Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Conditions and Mutant Isolation
2.2. RNA Preparation
2.3. RNA-seq Library Construction and Sequencing
2.4. Reverse Transcription Quantitative PCR (RT-qPCR) Analysis
2.5. Bioinformatics Analysis
2.6. Data Accession Numbers
3. Results
3.1. Integrated Genome and Transcriptome Sequencing for Identification of Genetic Variants
3.2. InDels, Gaps, and SNPs Identified
3.3. Identification of Up-Regulated and Down-Regulated Genes
3.4. Function Ontology and KEGG Pathway Enrichment Analyses of DEGs
3.5. RT-qPCR Confirmation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bastos, M.D.; Coutinho, B.G.; Coelho, M.L. Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications. Pharmaceuticals 2010, 3, 1139–1161. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.C.; Dong, S.; Baker, J.R.; Foster-Frey, J.; Pritchard, D.G.; Donovan, D.M. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus. Sci. Rep. 2016, 6, 25063. [Google Scholar] [CrossRef]
- Johnson, C.T.; Sok, M.C.P.; Martin, K.E.; Kalelkar, P.P.; Caplin, J.D.; Botchwey, E.A.; Garcia, A.J. Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects. Sci. Adv. 2019, 5, eaaw1228. [Google Scholar] [CrossRef] [Green Version]
- Kusuma, C.; Jadanova, A.; Chanturiya, T.; Kokai-Kun, J.F. Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob. Agents Chemother. 2007, 51, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Climo, M.W.; Ehlert, K.; Archer, G.L. Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1431–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehart, H.P.; Heath, H.E.; Heath, L.S.; Leblanc, P.A.; Sloan, G.L. The Lysostaphin Endopeptidase Resistance Gene (epr) Specifies Modification of Peptidoglycan Cross Bridges in Staphylococcus simulans and Staphylococcus aureus. Appl. Environ. Microbiol. 1995, 61, 2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranden, A.M.; Ehlert, K.; Labischinski, H.; Berger-Bachi, B. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 1997, 179, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugai, M.; Fujiwara, T.; Ohta, K.; Komatsuzawa, H.; Ohara, M.; Suginaka, H. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J. Bacteriol. 1997, 179, 4311–4318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thumm, G.; Gotz, F. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol. Microbiol. 1997, 23, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, S.; Ehlert, K.; Tschierske, M.; Labischinski, H.; Berger-Bachi, B. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. USA 1999, 96, 9351–9356. [Google Scholar] [PubMed] [Green Version]
- Heath, H.E.; Heath, L.S.; Nitterauer, J.D.; Rose, K.E.; Sloan, G.L. Plasmid-encoded lysostaphin endopeptidase resistance of Staphylococcus simulans biovar staphylolyticus. Biochem. Biophys. Res. Commun. 1989, 160, 1106–1109. [Google Scholar] [CrossRef]
- Filatova, L.Y.; Donovan, D.M.; Ishnazarova, N.T.; Foster-Frey, J.A.; Becker, S.C.; Pugachev, V.G.; Balabushevich, N.G.; Dmitrieva, N.F.; Klyachko, N.L. A Chimeric LysK-lysostaphin fusion enzyme lysing Staphylococcus aureus Cells: A study of both kinetics of inactivation and specifics of interaction with anionic polymers. Appl. Biochem. Biotechnol. 2016, 180, 544–557. [Google Scholar] [CrossRef] [PubMed]
