Sensitive and Selective Electrochemical Detection of Hydrogen Peroxide Using a Silver-Incorporated CeO2/Ag2O Nanocomposite
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Silver-Doped CeO2/Ag2O Nanocomposite Synthesis
2.3. Material Characterization
2.4. Electrode Fabrication and Electrochemical Measurements
2.5. Real Sample Analysis
3. Results
3.1. Structural, Morphological and Compositional Analysis
3.2. Electrocatalytic Response of CeO2/GCE and Ag-CeO2/Ag2O/GCE Towards the Detection of H2O2
3.2.1. H2O2 Detection by the Electrocatalytic Reaction of CeO2/GCE and Ag-CeO2/Ag2O/GCE
3.2.2. Effect of Scan Rate on CeO2/GCE and Ag-CeO2/Ag2O/GCE Towards the Detection of H2O2
3.2.3. Amperometric Determination of H2O2 at CeO2/GCE and Ag-CeO2/Ag2O/GCE
3.2.4. Effect of Interfering Studies of CeO2/GCE and Ag-CeO2/Ag2O/GCE
3.2.5. Stability, Repeatability, and Reproducibility of CeO2/GCE and Ag-CeO2/Ag2O/GCE
3.2.6. Real Sample Analysis of CeO2/GCE and Ag-CeO2/Ag2O/GCE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Leng, Y.; Huo, D.; Zhao, D.; Zheng, J.; Zhao, P.; Yang, H.; Li, F.; Hou, C. A portable sensor for glucose detection in Huangshui based on blossom-shaped bimetallic organic framework loaded with silver nanoparticles combined with machine learning. Food Chem. 2023, 429, 136850. [Google Scholar] [CrossRef]
- Du, H.; Zhang, A.; Zhang, Q.; Sun, Y.; Zhu, H.; Wang, H.; Tan, Z.; Zhang, X.; Chen, G. Fabrication of recoverable Bi2O2S/Bi5O7I/ZA hydrogel beads for enhanced photocatalytic Hg0 removal in the presence of H2O2. Sep. Purif. Technol. 2025, 359, 130597. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Li, C.; Yang, J.; Liu, D.; Wang, H.; Xu, R.; Zhang, Y.; Wei, Q. An ultrasensitive split-type electrochemical immunosensor based on controlled-release strategy for detection of CA19-9. Biosens. Bioelectron. 2023, 227, 115180. [Google Scholar] [CrossRef]
- Cao, K.; Ge, X.; Li, S.; Tian, Z.; Cui, S.; Guo, G.; Yang, L.; Li, X.; Wang, Y.; Bai, S.; et al. Facile preparation of a 3D rGO/g-C3N4 nanocomposite loaded with Ag NPs for photocatalytic degradation. RSC Adv. 2025, 15, 17089–17101. [Google Scholar] [CrossRef] [PubMed]
- Kosto, Y.; Zanut, A.; Franchi, S.; Yakovlev, Y.; Khalakhan, I.; Matolín, V.; Prince, K.C.; Valenti, G.; Paolucci, F.; Tsud, N. Electrochemical activity of the polycrystalline cerium oxide films for hydrogen peroxide detection. Appl. Surf. Sci. 2019, 488, 351–359. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Sham, T.-K.; Bazylewski, P.; Fanchini, G. Intrinsic enzyme-like activities of cerium oxide nanocomposite and its application for extracellular H2O2 detection using an electrochemical microfluidic device. ACS Omega 2020, 5, 11883–11894. [Google Scholar] [CrossRef] [PubMed]
- Meng, A.; Hong, X.; Zhang, Y.; Liu, W.; Zhang, Z.; Sheng, L.; Li, Z. A free-standing flexible sensor MnO2–Co/rGO-CNT for effective electrochemical hydrogen peroxide sensing and real-time cancer biomarker assaying. Ceram. Int. 2023, 49, 2440–2450. [Google Scholar] [CrossRef]
- Murugadoss, G.; Jayavel, R.; Kumar, M.R. Systematic investigation of structural and morphological studies on doped TiO2 nanoparticles for solar cell applications. Superlattices Microstruct. 2014, 76, 349–361. [Google Scholar] [CrossRef]
- Nabavi, M.; Spalla, O.; Cabane, B. Surface chemistry of nanometric ceria particles in aqueous dispersions. J. Colloid Interface Sci. 1993, 160, 459–471. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Y.; Guo, H.; Lu, A.; Zhang, X.; Wang, L.; Chen, M.-S.; Peng, D.-L. Facile preparation of well-dispersed CeO2–ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation. ACS Appl. Mater. Interfaces 2014, 6, 421–428. [Google Scholar] [CrossRef]
