Wearable Glove with Enhanced Sensitivity Based on Push–Pull Optical Fiber Sensor
Abstract
1. Introduction
2. Principles and Fabrication of Sensing Systems
2.1. Subsection Sensor System Design
2.2. Principle of the FBG Sensing
2.3. Fabrication of Sensor
3. Sensor Calibration Experiments
3.1. Temperature Compensation Characteristic
3.2. Strain Compensation Characteristic
3.3. Bending Sensing Characteristic
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCI | Human–computer interaction |
FBGs | fiber Bragg gratings |
MCF | multi-core fiber |
FCF | Four-core fiber |
FIFO | Fan-in/fan-out |
MCD | Multi-channel demodulator |
TRC | Tip-reflecting coupler |
PDMS | polydimethylsiloxane |
PI | polyimide |
FBG | fiber Bragg grating |
MCF-FBGs | multi-core fiber Bragg gratings |
DCF | dual-core fiber |
References
- Olivier, E.; Davare, M.; Andres, M.; Fadiga, L. Precision Grasping in Humans: From Motor Control to Cognition. Curr. Opin. Neurobiol. 2007, 17, 644–648. [Google Scholar] [CrossRef]
- Jiang, S.; Kang, P.; Song, X.; Lo, B.P.L.; Shull, P.B. Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. IEEE Rev. Biomed. Eng. 2022, 15, 85–102. [Google Scholar] [CrossRef]
- Santello, M.; Baud-Bovy, G.; Jörntell, H. Neural Bases of Hand Synergies. Front. Comput. Neurosci. 2013, 7, 23. [Google Scholar] [CrossRef]
- Cantero-Téllez, R.; Naughton, N.; Algar, L.; Valdes, K. Outcome Measurement of Hand Function Following Mirror Therapy for Stroke Rehabilitation: A Systematic Review. J. Hand Ther. 2019, 32, 277–291.e1. [Google Scholar] [CrossRef]
- Houwink, A.; Nijland, R.H.; Geurts, A.C.; Kwakkel, G. Functional Recovery of the Paretic Upper Limb after Stroke: Who Regains Hand Capacity? Arch. Phys. Med. Rehabil. 2013, 94, 839–844. [Google Scholar] [CrossRef]
- Chen, W.; Yu, C.; Tu, C.; Lyu, Z.; Tang, J.; Ou, S.; Fu, Y.; Xue, Z. A Survey on Hand Pose Estimation with Wearable Sensors and Computer-Vision-Based Methods. Sensors 2020, 20, 1074. [Google Scholar] [CrossRef]
- Connolly, J.; Condell, J.; O’Flynn, B.; Sanchez, J.T.; Gardiner, P. IMU Sensor-Based Electronic Goniometric Glove for Clinical Finger Movement Analysis. IEEE Sens. J. 2018, 18, 1273–1281. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uzzaman, A.; Khatun, F.; Aktaruzzaman, M.; Siddique, N. A Comparative Study of Advanced Technologies and Methods in Hand Gesture Analysis and Recognition Systems. Expert Syst. Appl. 2025, 266, 125929. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Zheng, T.; Wu, H.; Wu, Q.; Wang, Y. Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review. Sensors 2023, 23, 6671. [Google Scholar] [CrossRef]
- Byberi, A.; Ravan, M.; Amineh, R.K. GloveSense: A Hand Gesture Recognition System Based on Inductive Sensing. IEEE Sens. J. 2023, 23, 9210–9219. [Google Scholar] [CrossRef]
- Wong, W.K.; Juwono, F.H.; Khoo, B.T.T. Multi-Features Capacitive Hand Gesture Recognition Sensor: A Machine Learning Approach. IEEE Sens. J. 2021, 21, 8441–8450. [Google Scholar] [CrossRef]