- von Eiff, C.; Kokai-Kun, J.F.; Becker, K.; Peters, G. In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from anterior nares and blood. Antimicrob. Agents Chemother. 2003, 47, 3613–3615. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.C.; Dong, S.; Baker, J.R.; Foster-Frey, J.; Pritchard, D.G.; Donovan, D.M. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 2009, 443, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Schmelcher, M.; Powell, A.M.; Becker, S.C.; Camp, M.J.; Donovan, D.M. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl. Environ. Microbiol. 2012, 78, 2297–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.A.; Panhuis, T.M.; Stoehr, A.M. Phenotypic plasticity: Molecular mechanisms and adaptive significance. Compr. Physiol. 2012, 2, 1417–1439. [Google Scholar] [PubMed]
- Hurdle, J.G.; O’Neill, A.J.; Ingham, E.; Fishwick, C.; Chopra, I. Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob. Agents Chemother. 2004, 48, 4366–4376. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, A.J.; Huovinen, T.; Fishwick, C.W.; Chopra, I. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob. Agents Chemother. 2006, 50, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Mushegian, A.A.; Arbore, R.; Walser, J.C.; Ebert, D. Environmental sources of bacteria and genetic variation in behavior influence host-associated microbiota. Appl. Environ. Microbiol. 2019, 85, e01547-18. [Google Scholar] [CrossRef] [Green Version]
- Patlar, B.; Weber, M.; Ramm, S.A. Genetic and environmental variation in transcriptional expression of seminal fluid proteins. Heredity 2019, 122, 595–611. [Google Scholar] [CrossRef]
- Qin, N.; Tan, X.; Jiao, Y.; Liu, L.; Zhao, W.; Yang, S.; Jia, A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2014, 4, 5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Liu, Z.; Liu, Z.; Meng, R.; Shi, C.; Chen, X.; Bu, X.; Guo, N. Phenotype and RNA-seq-Based transcriptome profiling of Staphylococcus aureus biofilms in response to tea tree oil. Microb. Pathog. 2018, 123, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Hati, S.; Priyadarshini, R.; Sen, S. Transcriptome analysis predicts mode of action of benzimidazole molecules against Staphylococcus aureus UAMS-1. Drug Dev. Res. 2019, 80, 490–503. [Google Scholar] [CrossRef]
- Nitzan, T.; Kokou, F.; Doron-Faigenboim, A.; Slosman, T.; Biran, J.; Mizrahi, I.; Zak, T.; Benet, A.; Cnaani, A. Transcriptome analysis reveals common and differential response to low temperature exposure between tolerant and sensitive blue tilapia (Oreochromis aureus). Front. Genet. 2019, 10, 100. [Google Scholar] [CrossRef]
- Singh, N.; Rajwade, J.; Paknikar, K.M. Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition. Coll. Surf. B Biointerfaces 2019, 175, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Yan, X.; Chen, C.; Dawson, H.D.; Bhagwat, A.A. Understanding the host-adapted state of Citrobacter rodentium by transcriptomic analysis. Arch. Microbiol. 2016, 198, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Li, P.E.; Lo, C.C.; Anderson, J.J.; Davenport, K.W.; Bishop-Lilly, K.A.; Xu, Y.; Ahmed, S.; Feng, S.; Mokashi, V.P.; Chain, P.S. Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res. 2017, 45, 67–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeroslavsky, G.; Girshevitz, O.; Foster-Frey, J.; Donovan, D.M.; Rahimipour, S. Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme. Langmuir 2015, 31, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.W.; Yang, J.; Guo, H.; Ji, Y. The Staphylococcus aureus AirSR two-component system mediates reactive oxygen species resistance via transcriptional regulation of staphyloxanthin production. Infect. Immun. 2017, 85, e00838-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, K.; Holmes, E.A.; Penewit, K.; Lee, D.K.; Hardy, S.R.; Ren, M.; Krist, M.P.; Huang, K.; Waalkes, A.; Salipante, S.J. Artificial Selection for Pathogenicity Mutations in Staphylococcus aureus Identifies Novel Factors Relevant to Chronic Infection. Infect. Immun. 2019, 87, e00884-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zygmunt, W.A.; Browder, H.P.; Tavormina, P.A. Susceptibility of coagulase-negative staphylococci to lysostaphin and other antibiotics. Appl. Microbiol. 1968, 16, 1168–1173. [Google Scholar] [CrossRef]
