Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques
Abstract
:1. Introduction
2. Theoretical Background
2.1. Electromagnetic Resonant Phenomena
2.1.1. Plasmonic Metasurfaces
2.1.2. Dielectric Metasurfaces
2.2. Electromagnetic and Chemical Enhancement in SERS, SEIRA, and SEF
2.2.1. SERS
- Local field enhancement at the incident laser frequency ,
- Radiation enhancement at the scattered (Raman) frequency .
2.2.2. SEIRA
2.2.3. SEF
3. Plasmonic Metasurfaces for Enhanced Spectroscopy
3.1. SERS
3.2. SEIRA
3.3. SEF
4. Dielectric Metasurfaces for Enhanced Spectroscopy
4.1. SERS
4.2. SEIRA
4.3. SEF
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, T.; Xu, R.; Yu, P.; Wang, Z.; Takahara, J. Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 2020, 9, 1115–1137. [Google Scholar] [CrossRef]
- Yang, Y.; Seong, J.; Choi, M.; Park, J.; Kim, G.; Kim, H.; Jeong, J.; Jung, C.; Kim, J.; Jeon, G.; et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light. Sci. Appl. 2023, 12, 152. [Google Scholar] [CrossRef]
- El-Helou, A.J.; Liu, Y.; Chen, C.; Wang, F.; Altug, H.; Reece, P.J.; Zhu, Y. Optical Metasurfaces for the Next-Generation Biosensing and Bioimaging. Laser Photonics Rev. 2025, 19, 10. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. Lond. 1902, 18, 269. [Google Scholar] [CrossRef]
- Senior, T. Approximate boundary conditions. IEEE Trans. Antennas Propag. 1981, 29, 826–829. [Google Scholar] [CrossRef]
- Yao, K.; Liu, Y. Plasmonic metamaterials. Nanotechnol. Rev. 2014, 3, 177–210. [Google Scholar] [CrossRef]
- Murray, W.A.; Barnes, W.L. Plasmonic materials. Adv. Mater. 2007, 19, 3771–3782. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Barbillon, G. Latest Advances in Metasurfaces for SERS and SEIRA Sensors as Well as Photocatalysis. Int. J. Mol. Sci. 2022, 23, 10592. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- John-Herpin, A.; Tittl, A.; Kühner, L.; Richter, F.; Huang, S.H.; Shvets, G.; Oh, S.H.; Altug, H. Metasurface-Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Adv. Mater. 2023, 35, 2110163. [Google Scholar] [CrossRef]
- Li, Q.; Yu, S.; Li, Z.; Liu, W.; Cheng, H.; Chen, S. Metasurface-enhanced biomedical spectroscopy. Nanophotonics 2025, 14, 1045–1068. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Algorri, J.F.; Zografopoulos, D.C.; Ferraro, A.; García-Cámara, B.; Beccherelli, R.; Sánchez-Pena, J.M. Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids. Opt. Express 2019, 27, 6320–6330. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef]
- Boltasseva, A.; Atwater, H.A. Low-loss plasmonic metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Stanley, R. Plasmonics in the mid-infrared. Nat. Photonics 2012, 6, 409–411. [Google Scholar] [CrossRef]
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Zhong, J.H.; Zhang, Y.; Chen, L.G.; Shen, X.Q.; Zhou, X.; Liao, Y.; Luo, Y.; Yang, Z.L.; Ren, B. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 2017, 12, 132–136. [Google Scholar] [CrossRef]
- Sonntag, M.D.; Pozzi, E.A.; Jiang, N.; Klingsporn, J.M.; Hersam, M.C.; Van Duyne, R.P. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 2012, 116, 478–483. [Google Scholar] [CrossRef]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmon induced transparency in metamaterials. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Huang, J.; Hoang, T.B.; Bowen, P.T.; Su, L.; Smith, D.R.; Mikkelsen, M.H. Large-area metasurface perfect absorbers from visible to near-infrared. Adv. Mater. 2015, 27, 8028–8034. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Ivanov, A.; Lagarkov, A.N.; Ryzhikov, I.; Afanasev, K.; Bykov, I.; Barbillon, G.; Bakholdin, N.; Mikhailov, M.; Smyk, A.; et al. Plasmon Localization and Giant Fields in an Open-Resonator Metasurface for Surface-Enhanced-Raman-Scattering Sensors. Phys. Rev. Appl. 2022, 17, 044029. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. Sensors 2022, 22, 6022. [Google Scholar] [CrossRef]
- Huck, C.; Kumar, S.; Martín, O.J.F.; Ekinci, Y.; Agrawal, A. Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 2014, 8, 4908–4914. [Google Scholar] [CrossRef]