- Li, N.; Zhao, H.; Zhang, Y.; Liu, Z.; Gong, X.; Du, Y. Core–shell structured CeO2@MoS2 nanocomposites for high performance symmetric supercapacitors. CrystEngComm 2016, 18, 4158–4164. [Google Scholar] [CrossRef]
- An, N.; Chen, T.; Zhang, J.; Wang, G.; Yan, M.; Yang, S. Rational Electrochemical Design of Cuprous Oxide Hierarchical Microarchitectures and Their Derivatives for SERS Sensing Applications. Small Methods 2024, 8, 2300910. [Google Scholar] [CrossRef]
- Arul, N.S.; Mangalaraj, D.; Ramachandran, R.; Gracec, A.N.; Hana, J.I. Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 15248–15258. [Google Scholar] [CrossRef]
- Khandare, L.; Terdale, S. Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl. Surf. Sci. 2017, 418, 22–29. [Google Scholar] [CrossRef]
- Zhang, C.; Grandner, J.; Liu, R.; Lee, S.B.; Eichhorn, B.W. Heterogeneous films of ordered CeO2/Ni concentric nanostructures for fuel cell applications. Phys. Chem. Chem. Phys. 2010, 12, 4295–4300. [Google Scholar] [CrossRef]
- Zheng, S.; Li, X.; Yan, B.; Hu, Q.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Z.; Wang, Z.; Liu, Y.; Wang, X.; Qiu, J. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 2444–2451. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fan, S.; Zhu, Z.; Su, S.; Hou, D.; Zhang, H.; Cao, Y. Enabling High-Sensitivity Calorimetric Flow Sensor Using Vanadium Dioxide Phase-Change Material with Predictable Hysteretic Behavior. IEEE Trans. Electron Devices 2025, 72, 1360–1367. [Google Scholar] [CrossRef]
- Guan, D.; Gao, X.; Li, J.; Yuan, C. Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating. Appl. Surf. Sci. 2014, 300, 165–170. [Google Scholar] [CrossRef]
- Yu, J.; Yang, X.; Jia, Y.; Wang, Z.-Q.; Li, W.; Jiang, Y.; Dai, S.; Zhan, W. Regulating socketed geometry of nanoparticles on perovskite oxide supports for enhanced stability in oxidation reactions. Nat. Commun. 2024, 15, 10229. [Google Scholar] [CrossRef]
- Kumar, M.R.; Murugadoss, G.; Venkatesh, N.; Sakthivel, P. Synthesis of Ag2O-SnO2 and SnO2-Ag2O Nanocomposites and Investigation on Photocatalytic Performance under Direct Sun Light. Chem. Sel. 2020, 5, 6946–6953. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Hallaj, R. Mimicking peroxidase activity of Co2(OH)2CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 2018, 189, 100–110. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Shen, Q.; Guo, C.; Hou, Z.; Zhang, J. Hot topics and challenges of regenerative nanoceria in application of antioxidant therapy. J. Nanomater. 2018, 2018. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Hallaj, R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens. Actuators B Chem. 2019, 288, 44–52. [Google Scholar] [CrossRef]
- Peera, S.G.; Kim, S.W. Rare Earth Ce/CeO2 Electrocatalysts: Role of High Electronic Spin State of Ce and Ce3+/Ce4+ Redox Couple on Oxygen Reduction Reaction. Nanomaterials 2025, 15, 600. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lim, M.; Kim, T.S.; Park, K.-R.; Lee, J.-S.; Cho, H.-B.; Park, J.H.; Choa, Y.-H. Design, synthesis, and characterization of a porous ceramic-supported CeO2 nanocatalyst for COx-free H2 evolution. Appl. Surf. Sci. 2021, 548, 149198. [Google Scholar] [CrossRef]
