | S | R a | S | S | R | S | S | S |
Staphylococcus sciuri (n = 1) | 10 | S | S | S | S | R | S | S | R | S a | R a | S | I | I | S | S | R a | S | S | R | S | S | S |
Staphylococcus xylosus (n = 1) | 4 | S | R | R | R | R | R | I | R | R a | R a | S | R | R | S | S | R a | R | S | R | S | S | S |
Streptococcus canis (n = 2) | 1 | S | I | I | S | S | S | S | R | S | R a | S | I | R | R | S | R a | I | S | R | S | S | S |
5 | S | S | S | S | R | R | S | R | S | R a | S | I | S | I | S | R a | I | S | R | S | R | S | |
Streptococcus pseudoporcinus (n = 1) | 18 | S | S | S | S | R | I | S | R | S | R a | S | I | I | I | S | R a | I | I | R | S | S | S |
Dog ID. | Bacterial Isolates | Source | β-Lactamase Genes | AMC | AMP | CFR | CL | CXM | CVN | CRO | CEQ | MET | ATM | IPM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | E. coli | Intestine | blaTEM, blaCMY-II, blaCTX-M-I | I | R | R | R | R | R | I | R | R | S | S |
2 | E. cloacae | Intestine | blaTEM, blaDHA | R | R a | R | R | R | R | R | R | R | R | S |
3 | S. enterica | Intestine | negative | S | R | R | R | R | I | S | R | R | I | S |
E. coli | Intestine | negative | I | R | R | R | R | R | S | R | R | S | I | |
4 | E. coli | Intestine | blaTEM, blaCTX-M-II | I | R | R | R | R | R | R | R | R | R | I |
5 | E. gergoviae | Brain | negative | S | Ra | R | R | R | I | S | R | R | I | S |
E. coli | Intestine | negative | S | S | R | R | R | I | S | R | R | I | S | |
6 | E. coli | Intestine | negative | S | S | R | R | R | I | S | R | R | I | S |
K. pneumoniae | Brain | blaTEM, blaSHV, blaCTX-M-II | S | R a | R | R | R | S | S | R | R | S | S | |
7 | E. coli | Intestine | negative | S | R | R | R | R | I | S | R | R | S | S |
8 | E. coli | Intestine | blaTEM | S | R | R | R | R | I | S | R | R | I | S |
9 | E. coli (0111, eae) | Intestine | blaTEM, blaCTX-M-II | I | R | R | R | R | R | S | R | R | I | S |
E. gergoviae | Intestine | blaSHV | S | R a | R | S | R | S | S | R | R | S | S | |
10 | E. coli | Intestine | negative | R | R | R | R | R | R | S | R | R | S | S |
K. pneumoniae | Brain | blaSHV | I | R a | R | R | R | R | S | R | R | S | S | |
11 | E. coli | Intestine | blaTEM, blaOXA | I | R | R | R | R | I | S | R | R | I | S |
12 | K. pneumoniae | Intestine | blaTEM, blaOXA, blaSHVblaCTX-M-II | I | R a | R | R | R | R | R | R | R | R | S |
13 | E. coli | Intestine | negative | S | I | R | R | R | R | S | R | R | R | S |
E. cloacae | Brain | negative | S | S a | R | R | R | I | S | R | R | I | S | |
14 | E. coli | Intestine | blaTEM, blaCTX-M-II | S | R | S | R | R | S | S | R | R | S | S |
15 | E. coli | Intestine | negative | S | S | S | R | R | S | S | R | R | S | I |
16 | E. coli | Intestine | negative | S | S | R | S | R | R | S | R | R | R | I |
17 | E. coli | Intestine | negative | S | S | S | S | R | S | S | R | R | I | S |
19 | E. coli | Intestine | blaOXA, blaCTX-M-II | R | R | R | R | R | R | R | R | R | R | S |
20 | E. coli | Intestine | negative | S | S | S | S | R | S | S | R | R | S | S |
P. mirabilis | Intestine | negative | S | S | S | S | R | S | S | R | R | S | S | |
21 | E. fergusonii | Intestine | blaCTX-M-II | S | S | S | S | R | S | S | R | R | S | S |
22 | E. coli | Intestine | blaTEM, blaOXA, blaSHV, blaCTX-M-II | R | R | R | R | R | I | S | R | R | R | R |
K. pneumoniae | Intestine | blaTEM, blaOXA, blaSHV, blaCTX-M-II | R | R a | R | R | R | R | R | R | R | R | S | |
23 | E. coli | Intestine | negative | S | S | S | S | R | S | S | R | R | R | S |
Bacterial Isolates | Dog Id | Penicillins | Cephalosporins | Carbapenem | Aminoglycosides | Fluoroquinolones | Chloramphenicol | Sulfonamides | Beta Lactams | Tetracycline | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMC | AMP | CL | CVN | IPM | CN | ENR | MAR | C | SXT | MET | PIP | DO | TE | ||||||||||||
KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | KB | MIC | ||
E. coli (n = 16) | 1 | I | R | R | R | R | R | R | R | S | S | R | S | S | S | S | S | S | S | R | S | R | R | I | R |
3 | I | S | R | S | R | R | R | S | I | S | R | R | S | S | S | S | S | S | S | S | R | S | S | S | |