- Li, L.; Ouyang, Y.; Ma, L.; Sun, H.; Chen, Y.; Wu, M.; Qi, Z.; Wu, W. Reflection-type surface lattice resonances in all-metal metasurfaces for refractive index sensing. Photon. Res. 2023, 11, 2210–2221. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef]
- Algorri, J.F.; García-Cámara, B.; Cuadrado, A.; Sánchez-Pena, J.M.; Vergaz, R. Selective Dielectric Metasurfaces Based on Directional Conditions of Silicon Nanopillars. Nanomaterials 2017, 7, 177. [Google Scholar] [CrossRef]
- Picardi, M.F.; Zayats, A.V.; Rodríguez-Fortuño, F.J. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking. Phys. Rev. Lett. 2018, 120, 117402. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Ferraro, A.; Algorri, J.F.; Martín-Mateos, P.; García-Cámara, B.; Moreno-Oyervides, A.; Krozer, V.; Acedo, P.; Vergaz, R.; Sánchez-Pena, J.M.; et al. All-Dielectric Silicon Metasurface with Strong Subterahertz Toroidal Dipole Resonance. Adv. Opt. Mater. 2019, 7, 1900777. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Algorri, J.F.; Fuscaldo, W.; López-Higuera, J.M.; Vergaz, R.; Sánchez-Pena, J.M.; Karolos, I.A.; Beccherelli, R.; Tsioukas, V.E.; Yioultsis, T.V.; et al. All-Dielectric Toroidal Metasurfaces for Angular-Dependent Resonant Polarization Beam Splitting. Adv. Opt. Mater. 2021, 9, 2002143. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Ferraro, A.; García-Cámara, B.; Vergaz, R.; Beccherelli, R.; Sánchez-Pena, J.M. Anapole Modes in Hollow Nanocuboid Dielectric Metasurfaces for Refractometric Sensing. Nanomaterials 2019, 9, 30. [Google Scholar] [CrossRef]
- Koshelev, K.; Favraud, G.; Bogdanov, A.; Kivshar, Y.; Fratalocchi, A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 2019, 8, 725–745. [Google Scholar] [CrossRef]
- Algorri, J.F.; Dell’Olio, F.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M.; Sánchez-Pena, J.M.; Zografopoulos, D.C. Strongly resonant silicon slot metasurfaces with symmetry-protected bound states in the continuum. Opt. Express 2021, 29, 10374–10385. [Google Scholar] [CrossRef]
- Algorri, J.; Dell’Olio, F.; Ding, Y.; Labbé, F.; Dmitriev, V.; López-Higuera, J.; Sánchez-Pena, J.; Andreani, L.; Galli, M.; Zografopoulos, D. Experimental demonstration of a silicon-slot quasi-bound state in the continuum in near-infrared all-dielectric metasurfaces. Opt. Laser Technol. 2023, 161, 109199. [Google Scholar] [CrossRef]
- Algorri, J.; Dmitriev, V.; Hernández-Figueroa, H.; Rodríguez-Cobo, L.; Dell’Olio, F.; Cusano, A.; López-Higuera, J.; Zografopoulos, D. Polarization-independent hollow nanocuboid metasurfaces with robust quasi-bound states in the continuum. Opt. Mater. 2024, 147, 114631. [Google Scholar] [CrossRef]
- D’Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech, F.; Messina, E.; Fazio, B.; Maragò, O.M.; Di Fabrizio, E.; Lamy de La Chapelle, M.; et al. Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy. ACS Nano 2013, 7, 3522–3531. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, N.; Ji, D.; Song, H.; Liu, Y.; Zhou, L.; Sun, Z.; Jornet, J.M.; Thompson, A.C.; Collins, R.L.; et al. Superabsorbing Metasurfaces with Hybrid Ag–Au Nanostructures for Surface-Enhanced Raman Spectroscopy Sensing of Drugs and Chemicals. Small Methods 2018, 2, 1800045. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, Y.; Zhang, Y.; Tian, Z.; Zhao, B.; Li, J. Porous Carbon Nanowire Array for Surface-Enhanced Raman Spectroscopy. Nat. Commun. 2020, 11, 4772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, Y.; Zhang, Y.; Tian, Z.; Zhao, B.; Li, J. Ultrabroadband Metasurface for Efficient Light Trapping and Localization: A Universal Surface-Enhanced Raman Spectroscopy Substrate for “All” Excitation Wavelengths. Adv. Mater. Interfaces 2015, 2, 1500142. [Google Scholar] [CrossRef]
- Zeng, Y.; Ananth, R.; Dill, T.J.; Rodarte, A.; Rozin, M.J.; Bradshaw, N.; Brown, E.R.; Tao, A.R. Metasurface-Enhanced Raman Spectroscopy (mSERS) for Oriented Molecular Sensing. ACS Appl. Mater. Interfaces 2022, 14, 32598–32607. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; You, E.M.; Panneerselvam, R.; Ding, S.; Tian, Z.-Q. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light. Sci. Appl. 2021, 10, 161. [Google Scholar] [CrossRef]
- Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef]
- Rojas, R.V.; Claro, F. Theory of surface enhanced Raman scattering in colloids. J. Chem. Phys. 1993, 98, 998–1006. [Google Scholar] [CrossRef]
- Gersten, J.; Nitzan, A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 1980, 73, 3023–3037. [Google Scholar] [CrossRef]
- Yue, W.; Gong, T.; Long, X.; Kravets, V.; Gao, P.; Pu, M.; Wang, C. Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars. Sens. Actuators B Chem. 2020, 322, 128563. [Google Scholar] [CrossRef]
- Fromm, D.P.; Kinkhabwala, A.; Schuck, P.J.; Moerner, W.E.; Sundaramurthy, A.; Kino, G.S. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. Proc. Natl. Acad. Sci. USA 2005, 102, 12609–12613. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jensen, L. Interpreting chemical enhancements of surface-enhanced Raman scattering. Chem. Phys. Rev. 2023, 4, 021305. [Google Scholar] [CrossRef]
- Lombardi, J.R.; Birke, R.L. A Unified View of Surface-Enhanced Raman Scattering. Accounts Chem. Res. 2009, 42, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Smeliková, V.; Kopal, I.; Člupek, M.; Dendisová, M.; Švecová, M. Unveiling the Crucial Role of Chemical Enhancement in the SERS Analysis of Amphetamine–Metal Interactions on Gold and Silver Surfaces: Importance of Selective Amplification of the Narrow Interval of Vibrational Modes. Anal. Chem. 2024, 96, 5416–5427. [Google Scholar] [CrossRef]
- Cong, S.; Liu, X.; Jiang, Y.; Zhang, W.; Zhao, Z. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation 2020, 1, 100051. [Google Scholar] [CrossRef]
- Baker, M.J.; Gazi, K.A.; Brown, A.T.; Gibbins, K.G.; Williams, T.A.; Clarke, J.R.; Bassan, P.; Gardner, P. Using Fourier Transform IR Spectroscopy to Analyze Biological Materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef]
- Santo, R.D.; Vaccaro, M.; Romanò, S.; Vaccaro, M.; Giacinto, F.D.; Spirito, M.D.; Ciasca, G. Advancements in Mid-Infrared Spectroscopy of Extracellular Vesicles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123346. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, S.; Fu, Q.; Yu, Q.; Wang, Y.; Sun, S.; Du, Q.; Li, Z. Emerging Metasurfaces for Refractometric Sensing: Fundamental and Applications. J. Phys. D Appl. Phys. 2024, 57, 393001. [Google Scholar] [CrossRef]
- Chen, K.; Dao, T.D.; Ishii, S.; Aono, M.; Nagao, T. Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy. Adv. Funct. Mater. 2015, 25, 6637–6643. [Google Scholar] [CrossRef]
- Adato, R.; Yanik, A.A.; Amsden, J.J.; Kaplan, A.L.; Omenetto, F.G.; Hong, M.K.; Erramilli, S.; Altug, C.H. Ultra-Sensitive Vibrational Spectroscopy of Protein Monolayers with Plasmonic Nanoantenna Arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 19227–19232. [Google Scholar] [CrossRef] [PubMed]
- Adato, R.; Altug, H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 2013, 4, 2154. [Google Scholar] [CrossRef]
- Wang, J.K.; Xie, Z.; Zhu, Y.; Zeng, P.; He, S.; Wang, J.; Wei, H.; Yu, C. Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) for Biochemical Analysis: Progress and Perspective. Trends Environ. Anal. Chem. 2024, 41, e00226. [Google Scholar] [CrossRef]
- Neubrech, F.; Huck, C.; Weber, K.; Pucci, A.; Giessen, H. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chem. Rev. 2017, 117, 5110–5145. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Li, J.; Fan, Z.; Delgado, R.; Shvets, G. Monitoring the Effects of Chemical Stimuli on Live Cells with Metasurface-Enhanced Infrared Reflection Spectroscopy. Lab Chip 2021, 21, 3991–4004. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, P.; Xiao, X.; Zhou, C.; Wei, H.; Yu, C. Recent advances in nanostructured substrates for surface-enhanced infrared absorption spectroscopy. Nanotechnology 2023, 34, 382002. [Google Scholar] [CrossRef]
- Sultangaziyev, A.; Bukasov, R. Review: Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. Sens. Bio-Sens. Res. 2020, 30, 100382. [Google Scholar] [CrossRef]
- Alhalaby, H.; Zaraket, H.; Principe, M. Enhanced Photoluminescence with Dielectric Nanostructures: A review. Results Opt. 2021, 3, 100073. [Google Scholar] [CrossRef]