- Becker, S.C.; Dong, S.; Baker, J.R.; Foster-Frey, J.; Pritchard, D.G.; Donovan, D.M. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol. Lett. 2009, 294, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyansky, I.; Tsirline, V.B.; Montero, P.N.; Satishkumar, R.; Martin, T.R.; Lincourt, A.E.; Shipp, J.I.; Vertegel, A.; Heniford, B.T. Lysostaphin-coated mesh prevents staphylococcal infection and significantly improves survival in a contaminated surgical field. Am. Surg. 2011, 77, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, H.; Farhangnia, L.; Ghaznavi-Rad, E. In vitro and in vivo antistaphylococcal activity determination of the new recombinant lysostaphin protein. Jundishapur. J. Microbiol. 2016, 9, e28489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boksha, I.S.; Lavrova, N.V.; Grishin, A.V.; Demidenko, A.V.; Lyashchuk, A.M.; Galushkina, Z.M.; Ovchinnikov, R.S.; Umyarov, A.M.; Avetisian, L.R.; Chernukha, M.; et al. Staphylococcus simulans Recombinant lysostaphin: Production, purification, and determination of antistaphylococcal activity. Biochemistry 2016, 81, 502–510. [Google Scholar] [CrossRef]
- Chandra Ojha, S.; Imtong, C.; Meetum, K.; Sakdee, S.; Katzenmeier, G.; Angsuthanasombat, C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans: Adverse influence of Zn(2+) on bacteriolytic activity. Protein Expr. Purif. 2018, 151, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Loessner, M.J.; Gaeng, S.; Wendlinger, G.; Maier, S.K.; Scherer, S. The two-component lysis system of Staphylococcus aureus bacteriophage Twort: A large TTG-start holin and an associated amidase endolysin. FEMS Microbiol. Lett. 1998, 162, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Donovan, D.M. Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat. Biotechnol. 2007, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, N.; Yan, Y.; Wang, H.; Li, Y.; Lu, C.; Sun, J. Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP. Curr. Microbiol. 2012, 65, 28–34. [Google Scholar] [CrossRef]
- Sahin, F.; Karasartova, D.; Ozsan, T.M.; Kiyan, M.; Karahan, C.Z.; Tekeli, A. Identification of methicillin-resistant Staphylococcus aureus carrying an exfoliative toxin A gene encoding phage isolated from a hospitalized patient in Turkey. Can. J. Microbiol. 2013, 59, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, C.O.; Cortes, M.F.; Bonelli, R.R.; Correa, A.B.; Botelho, A.M.; Americo, M.A.; Fracalanzza, S.E.; Figueiredo, A.M. Inactivation of the autolysis-related genes lrgB and yycI in Staphylococcus aureus increases cell lysis-dependent eDNA release and enhances biofilm development in vitro and in vivo. PLoS ONE 2015, 10, e0138924. [Google Scholar] [CrossRef] [PubMed]
- Buckland, A.G.; Heeley, E.L.; Wilton, D.C. Bacterial cell membrane hydrolysis by secreted phospholipases A(2): A major physiological role of human group IIa sPLA(2) involving both bacterial cell wall penetration and interfacial catalysis. Biochim. Biophys. Acta 2000, 1484, 195–206. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Bahador, A. Outer membrane protein 100 of Aggregatibacter actinomycetemcomitans act as a biopharmaceutical target for photodynamic therapy: An in silico analysis. Photodiagnosis Photodyn. Ther. 2016, 16, 154–160. [Google Scholar] [CrossRef] [PubMed]
Technology | Sample | Method | SNP_position | Ref_codon | Sub_codon | Ref_aa | Sub_aa | Synonymous | Product | CDS_start | CDS_end |
---|---|---|---|---|---|---|---|---|---|---|---|