- Zha, B.; Wang, Z.; Li, L.; Hu, X.; Ortega, B.; Li, X.; Min, R. Wearable Cardiorespiratory Monitoring with Stretchable Elastomer Optical Fiber. Biomed. Opt. Express 2023, 14, 2260–2275. [Google Scholar] [CrossRef]
- Tavares, C.; Leitão, C.; Presti, D.L.; Domingues, M.F.; Alberto, N.; Silva, H.; Antunes, P. Respiratory and Heart Rate Monitoring Using an FBG 3D-Printed Wearable System. Biomed. Opt. Express 2022, 13, 2299–2311. [Google Scholar] [CrossRef]
- Shao, M.; Yuan, Y.; Wang, M.; Liu, Y.; Qiao, X. Optical Fiber Sensor for Wearable and Accurate Human Respiratory Monitoring. Biomed. Opt. Express 2024, 15, 4132–4146. [Google Scholar] [CrossRef]
- Lo Presti, D.; Bianchi, D.; Massaroni, C.; Gizzi, A.; Schena, E. A Soft and Skin-Interfaced Smart Patch Based on Fiber Optics for Cardiorespiratory Monitoring. Biosensors 2022, 12, 363. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, C.; Wang, J.; Li, N.; Song, Y.; Wu, H.; Liu, Y. A Fiber Bragg Grating Sensor Based on Cladding Mode Resonance for Label-Free Biosensing. Biosensors 2023, 13, 97. [Google Scholar] [CrossRef]
- Marinho, M.E.T.; Bilro, L.; Oliveira, R. Embedded Optical Fiber Bragg Grating in 3D-Printed Membranes for Monitoring Finger Flexion Movement. IEEE Sens. J. 2025, 25, 6336–6345. [Google Scholar] [CrossRef]
- Hu, X.; Xu, Y.; Zhang, H.; Xie, J.; Niu, D.; Zhao, Z.; Qu, X. The Fiber Bragg Grating (FBG) Sensing Glove: A Review. IEEE Sens. J. 2023, 23, 11374–11382. [Google Scholar] [CrossRef]
- Zhuang, Y.; Han, T.; Yang, Q.; O’Malley, R.; Kumar, A.; Gerald, R.E.; Huang, J. A Fiber-Optic Sensor-Embedded and Machine Learning Assisted Smart Helmet for Multi-Variable Blunt Force Impact Sensing in Real Time. Biosensors 2022, 12, 1159. [Google Scholar] [CrossRef]
- Jiang, Y.; Reimer, V.; Schossig, T.; Angelmahr, M.; Schade, W. Fiber Optical Multifunctional Human-Machine Interface for Motion Capture, Temperature, and Contact Force Monitoring. Opt. Lasers Eng. 2020, 128, 106018. [Google Scholar] [CrossRef]
- Jha, C.K.; Gajapure, K.; Chakraborty, A.L. Design and Evaluation of an FBG Sensor-Based Glove to Simultaneously Monitor Flexure of Ten Finger Joints. IEEE Sens. J. 2021, 21, 7620–7630. [Google Scholar] [CrossRef]
- Kalpana, R.; Chetan, V.; Vishalakshi, T.N.; Umavathi, M. Fiber Bragg Grating-Based Thumb Strain Analysis and Biomechanical Monitoring. Cuest. Fisioter. 2025, 54, 83–89. [Google Scholar] [CrossRef]
- Yi, P.; Luo, B.; Wu, D.; Zou, X.; Chen, F.; Huang, S.; Xu, Y.; Huang, L.; Shi, S. Design and Gesture Recognition of Wrist Joint Posture Sensor Based on Fiber Bragg Gratings. IEEE Sens. J. 2024, 24, 39050–39058. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Guo, J.; Chen, R.; Jiao, W.; Chen, D. Simultaneous Measurement of Knuckle Flexion and Temperature with a Few-Mode FBG. IEEE Sens. J. 2024, 24, 27525–27531. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Z.; Ye, Y.; Teng, C.; Min, R. PDMS-Embedded Wearable FBG Sensors for Gesture Recognition and Communication Assistance. Biomed. Opt. Express 2024, 15, 1892–1909. [Google Scholar] [CrossRef]