- Geddes, C.D.; Lakowicz, J.R. Metal-enhanced fluorescence. J. Fluoresc. 2002, 12, 121–129. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Shen, Y.; D’Auria, S.; Malicka, J.; Fang, J.; Gryczynski, Z.; Gryczynski, I. Radiative Decay Engineering: 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer. Anal. Biochem. 2002, 301, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical antennas. Adv. Opt. Photonics 2009, 1, 438–483. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Krasnok, A.; Caldarola, M.; Bonod, N.; Alù, A. Spectroscopy and biosensing with optically resonant dielectric nanostructures. Adv. Opt. Mater. 2018, 6, 1701094. [Google Scholar] [CrossRef]
- Bakker, R.M.; Permyakov, D.; Yu, Y.F.; Markovich, D.; Paniagua-Domínguez, R.; Gonzaga, L.; Samusev, A.; Kivshar, Y.; Luk’yanchuk, B.; Kuznetsov, A.I. Magnetic and Electric Hotspots with Silicon Nanodimers. Nano Lett. 2015, 15, 2137–2142. [Google Scholar] [CrossRef] [PubMed]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef]
- Kühn, S.; Hå kanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006, 97, 017402. [Google Scholar] [CrossRef]
- Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J.R.; Geddes, C.D. Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol. 2005, 16, 55–62. [Google Scholar] [CrossRef]
- Schatz, G.C.; Van Duyne, R.P. Electromagnetic mechanism of surface-enhanced spectroscopy. In Handbook of Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338A–346A. [Google Scholar] [CrossRef]
- Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2003, 116, 6755–6759. [Google Scholar] [CrossRef]
- Kischkat, J.; Peters, S.; Gruska, B.; Semtsiv, M.; Chashnikova, M.; Klinkmüller, M.; Fedosenko, O.; Machulik, S.; Aleksandrova, A.; Monastyrskyi, G.; et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 2012, 51, 6789–6798. [Google Scholar] [CrossRef]
- Jeong, Y.; Kook, Y.M.; Lee, K.; Koh, W.G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef]
- Gray, S. Surface Plasmon-Enhanced Spectroscopy and Photochemistry. Plasmonics 2007, 2, 143–146. [Google Scholar] [CrossRef]
- Geddes, C.D.; Lakowicz, J.R. Reviews in Fluorescence 2007; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lakowicz, J.R.; Geddes, C.D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Aslan, K.; Lukomska, J.; Matveeva, E.; Zhang, J.; Badugu, R.; et al. Advances in surface-enhanced fluorescence. J. Fluoresc. 2004, 14, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Pompa, P.P.; Martiradonna, L.; Della Torre, A.; Della Sala, F.; Manna, L.; De Vittorio, M.; Calabi, F.; Cingolani, R.; Rinaldi, R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2006, 1, 126–130. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef]
- Dulkeith, E.; Morteani, A.C.; Niedereichholz, T.; Klar, T.A.; Feldmann, J.; Levi, S.A.; van Veggel, F.C.J.M.; Reinhoudt, D.N.; Möller, M.; Gittins, D.I. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 2005, 89, 203002. [Google Scholar] [CrossRef] [PubMed]
- Aslan, K.; Holley, P.; Geddes, C.D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J. Mater. Chem. 2006, 16, 2846–2852. [Google Scholar] [CrossRef]
- Zhang, J.; Malicka, J.; Gryczynski, I.; Lakowicz, J.R. Surface-Enhanced Fluorescence of Fluorescein-Labeled Oligonucleotides Capped on Silver Nanoparticles. J. Phys. Chem. B 2005, 109, 7643–7648. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Appl. Phys. Lett. 2016, 109, 253107. [Google Scholar] [CrossRef]
- Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; De Abajo, F.J.G.; Pruneri, V. Mid-infrared plasmonic biosensing with graphene. Science 2015, 349, 165–168. [Google Scholar] [CrossRef]
- Murthy, S.; Pranov, H.; Feidenhans’L, N.A.; Madsen, J.S.; Hansen, P.E.; Pedersen, H.C.; Taboryski, R. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method. Nanoscale 2017, 9, 14280–14287. [Google Scholar] [CrossRef] [PubMed]
- Karabel Ocal, S.; Pekdemir, S.; Serhatlioglu, M.; Ipekci, H.H.; Sahmetlioglu, E.; Narin, I.; Duman, F.; Elbuken, C.; Demirel, G.; Serdar Onses, M. Eco-Friendly Fabrication of Plasmonically Active Substrates Based on End-Grafted Poly(ethylene glycol) Layers. ACS Sustain. Chem. Eng. 2019, 7, 4315–4324. [Google Scholar] [CrossRef]