WGS | mutant | contigs | 73,365 | C | T | Intergenic region (between lctP and spa) | |||||
WGS | mutant | reads | 73,365 | C | T | Intergenic region (between lctP and spa) | |||||
WGS | mutant | contigs | 354,546 | GCG | GCA | A | A | Yes | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 354,585 | GGT | GGG | G | G | Yes | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 354,594 | TTT | TTG | F | L | No | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 354,729 | TGT | TGC | C | C | Yes | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 354,767 | AAT | AGT | N | S | No | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 354,859 | TTT | CTT | F | L | No | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 354,906 | CCG | CCA | P | P | Yes | NWMN_0305: hypothetical protein | 353,131 | 355,029 |
WGS | mutant | contigs | 355,079 | ACA | ACG | T | T | Yes | NWMN_0306: hypothetical protein | 355,029 | 356,852 |
WGS | mutant | contigs | 355,208 | AAG | AAA | K | K | Yes | NWMN_0306: hypothetical protein | 355,029 | 356,852 |
WGS | mutant | contigs | 355,674 | GTC | TTC | V | F | No | NWMN_0306: hypothetical protein | 355,029 | 356,852 |
WGS | mutant | contigs | 504,664 | T | C | Intergenic region (between recR and tmk) | |||||
WGS | mutant | contigs | 1,086,625 | AGC | AGT | S | S | Yes | NWMN_0979 (pycA): pyruvate carboxylase | 1,085,501 | 1,088,971 |
WGS | mutant | reads | 1,086,625 | AGC | AGT | S | S | Yes | NWMN_0979 (pycA): pyruvate carboxylase | 1,085,501 | 1,088,971 |
RNA-seq | mutant | contig | 1,086,625 | AGC | AGT | S | S | Yes | NWMN_0979 (pycA): pyruvate carboxylase | 1,085,501 | 1,088,971 |
RNA-seq | mutant | reads | 1,086,625 | AGC | AGT | S | S | Yes | NWMN_0979 (pycA): pyruvate carboxylase | 1,085,501 | 1,088,971 |
WGS | mutant | contigs | 1,420,272 | ATT | GTT | I | V | No | NWMN_1288: hypothetical protein | 1,420,254 | 1,421,021 |
WGS | mutant | reads | 1,420,272 | ATT | GTT | I | V | No | NWMN_1288: hypothetical protein | 1,420,254 | 1,421,021 |
RNA-seq | mutant | contig | 1,420,272 | ATT | GTT | I | V | No | NWMN_1288: hypothetical protein | 1,420,254 | 1,421,021 |
RNA-seq | mutant | reads | 1,420,272 | ATT | GTT | I | V | No | NWMN_1288: hypothetical protein | 1,420,254 | 1,421,021 |
Technology | Sample | Method | InDel_position | Sequence | InDel_seq | Length | Type | Product | CDS_start | CDS_end |
---|---|---|---|---|---|---|---|---|---|---|
DNAseq | WT | reads | 2 | GAT | GATCGAT | 4 | Insertion | Intergenic region (between dnaA and rpmH) | ||
DNAseq | mutant | reads | 4 | TT | TTTTTATCGATT | 10 | Insertion | Intergenic region (between dnaA and rpmH) | ||
RNA-seq | mutant | reads | 897,844 | GC | GCC | 1 | Insertion | Intergenic region (between NWMN_0810 and NWMN_0811) | ||
DNAseq | mutant | reads | 897,844 | GC | GCC | 1 | Insertion | Intergenic region (between NWMN_0810 and NWMN_0811) | ||
DNAseq | mutant | reads | 897,951 | TG | TGG | 1 | Insertion | Intergenic region (between NWMN_0810 and NWMN_0811) | ||
RNA-seq | mutant | reads | 897,989 | AT | ATT | 1 | Insertion | Intergenic region (between NWMN_0810 and NWMN_0811) | ||
DNAseq | mutant | reads | 1,441,311 | ACCC | ACC | 1 | Deletion | NWMN_1308 (dapD) :tetrahydrodipicolinate acetyltransferase | 1,440,676 | 1,441,395 |
DNAseq | mutant | reads | 1,441,331 | CA | CAA | 1 | Insertion | NWMN_1308 (dapD) :tetrahydrodipicolinate acetyltransferase | 1,440,676 | 1,441,395 |
DNAseq | mutant | reads | 1,578,835 | GAAA | GAA | 1 | Deletion | NWMN_1410:pyrroline-5- carboxylate reductase | 1,578,193 | 1,579,008 |
RNA-seq | mutant | reads | 1,578,900 | GCC | GC | 1 | Deletion | NWMN_1410:pyrroline-5- carboxylate reductase | 1,578,193 | 1,579,008 |