- Qian, M.; Yan, H.; Wang, W.; Sun, Z.; Dong, Y.; Wei, X.; Wang, H. Dynamic Gesture Tracking Using Wearable Data Gloves with Flexible FBGs. Sensors Actuators A Phys. 2025, 390, 116622. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Xiong, L.; Guan, J. Finger Motion Detection Based on Optical Fiber Bragg Grating with Polyimide Substrate. Sensors Actuators A Phys. 2022, 338, 113482. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Zhu, J. Investigation of Gesture Recognition Based on Optical Fiber Bragg Grating Sensors. Measurement 2023, 209, 112498. [Google Scholar] [CrossRef]
- Li, L.; He, R.; Soares, M.S.; Savović, S.; Hu, X.; Marques, C.; Min, R.; Li, X. Embedded FBG-Based Sensor for Joint Movement Monitoring. IEEE Sens. J. 2021, 21, 26793–26798. [Google Scholar] [CrossRef]
- Yong, Z.; Zhan, C.; Lee, J.; Yin, S.; Ruffin, P. Multiple Parameter Vector Bending and High-Temperature Sensors Based on Asymmetric Multimode Fiber Bragg Gratings Inscribed by an Infrared Femtosecond Laser. Opt. Lett. 2006, 31, 1794. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Xiong, L.; Chen, C.; Laronche, A.; Albert, J. Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating. J. Light. Technol. 2010, 28, 2681–2687. [Google Scholar] [CrossRef]
- Li, Y.-P.; Zhang, W.-G.; Wang, S.; Chen, L.; Zhang, Y.-X.; Wang, B.; Yan, T.-Y.; Li, X.-Y.; Hu, W. Bending Vector Sensor Based on a Pair of Opposite Tilted Long-Period Fiber Gratings. IEEE Photonics Technol. Lett. 2017, 29, 224–227. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, W.; Chen, L.; Bai, Z.; Zhang, L.; Wang, L.; Wang, B.; Yan, T. Bending Vector Sensor Based on a Sector-Shaped Long-Period Grating. IEEE Photonics Technol. Lett. 2015, 27, 713–716. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Gao, S.; Geng, P.; Xue, X. Fiber-Optic Bending Vector Sensor Based on Mach–Zehnder Interferometer Exploiting Lateral-Offset and up-Taper. Opt. Lett. 2012, 37, 4480. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Chen, L.; Yan, T.; Wang, L.; Wang, B.; Zhou, Q. A Fiber Bending Vector Sensor Based on M–Z Interferometer Exploiting Two Hump-Shaped Tapers. IEEE Photonics Technol. Lett. 2015, 27, 1240–1243. [Google Scholar] [CrossRef]
- Zhu, B.; Taunay, T.F.; Yan, M.F.; Fini, J.M.; Fishteyn, M.; Monberg, E.M.; Dimarcello, F.V. Seven-Core Multicore Fiber Transmissions for Passive Optical Network. Opt. Express 2010, 18, 11117. [Google Scholar] [CrossRef]
- Donko, A.; Beresna, M.; Jung, Y.; Hayes, J.; Richardson, D.J.; Brambilla, G. Point-by-Point Femtosecond Laser Micro-Processing of Independent Core-Specific Fiber Bragg Gratings in a Multi-Core Fiber. Opt. Express 2018, 26, 2039. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Yuan, T.; Zhang, X.; Yuan, L. Highly Sensitive Bending Sensor Based on Multicore Optical Fiber With Diagonal Cores Reflector at the Fiber Tip. J. Light. Technol. 2022, 40, 6030–6036. [Google Scholar] [CrossRef]