- Piragash Kumar, R.; Venkatesh, A.; Moorthy, V. Wet-Chemical Etching: A Novel Nanofabrication Route to Prepare Broadband Random Plasmonic Metasurfaces. Plasmonics 2019, 14, 365–374. [Google Scholar] [CrossRef]
- Li, G.; Wu, M.; Ye, X.; Zhou, J.; Cai, J. Template-Electrodeposited Plasmonic Metasurfaces for High-Sensitivity Biomolecular Detection. Adv. Mater. Interfaces 2022, 9, 2200292. [Google Scholar] [CrossRef]
- Sakir, M.; Pekdemir, S.; Karatay, A.; Küçüköz, B.; Ipekci, H.H.; Elmali, A.; Demirel, G.; Onses, M.S. Fabrication of Plasmonically Active Substrates Using Engineered Silver Nanostructures for SERS Applications. ACS Appl. Mater. Interfaces 2017, 9, 39795–39803. [Google Scholar] [CrossRef] [PubMed]
- Thrift, W.J.; Nguyen, C.Q.; Darvishzadeh-Varcheie, M.; Zare, S.; Sharac, N.; Sanderson, R.N.; Dupper, T.J.; Hochbaum, A.I.; Capolino, F.; Abdolhosseini Qomi, M.J.; et al. Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow. ACS Nano 2017, 11, 11317–11329. [Google Scholar] [CrossRef]
- Jiang, T.; Goel, P.; Zhao, H.; Ma, R.; Zhu, L.; Liu, X.; Tang, L. Internal Structure Tailoring in 3D Nanoplasmonic Metasurface for Surface-Enhanced Raman Spectroscopy. Part. Part. Syst. Charact. 2020, 37, 1900345. [Google Scholar] [CrossRef]
- Narasimhan, V.; Siddique, R.H.; Park, H.; Choo, H. Bioinspired Disordered Flexible Metasurfaces for Human Tear Analysis Using Broadband Surface-Enhanced Raman Scattering. ACS Omega 2020, 5, 12915–12922. [Google Scholar] [CrossRef]
- Sarychev, A.; Bykov, I.; Boginskaya, I.; Ivanov, A.; Kurochkin, I.; Lagarkov, A.; Nechaeva, N.; Ryzhikov, I. Metal-dielectric optical resonance in metasurfaces and SERS effect. Opt. Quantum Electron. 2020, 52, 26. [Google Scholar] [CrossRef]
- Palermo, G.; Rippa, M.; Conti, Y.; Vestri, A.; Castagna, R.; Fusco, G.; Suffredini, E.; Zhou, J.; Zyss, J.; De Luca, A.; et al. Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Appl. Mater. Interfaces 2021, 13, 43715–43725. [Google Scholar] [CrossRef]
- Nguyen, T.; Pham, L.; Khuyen, B.; Duong, D.; Nghiem, L.; Nguyen, N.; Vu, D.; Hoa, D.; Lam, V.; Nguyen, H. Effects of metallic underlayer on SERS performance of a metal film over nanosphere metasurface. J. Phys. D Appl. Phys. 2021, 55, 025101. [Google Scholar] [CrossRef]
- Thareja, V.; Esfandyarpour, M.; Kik, P.G.; Brongersma, M.L. Anisotropic Metasurfaces as Tunable SERS Substrates for 2D Materials. ACS Photonics 2019, 6, 1996–2004. [Google Scholar] [CrossRef]
- Du, M.; Shen, Z. Enhanced and tunable double Fano resonances in plasmonic metasurfaces with nanoring dimers. J. Phys. D Appl. Phys. 2021, 54, 145106. [Google Scholar] [CrossRef]
- Bauman, S.J.; Darweesh, A.A.; Furr, M.; Magee, M.; Argyropoulos, C.; Herzog, J.B. Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces. ACS Appl. Mater. Interfaces 2022, 14, 15541–15548. [Google Scholar] [CrossRef]
- Marques, T.E.M.; Isayama, Y.H.; Teixeira, F.M.F.; Santana, F.C.; Gonçalves, R.S.; Rocha, A.; Dias, B.P.; Andrade, L.M.; Martins, E.M.N.; Nagem, R.A.P.; et al. Tunable Surface Plasmon-Polaritons Interaction in All-Metal Pyramidal Metasurfaces: Unveiling Principles and Significance for Biosensing Applications. ACS Appl. Opt. Mater. 2024, 2, 1374–1381. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Zhang, Z.; Sun, X.; Hu, Y.; Wang, H.; Chen, K.; Liu, Q.; Chen, M.; Chen, X. Deep Learning-Based Multicapturer SERS Platform on Plasmonic Nanocube Metasurfaces for Multiplex Detection of Organophosphorus Pesticides in Environmental Water. Anal. Chem. 2022, 94, 16006–16014. [Google Scholar] [CrossRef] [PubMed]
- Rippa, M.; Sagnelli, D.; Vestri, A.; Marchesano, V.; Munari, B.; Carnicelli, D.; Varrone, E.; Brigotti, M.; Tozzoli, R.; Montalbano, M.; et al. Plasmonic Metasurfaces for Specific SERS Detection of Shiga Toxins. ACS Appl. Mater. Interfaces 2022, 14, 4969–4979. [Google Scholar] [CrossRef]
- Trojanowicz, R.K.; Vestri, A.; Rippa, M.; Zyss, J.; Matczyszyn, K.; Petti, L. DNA Antiadhesive Layer for Reusable Plasmonic Sensors: Nanostructure Pitch Effect. ACS Omega 2022, 7, 31682–31690. [Google Scholar] [CrossRef]