DNAseq | mutant | reads | 1,578,900 | GCC | GC | 1 | Deletion | NWMN_1410:pyrroline-5- carboxylate reductase | 1,578,193 | 1,579,008 |
DNAseq | mutant | reads | 1,761,003 | ATTTTTT | ATTTTT | 1 | Deletion | Intergenic region (between citZ and aapA) | ||
DNAseq | mutant | contigs | 1,761,008 | T | 1 | Deletion | Intergenic region (between citZ and aapA) | |||
RNA-seq | mutant | contigs | 2,744,980 | G | 1 | Deletion | Intergenic region (between NWMN_2500 and Ldh) | |||
DNAseq | mutant | contigs | 2,744,980 | G | 1 | Deletion | Intergenic region (between NWMN_2500 and Ldh) | |||
DNAseq | mutant | reads | 2,878,891 | CTTTTA T | CTTTTATCGATTT TAT | 9 | Insertion | Intergenic region (between dnaA and rpmH) |
Down-regulated gene (higher expression in WT) | ||||||
Gene_symbol | Gene_ID | LogFC | LogCPM | p-Value | FDR | Protein name |
NWMN_0078 | BAF66350 | −0.83 | 7.32 | 0.00 | 0.01 | surface protein SasD |
gntR | BAF66470 | −0.92 | 5.12 | 0.00 | 0.03 | GntR |
NWMN_0738 | BA67010 | −0.71 | 8.16 | 0.00 | 0.04 | Conserved hypothetical protein |
NWMN_1951 | BAF68223 | −1.08 | 4.81 | 0.00 | 0.04 | oxidoreductase |
lukF | BAF68199 | −0.95 | 6.15 | 0.00 | 0.04 | gamma-hemolysin subunit B |
NWMN_2209 | BAF68481 | −0.83 | 6.91 | 0.00 | 0.04 | conserved hypothetical protein |
Up-regulated gene (lower expression in WT) | ||||||
NWMN_2304 | BAF68576 | 3.13 | 4.99 | 0.00 | 0.00 | membrane protein |
NWMN_1882 | BAF68154 | 1.85 | 4.17 | 0.00 | 0.00 | holin (holin, toxin secretion/phage lysis family protein) |
NWMN_0537 | BAF66809 | 1.05 | 11.68 | 0.00 | 0.00 | membrane protein |
NWMN_1068 | BAF67340 | 1.21 | 4.88 | 0.00 | 0.00 | conserved hypothetical protein |
NWMN_0909 | BAF67181 | 2.88 | 2.60 | 0.00 | 0.00 | membrane protein |
NWMN_2505 | BAF68777 | 1.69 | 4.27 | 0.00 | 0.00 | membrane protein |
NWMN_1874 | BAF68146 | 1.18 | 5.74 | 0.00 | 0.01 | putative membrane protein |
NWMN_2287 | BAF68559 | 0.69 | 7.66 | 0.00 | 0.01 | hsp20-like protein |
NWMN_1639 | BAF67911 | 0.77 | 6.91 | 0.00 | 0.01 | peptidase |
NWMN_1256 | BAF67528 | 0.72 | 6.40 | 0.00 | 0.03 | cytochrome C biogenesis protein CcdC |
NWMN_0985 | BAF67257 | 0.91 | 5.07 | 0.00 | 0.03 | conserved hypothetical protein |
nrdH | BAF67223 | 1.24 | 4.55 | 0.00 | 0.04 | NrdH-redoxin |
NWMN_2223 | BAF68495 | 0.73 | 6.62 | 0.00 | 0.04 | conserved hypothetical protein |
NWMN_1881 | BAF68153 | 0.78 | 6.25 | 0.00 | 0.04 | amidase |
NWMN_2154 | BAF68426 | 0.83 | 6.67 | 0.00 | 0.04 | probable membrane protein |
NWMN_0920 | BAF67192 | 0.99 | 4.49 | 0.00 | 0.04 | acyltransferase |
NWMN_0986 | BAF67258 | 0.81 | 5.86 | 0.00 | 0.05 | conserved hypothetical protein |
NWMN_1229 | BAF67501 | 1.43 | 3.40 | 0.00 | 0.05 | phospholipase D/transphosphatidylase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Xie, Y.; Li, C.; Donovan, D.M.; Gehring, A.; Irwin, P.; He, Y. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus. Antibiotics 2022, 11, 125. https://doi.org/10.3390/antibiotics11020125
Yan X, Xie Y, Li C, Donovan DM, Gehring A, Irwin P, He Y. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus. Antibiotics. 2022; 11(2):125. https://doi.org/10.3390/antibiotics11020125
Chicago/Turabian StyleYan, Xianghe, Yanping Xie, Charles Li, David M. Donovan, Andrew Gehring, Peter Irwin, and Yiping He. 2022. "Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus" Antibiotics 11, no. 2: 125. https://doi.org/10.3390/antibiotics11020125
APA StyleYan, X., Xie, Y., Li, C., Donovan, D. M., Gehring, A., Irwin, P., & He, Y. (2022). Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Related to Antimicrobial Properties of Lysostaphin in Staphylococcus aureus. Antibiotics, 11(2), 125. https://doi.org/10.3390/antibiotics11020125