- Sarpoushi, M.R.; Nasibi, M.; Golozar, M.A.; Shishesaz, M.R.; Borhani, M.R.; Noroozi, S. Electrochemical investigation of graphene/cerium oxide nanoparticles as an electrode material for supercapacitors. Mater. Sci. Semicond. Process. 2014, 26, 374–378. [Google Scholar] [CrossRef]
- Venkatesh, N.; Mohankumar, A.; Murugadoss, G.; Sundararaj, P.; Hatamleh, A.A.; Alnafisi, B.K.; Kumar, M.R.; Peera, S.G.; Sakthivel, P. Visible light active hybrid silver decorated g-C3N4–CeO2 nanocomposite for ultrafast photocatalytic activity and toxicity evaluation. Environ. Res. 2023, 216, 114749. [Google Scholar] [CrossRef]
- Sabela, M.; Balme, S.; Bechelany, M.; Janot, J.; Bisetty, K. A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv. Eng. Mater. 2017, 19, 1700270. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Ragupathy, P.; Kumar, R.M.; Jayavel, R. Enhanced electrochemical supercapacitor and excellent amperometric sensor performance of heterostructure CeO2-CuO nanocomposites via chemical route. Appl. Surf. Sci. 2018, 456, 104–113. [Google Scholar] [CrossRef]
- Lekshmi, G.; Tamilselvi, R.; Geethalakshmi, R.; Kirupha, S.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M. Multifunctional oil-produced reduced graphene oxide–Silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. J. Colloid Interface Sci. 2022, 608, 294–305. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Hazra, S.; Marimuthu, R.; Manikandan, C.; Ramalingam, R.J.; Kumar, M.R. A facile synthesis of Sn-doped CeO2 nanoparticles: High performance electrochemical nitrite sensing application. Inorg. Chem. Commun. 2022, 135, 109096. [Google Scholar] [CrossRef]
- Murugadoss, G.; Kumar, D.D.; Kumar, M.R.; Venkatesh, N.; Sakthivel, P. Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Sci. Rep. 2021, 11, 1080. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Kumar, R.M.; Jayavel, R. Facile synthesis of heterostructure CeO2-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications. J. Alloys Compd. 2019, 773, 449–461. [Google Scholar] [CrossRef]
- Murugan, R.; Ravi, G.; Yuvakkumar, R.; Rajendran, S.; Maheswari, N.; Muralidharan, G.; Hayakawa, Y. Pure and Co doped CeO2 nanostructure electrodes with enhanced electrochemical performance for energy storage applications. Ceram. Int. 2017, 43, 10494–10501. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Ragupathy, P.; Kumar, M.R.; Kumar, R.M.; Jayavel, R. High electrochemical performance and enhanced electrocatalytic behavior of a hydrothermally synthesized highly crystalline heterostructure CeO2@ NiO nanocomposite. Inorg. Chem. 2019, 58, 13843–13861. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Kumar, M.R.; Kumar, R.M. Facile synthesis of CeO2-SnO2 nanocomposite for electrochemical determination of L-cysteine. J. Alloys Compd. 2019, 792, 1150–1161. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, B.; Liu, X.; Han, J.; Ye, H.; Shi, T.; Tang, Z.; Liao, G. Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nanomicro. Lett. 2018, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yuan, F.; Zhang, X.; Yang, L. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chem. Cent. J. 2011, 5, 75. [Google Scholar] [CrossRef]
- Xu, W.; Fei, J.; Yang, W.; Zheng, Y.; Dai, Y.; Sakran, M.; Zhang, J.; Zhu, W.; Hong, J.; Zhou, X. A colorimetric/electrochemical dual-mode sensor based on Fe3O4@MoS2-Au NPs for high-sensitivity detection of hydrogen peroxide. Microchem. J. 2022, 181, 107825. [Google Scholar] [CrossRef]
- Chang, J.-H.; Shen, S.-Y.; Dong, C.-D.; Shkir, M.; Kumar, M. Morphology-dependent MoO3/Ni–F nanostructures with enhanced electrochemical hydrogen peroxide detection. Chemosphere 2022, 287, 131960. [Google Scholar] [CrossRef] [PubMed]