- Reyes-Coronado, A.; Pirruccio, G.; González-Alcalde, A.K.; Urrutia-Anguiano, J.A.; Polanco-Mendoza, A.J.; Morales-Luna, G.; Vázquez-Estrada, O.; Rodríguez-Gómez, A.; Issa, A.; Jradi, S.; et al. Enhancement of Light Absorption by Leaky Modes in a Random Plasmonic Metasurface. J. Phys. Chem. C 2022, 126, 3163–3170. [Google Scholar] [CrossRef]
- Jones, R.R.; Miksch, C.; Kwon, H.; Pothoven, C.; Rusimova, K.R.; Kamp, M.; Gong, K.; Zhang, L.; Batten, T.; Smith, B.; et al. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near-Field Enhancements at Chiral Metasurfaces. Adv. Mater. 2023, 35, 2209282. [Google Scholar] [CrossRef]
- Xiao, X.; Gillibert, R.; Foti, A.; Coulon, P.E.; Ulysse, C.; Levato, T.; Maier, S.A.; Giannini, V.; Gucciardi, P.G.; Rizza, G. Plasmonic Polarization Rotation in SERS Spectroscopy. Nano Lett. 2023, 23, 2530–2535. [Google Scholar] [CrossRef]
- Haque Chowdhury, M.A.; Tasnim, N.; Hossain, M.; Habib, A. Flexible, stretchable, and single-molecule-sensitive SERS-active sensor for wearable biosensing applications. RSC Adv. 2023, 13, 20787–20798. [Google Scholar] [CrossRef] [PubMed]
- Kovalets, N.; Kozhina, E.; Razumovskaya, I.; Bedin, S.; Piryazev, A.; Grigoriev, Y.V.; Naumov, A. Toward single-molecule surface-enhanced Raman scattering with novel type of metasurfaces synthesized by crack-stretching of metallized track-etched membranes. J. Chem. Phys. 2022, 156, 034902. [Google Scholar] [CrossRef] [PubMed]
- Kovalets, N.; Kozhina, E.; Razumovskaya, I.; Arzhanov, A.; Naumov, A. Scratching of metallized polymer films by Vickers indenter as a method for controlled production of SERS-active metasurfaces. J. Lumin. 2024, 275, 120803. [Google Scholar] [CrossRef]
- Trang, T.N.Q.; Bao, N.T.G.; Vinh, L.Q.; Thu, V.T.H. Centrifuge tube-based SERS sensor on heterogenous dimers of plasmonic coupling as a microreactor for ultrasensitive SERS sensing pesticide residues in environmental water. Sens. Actuators A Phys. 2024, 369, 115173. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, L.; Raj, P.; Kim, J.H.; Paidi, S.K.; Semancik, S.; Barman, I. Multiplexed SERS Detection of Serum Cardiac Markers Using Plasmonic Metasurfaces. Adv. Sci. 2024, 11, 2405910. [Google Scholar] [CrossRef]
- Dayal, G.; Chin, X.Y.; Soci, C.; Singh, R. High-Q Plasmonic Fano Resonance for Multiband Surface-Enhanced Infrared Absorption of Molecular Vibrational Sensing. Adv. Opt. Mater. 2017, 5, 1600559. [Google Scholar] [CrossRef]
- De Marcellis, A.; Palange, E.; Janneh, M.; Rizza, C.; Ciattoni, A.; Mengali, S. Design optimization of Plasmonic Metasurfaces for Mid-Infrared High-Sensitivity Chemical Sensing. Plasmonics 2017, 12, 293–298. [Google Scholar] [CrossRef]
- Di Meo, V.; Caporale, A.; Crescitelli, A.; Janneh, M.; Palange, E.; De Marcellis, A.; Portaccio, M.; Lepore, M.; Rendina, I.; Ruvo, M.; et al. Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy. Sens. Actuators B Chem. 2019, 286, 600–607. [Google Scholar] [CrossRef]
- Armelles, G.; Bergamini, L.; Cebollada, A.; González, M.U.; Álvaro, R.; Torné, L.; Zabala, N.; Aizpurua, J. Magnetic modulation of far- And near-field IR properties in rod-slit complementary spintronic metasurfaces. Opt. Express 2020, 28, 32584–32600. [Google Scholar] [CrossRef]
- Zvagelsky, R.; Chubich, D.; Pisarenko, A.; Bedran, Z.; Zhukova, E. Plasmonic Metasurfaces as Surface-Enhanced Infrared Absorption Substrates for Optoelectronics: Alq3Thin-Film Study. J. Phys. Chem. C 2021, 125, 4694–4703. [Google Scholar] [CrossRef]
- Vasić, B. Design of hollow metasurfaces for absorption sensors and surface enhanced infrared absorption. J. Phys. D Appl. Phys. 2022, 55, 315105. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Q.Y.S.; Chen, Y.F.; Hum, M.; Wong, D.C.L.; Tan, E.Y.; Lee, A.S.G.; Teng, J.; Dinish, U.; Olivo, M. Label-free detection of MiRNA biomarkers using broadband multi-resonant infrared metasurfaces for early breast cancer diagnosis. Nanoscale 2023, 15, 10057–10066. [Google Scholar] [CrossRef]