4 | I | R | R | R | R | R | R | R | I | S | I | R | I | S | S | S | S | S | R | R | R | R | I | R | |
5 | S | S | S | S | R | R | I | S | S | S | I | R | S | S | S | S | S | S | S | S | R | S | S | S | |
6 | S | S | S | S | R | R | I | S | S | S | R | R | S | S | S | S | S | S | S | S | R | S | S | S | |
7 | S | S | R | R | R | R | I | S | S | S | R | S | S | S | S | S | S | S | R | R | R | R | R | R | |
8 | S | S | R | R | R | R | I | S | S | S | R | R | S | S | S | S | S | S | R | R | R | R | S | S | |
9 | I | S | R | R | R | R | R | S | S | S | I | R | S | S | S | S | S | S | S | S | R | R | S | S | |
10 | R | R | R | R | R | R | R | S | S | S | R | S | R | R | R | R | R | R | R | R | R | R | R | R | |
11 | I | R | R | R | R | R | I | S | S | S | R | R | R | R | R | R | S | S | S | S | R | R | S | S | |
13 | S | S | I | S | R | R | R | S | S | S | I | R | I | S | S | S | S | S | S | S | R | R | R | S | |
14 | S | S | R | R | R | R | S | S | S | S | R | S | S | S | S | S | I | I | R | R | R | S | R | R | |
15 | S | S | S | S | R | R | S | S | I | S | S | R | S | S | S | S | S | I | S | S | R | R | S | S | |
16 | S | S | S | S | S | R | R | S | I | S | R | R | S | S | S | S | S | S | S | S | R | S | S | S | |
17 | S | S | S | S | S | R | S | S | S | S | I | R | S | S | S | S | S | S | S | S | R | S | S | S | |
19 | R | R | R | R | R | R | R | S | S | S | R | R | R | S | R | R | R | S | R | S | R | S | I | S | |
20 | R | S | R | R | R | S | I | S | R | S | R | S | R | R | R | R | R | R | S | S | R | S | I | R | |
Klebsiella pneumoniae (n = 4) | 6 | S | S | R a | R a | R | S | S | S | S | S | R | R | S | S | S | S | S | S | R | R | R | R | I | R |
10 | S | I | R a | R a | R | S | R | S | S | S | S | S | I | S | S | S | S | S | S | S | R | R | R | R | |
12 | I | I | R a | R a | R | R | R | R | S | S | S | S | I | I | S | S | S | S | R | R | R | R | R | R | |
20 | R | I | R a | R a | R | R | R | R | S | S | R | R | R | R | I | I | S | S | R | R | R | R | I | R | |
Enterobacter cloacae (n = 2) | 2 | R | R | R a | nd | R | R | R | S | S | S | S | S | I | I | R | S | S | S | R | R | R | R | I | R |
13 | S | R | S a | nd | R | R | I | S | S | S | I | S | S | S | I | S | S | S | S | S | R | S | R | R | |
Enterobacter gergoviae (n = 2) | 5 | S | R | R a | nd | R | R | I | S | S | S | S | S | I | S | S | S | S | S | S | S | R | S | I | S |
9 | S | R | R a | nd | S | R | S | S | S | S | S | S | S | S | S | S | S | S | S | S | R | I | S | S | |
Escherichia fergusoni (n = 1) | 23 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | R | S | R | S |
Proteus mirabilis (n = 1) | 22 | S | S | S | S | S | I | S | S | S | S | S | S | S | S | S | S | S | S | S | S | R | S | R a | R |
Salmonella enterica (n = 1) | 3 | S | S | R | S | R | S | I | S | S | S | R | S | S | S | S | S | S | S | S | S | R | S | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirò, G.; Gambino, D.; Mira, F.; Vitale, M.; Guercio, A.; Purpari, G.; Antoci, F.; Licitra, F.; Chiaramonte, G.; La Giglia, M.; et al. Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health. Antibiotics 2022, 11, 142. https://doi.org/10.3390/antibiotics11020142
Schirò G, Gambino D, Mira F, Vitale M, Guercio A, Purpari G, Antoci F, Licitra F, Chiaramonte G, La Giglia M, et al. Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health. Antibiotics. 2022; 11(2):142. https://doi.org/10.3390/antibiotics11020142
Chicago/Turabian StyleSchirò, Giorgia, Delia Gambino, Francesco Mira, Maria Vitale, Annalisa Guercio, Giuseppa Purpari, Francesco Antoci, Francesca Licitra, Gabriele Chiaramonte, Maria La Giglia, and et al. 2022. "Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health" Antibiotics 11, no. 2: 142. https://doi.org/10.3390/antibiotics11020142
APA StyleSchirò, G., Gambino, D., Mira, F., Vitale, M., Guercio, A., Purpari, G., Antoci, F., Licitra, F., Chiaramonte, G., La Giglia, M., Randazzo, V., & Vicari, D. (2022). Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health. Antibiotics, 11(2), 142. https://doi.org/10.3390/antibiotics11020142