- Keshavananda Prabhu, C.P.; Naveen, K.R.; Aralekallu, S.; Shivalingayyab; Sannegowda, L.K. Novel polymeric cobalt tetrabenzimidazole phthalocyanine for nanomolar detection of hydrogen peroxide. RSC Sustain. 2023, 1, 128–138. [Google Scholar]
- Lokesh, K.S.; De Wael, K.; Adriaens, A. Self-Assembled Supramolecular Array of Polymeric Phthalocyanine on Gold for the Determination of Hydrogen Peroxide. Langmuir 2010, 26, 17665–17673. [Google Scholar] [CrossRef]
- Mohammed, I.; Nemakal, M.; Sajjan, V.A.; Puttappashetty, D.B.; Sannegowda, L.K. Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the amperometric detection of H2O2. J. Electroanal. Chem. 2018, 826, 96–103. [Google Scholar] [CrossRef]
S. No. | Electrode Material | Method | Ep (V) | Linear Range (M) | Sensitivity (μA mM−1) | LOD (M) | Ref. |
---|---|---|---|---|---|---|---|
1 | Fe3O4@MoS2-Au/GCE | SWV | −0.7–0.1 V | 1 × 10−6 to 120 × 10−6 | - | 109 × 10−9 | [40] |
2 | MoO3/Ni-F/GCE | LSV | −1–+1 V | 0.072 × 10−6 to 74.85 × 10−6 | - | 1.2 × 10−6 | [41] |
3 | GCE/poly(CoTBImPc) | CA | −0.45 V | 10 × 10−9 to 100 × 10−9 | 0.2482 µA µM−1 cm−2 | 3.0 × 10−9 | [42] |
4 | GCE/CNT/poly(CoTBImPc) | CA | −0.45 V | 10 × 10−9 to 100 × 10−9 | 3.4522 mA nM−1 cm−2 | 2.0 × 10−9 | [42] |
5 | Poly(CuPc)/MGE | CV | 0–−0.7 V | 0.35 × 10−6 to 70 × 10−6 | - | 0.25 × 10−6 | [43] |
6 | GCE/poly(CoTBIPc) | CA | −0.55 V | 3 × 10−6 to 140 × 10−6 | - | 0.8 × 10−6 | [44] |
7 | GCE/GO/poly(CoTBIPc) | CA | −0.55 V | 2 × 10−6 to 200 × 10−6 | - | 0.6 × 10−6 | [44] |
8 | CeO2/GCE | CA | −0.6 V | 100 × 10−6 to 1.0 × 10−3 | 0.0404 | 129.3 × 10−6 | This work |
9 | Ag-CeO2/Ag2O/GCE | CA | −0.6 V | 10 × 10−9 to 0.5 × 10−3 | 2.728 | 6.34 × 10−6 | This work |
Samples | Detected (μA) | [H2O2] Added (μM) | Found (μA) | Recovery (%) (n = 3) |
---|---|---|---|---|
Medical Antiseptic | −15.36 −22.57 −36.80 | 500 800 1100 | −14.68 −22.70 −36.80 | 104.79 99.11 100 |
Tomato | −18.20 −27.61 −47.68 | 700 900 1100 | −18.80 −26.76 −45.75 | 96.8 103.37 104.15 |
Samples | Detected (μA) | [H2O2] Added (μM) | Found (μA) | Recovery (%) (n = 3) |
---|---|---|---|---|
Medical Antiseptic | −94.03 −146.50 −237.82 | 5 9 13 | −96.57 −146.07 −243.78 | 97.36 100.31 97.55 |
Tomato | −32.46 −33.30 −36.35 | 0.8 0.8 0.9 | −32.10 −32.10 −34.78 | 101.12 103.73 104.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manibalan, G.; Murugadoss, G.; Krishnamoorthy, D.; Dharuman, V.; Gouse Peera, S. Sensitive and Selective Electrochemical Detection of Hydrogen Peroxide Using a Silver-Incorporated CeO2/Ag2O Nanocomposite. Biosensors 2025, 15, 617. https://doi.org/10.3390/bios15090617
Manibalan G, Murugadoss G, Krishnamoorthy D, Dharuman V, Gouse Peera S. Sensitive and Selective Electrochemical Detection of Hydrogen Peroxide Using a Silver-Incorporated CeO2/Ag2O Nanocomposite. Biosensors. 2025; 15(9):617. https://doi.org/10.3390/bios15090617
Chicago/Turabian StyleManibalan, Gunasekaran, Govindhasamy Murugadoss, Dharmalingam Krishnamoorthy, Venkataraman Dharuman, and Shaik Gouse Peera. 2025. "Sensitive and Selective Electrochemical Detection of Hydrogen Peroxide Using a Silver-Incorporated CeO2/Ag2O Nanocomposite" Biosensors 15, no. 9: 617. https://doi.org/10.3390/bios15090617
APA StyleManibalan, G., Murugadoss, G., Krishnamoorthy, D., Dharuman, V., & Gouse Peera, S. (2025). Sensitive and Selective Electrochemical Detection of Hydrogen Peroxide Using a Silver-Incorporated CeO2/Ag2O Nanocomposite. Biosensors, 15(9), 617. https://doi.org/10.3390/bios15090617