- Huang, S.H.; Sartorello, G.; Shen, P.T.; Xu, C.; Elemento, O.; Shvets, G. Metasurface-enhanced infrared spectroscopy in multiwell format for real-time assaying of live cells. Lab Chip 2023, 23, 2228–2240. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Yang, J.; Zang, C.; Ma, S.; Ding, Y.; Yoda, H.; Tabata, H.; Matsui, H. Label -free measuring biomolecular interactions using plasmonic metasurfaces with dual bands based on surface lattice resonances in the mid-infrared range. Sens. Actuators B Chem. 2024, 417, 102567. [Google Scholar] [CrossRef]
- Dixon, K.; Zhu, X.; Chen, L.; Montazeri, A.; Matsuura, N.; Kherani, N.P.; Holman, H.Y.N. Dispersion-Engineered Deep Sub-Wavelength Plasmonic Metasurfaces for Broadband Seira Applications. Adv. Opt. Mater. 2024, 12, 2300979. [Google Scholar] [CrossRef]
- Choi, B.; Iwanaga, M.; Miyazaki, H.T.; Sugimoto, Y.; Ohtake, A.; Sakoda, K. Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer. Chem. Commun. 2015, 51, 11470–11473. [Google Scholar] [CrossRef]
- Luo, S.; Li, Q.; Yang, Y.; Chen, X.; Wang, W.; Qu, Y.; Qiu, M. Controlling fluorescence emission with split-ring-resonator-based plasmonic metasurfaces. Laser Photonics Rev. 2017, 11, 1600299. [Google Scholar] [CrossRef]
- Qin, J.; Zhao, D.; Luo, S.; Wang, W.; Lu, J.; Qiu, M.; Li, Q. Strongly enhanced molecular fluorescence with ultra-thin optical magnetic mirror metasurfaces. Opt. Lett. 2017, 42, 4478–4481. [Google Scholar] [CrossRef]
- Narasimhan, V.; Siddique, R.H.; Hoffmann, M.; Kumar, S.; Choo, H. Enhanced broadband fluorescence detection of nucleic acids using multipolar gap-plasmons on biomimetic Au metasurfaces. Nanoscale 2019, 11, 13750–13757. [Google Scholar] [CrossRef]
- Iwanaga, M. Highly sensitive wide-range target fluorescence biosensors of high-emittance metasurfaces. Biosens. Bioelectron. 2021, 190, 113423. [Google Scholar] [CrossRef] [PubMed]
- Anăstăsoaie, V.; Tomescu, R.; Kusko, C.; Mihalache, I.; Dinescu, A.; Parvulescu, C.; Craciun, G.; Caramizoiu, S.; Cristea, D. Influence of Random Plasmonic Metasurfaces on Fluorescence Enhancement. Materials 2022, 15, 1429. [Google Scholar] [CrossRef] [PubMed]
- Lagarkov, A.; Boginskaya, I.; Bykov, I.; Budashov, I.; Ivanov, A.; Kurochkin, I.; Ryzhikov, I.; Rodionov, I.; Sedova, M.; Zverev, A.; et al. Light localization and SERS in tip-shaped silicon metasurface. Opt. Express 2017, 25, 17021–17038. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Zito, G.; Managò, S.; Calafiore, G.; Penzo, E.; Cabrini, S.; De Luca, A.C.; Mocella, V. Surface-Enhanced Raman and Fluorescence Spectroscopy with an All-Dielectric Metasurface. J. Phys. Chem. C 2018, 122, 19738–19745. [Google Scholar] [CrossRef]
- Hu, H.; Pal, A.K.; Berestennikov, A.; Weber, T.; Stefancu, A.; Cortés, E.; Maier, S.A.; Tittl, A. Surface-Enhanced Raman Scattering in BIC-Driven Semiconductor Metasurfaces. Adv. Opt. Mater. 2024, 12, 2302812. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Liu, Y.; Gao, Y.; Yan, Y.; Dong, Z.; Zhu, J. All-Dielectric SERS Metasurface with Strong Coupling Quasi-BIC Energized by Transformer-Based Deep Learning. Adv. Opt. Mater. 2024, 12, 2301697. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.K.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef]
- Richter, F.U.; Sinev, I.; Zhou, S.; Leitis, A.; Oh, S.H.; Tseng, M.L.; Kivshar, Y.; Altug, H. Gradient High-Q Dielectric Metasurfaces for Broadband Sensing and Control of Vibrational Light-Matter Coupling. Adv. Mater. 2024, 36, 2314279. [Google Scholar] [CrossRef]
- Iwanaga, M. All-dielectric metasurfaces with high-fluorescence-enhancing capability. Appl. Sci. 2018, 8, 1328. [Google Scholar] [CrossRef]
- Lee, D.; Yang, Y.; Yoon, G.; Kim, M.; Rho, J. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Appl. Phys. Lett. 2019, 115, 101102. [Google Scholar] [CrossRef]
- Solomon, M.L.; Dionne, J.A.; Abendroth, J.M.; Poulikakos, L.V.; Hu, J. Fluorescence-detected circular dichroism of a chiral molecular monolayer with dielectric metasurfaces. J. Am. Chem. Soc. 2020, 142, 18304–18309. [Google Scholar] [CrossRef]