- Meng, L.; Wang, H.; Xia, Q.; Yuan, T.; Zhang, X.; Yuan, L. In-Fiber Thermally Diffused Coupler and Fiber Bragg Grating Inscribed in Twin-Core Fiber for Sensitivity-Enhanced Vector Bending Sensing. Photonic Sens. 2023, 13, 230310. [Google Scholar] [CrossRef]
- Hou, M.; Yang, K.; He, J.; Xu, X.; Ju, S.; Guo, K.; Wang, Y. Two-Dimensional Vector Bending Sensor Based on Seven-Core Fiber Bragg Gratings. Opt. Express 2018, 26, 23770. [Google Scholar] [CrossRef]
- Dipietro, L.; Sabatini, A.M.; Dario, P. A Survey of Glove-Based Systems and Their Applications. IEEE Trans. Syst. Man Cybern. C 2008, 38, 461–482. [Google Scholar] [CrossRef]
FBGs | Channel 1 | Channel 2 | ||
---|---|---|---|---|
Sensitivity (pm/με) | R2 | Sensitivity (pm/με) | R2 | |
1-1 | 1.15 | 0.9999 | 1.16 | 0.9998 |
1-2 | 1.15 | 0.9998 | 1.16 | 0.9999 |
2-1 | 1.15 | 0.9999 | 1.16 | 0.9998 |
2-2 | 1.15 | 0.9999 | 1.16 | 0.9999 |
3-1 | 1.16 | 0.9999 | 1.16 | 0.9998 |
3-2 | 1.16 | 0.9998 | 1.16 | 0.9999 |
4-1 | 1.16 | 0.9998 | 1.17 | 0.9999 |
4-2 | 1.16 | 0.9998 | 1.17 | 0.9999 |
5-1 | 1.16 | 0.9997 | 1.17 | 0.9998 |
5-2 | 1.16 | 0.9998 | 1.17 | 0.9998 |
FBG | FBG (pm/m−1) | Channel (pm/m−1) | |
---|---|---|---|
Channel 1 | Core 1-1 | −36.319 48.606 | 77.033 |
Core 3-1 | |||
Channel 2 | Core 2-1 | −21.729 | 53.811 |
Core 4-1 | 37.409 |
Sensor Type | Application | Sensitivity | Temperature Decoupling | System |
---|---|---|---|---|
Inductive [10] | Glove | Not mentioned | NO | Moderately |
Capacitive [11] | Glove | Not mentioned | NO | Convenient |
PDMS+PI+FBGs [23] | Arm | 7.09 pm/° | NO | Moderately |
PDMS+FBGs [25] | Wrist | 24.90 pm/° | NO | Moderately |
Photoelectric [26] | Glove | 0.0125 nm/° | NO | Moderately |
FBGs [27] | Forearm muscles | 2.20938 pm/με | NO | Moderately |
FBGs [28] | Forearm muscles | 3.20794 pm/με | NO | Moderately |
FCF-FBGs [This work] | Glove | 93.967 pm/m−1 | YES | Moderately |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Q.; Zhang, X.; Wang, H.; Yuan, L.; Yuan, T. Wearable Glove with Enhanced Sensitivity Based on Push–Pull Optical Fiber Sensor. Biosensors 2025, 15, 414. https://doi.org/10.3390/bios15070414
Xia Q, Zhang X, Wang H, Yuan L, Yuan T. Wearable Glove with Enhanced Sensitivity Based on Push–Pull Optical Fiber Sensor. Biosensors. 2025; 15(7):414. https://doi.org/10.3390/bios15070414
Chicago/Turabian StyleXia, Qi, Xiaotong Zhang, Hongye Wang, Libo Yuan, and Tingting Yuan. 2025. "Wearable Glove with Enhanced Sensitivity Based on Push–Pull Optical Fiber Sensor" Biosensors 15, no. 7: 414. https://doi.org/10.3390/bios15070414
APA StyleXia, Q., Zhang, X., Wang, H., Yuan, L., & Yuan, T. (2025). Wearable Glove with Enhanced Sensitivity Based on Push–Pull Optical Fiber Sensor. Biosensors, 15(7), 414. https://doi.org/10.3390/bios15070414