- Fang, W.; Ou, C.; Li, G.X.; Yang, Y. Resonance fluorescence engineering in hybrid systems consist of biexciton quantum dots and anisotropic metasurfaces. Opt. Express 2022, 30, 27794–27811. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Sun, Y.; Jin, Y.; Wu, A. Fluorescence enhancement of PbS colloidal quantum dots from silicon metasurfaces sustaining bound states in the continuum. Nanophotonics 2023, 12, 3159–3164. [Google Scholar] [CrossRef]
- Alhalaby, H.; Principe, M.; Zaraket, H.; Vaiano, P.; Aliberti, A.; Quero, G.; Crescitelli, A.; Di Meo, V.; Esposito, E.; Consales, M.; et al. Design and Optimization of All-Dielectric Fluorescence Enhancing Metasurfaces: Towards Advanced Metasurface-Assisted Optrodes. Biosensors 2022, 12, 264. [Google Scholar] [CrossRef]
- Zhai, Y.; Xu, C.; Zhang, Z.; Li, P.; Murai, S.; Rivas, J.G.; Li, X.; Wang, S. Efficient Redirection of Trapped Broad-Band Fluorescence from Substrates into Free Space Using c-Si Metasurfaces. Nano Lett. 2024, 24, 11311–11318. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, K.; Thomas, A.; Ebbesen, T.W. Chemistry under Vibrational Strong Coupling. J. Am. Chem. Soc. 2021, 143, 16877–16889. [Google Scholar] [CrossRef] [PubMed]
Metasurface | Sample | Enhancement | Ref. |
---|---|---|---|
Concentric rings apertures with rectangular aperture | PMMA | – | [123] |
Au cross-shaped nanoantennas | PMMA | EF: | [124,125] |
Randomly placed aligned rods and slits | – | 3 rods, 7500 slits | [126] |
Au Y-shaped nanoantennas | Alq3 thin films | SE: 6.2 | [127] |
Hollow MIM stack with fluidic channel | – | – | [128] |
Short/narrow and long/wide nanorods | Breast cancer miRNA | EF: | [129] |
Multiwell with Au nanoantennas | Live cells | – | [130] |
Fabry–Pérot-type nanocavity arrays | Ultrathin PMMA | EF: | [132] |
Dual square arrays with Au microdots | Protein A–IgG | EF: 383 | [131] |
Metasurface | Detected Molecules | Enhancement | Ref. |
---|---|---|---|
SC PlasPh with coated by SAM | Rhodamine 590 | >2600 | [133] |
Au split-ring resonator | Rhodamine 800 in PVA film | 18 (X-pol), 8 (Y-pol) | [134] |
Grooved Au magnetic mirror | ATTO 633 in 15 nm PMMA layer | 45 | [135] |
Au nanodisks on nanoholes (5 nm SiO2 gap) | Alexa Fluor 555, 647, 750, 790 | 91–501 | [136] |
Perforated Si waveguides + SC Au NSs | IgG Ab, anti-p53 Ab, cDNA SARS-CoV-2 RNA | – | [137] |
Random Au, Al, Ag NPs on Si/glass | Rhodamine 6G in PMMA | 423 | [138] |
Unit Cell of Metasurfaces | Detected Molecules | EF | Reference |
---|---|---|---|
Tip-shaped Si (micro-cones) | DTNB molecules and AuNPs | [139] | |
Square lattice nano-holes in Si3N4 on SiO2 | CV in ethanol | [140] | |
Two tilted ellipses of TiO2 | Methylene Blue | [141] | |
Al2O3/MgF2 metagrating | Raman-active analytes | [142] |
Aspect | Plasmonic Metasurfaces | Dielectric Metasurfaces |
---|---|---|
Main resonance mechanism | localized surface plasmons (LSPs), surface plasmon-polaritons (SPPs) | Mie-type electric, magnetic, and toroidal multipole resonances |
Typical materials | Au, Ag, Al, Cu | Si, Ge, TiO2 |
Field enhancement | Very high in nanogaps (hot-spots) owing to strong plasmonic near-fields | Moderate; directional and tunable through multipolar interference |
Optical losses | High, especially in the visible and NIR, because of ohmic damping in metals | Low; high-index dielectrics provide reduced loss in VIS–NIR regions |
Spectral tunability | Limited; constrained by material dispersion and damping | High; enabled by geometric design and modal engineering |
Chemical stability | Lower; prone to oxidation (particularly Ag, Al) and surface degradation | Higher; oxides and semiconductors offer good chemical stability |
Biocompatibility and surface chemistry | Au is biocompatible; Ag is cytotoxic and oxidises; strong Au–thiol interactions | Generally inert; allows silanisation; no galvanic toxicity |
Fabrication complexity | High precision required for nanogaps and reproducible hot-spots | More fabrication-tolerant; periodic patterns often sufficient |
CMOS compatibility | Limited; integration with silicon photonics is challenging | High; compatible with standard CMOS and on-chip photonic platforms |
Distance-dependent effects | <5 nm optimal for SERS/SEF; strong quenching if molecule is too close | Effective up to 20–30 nm; no metal-induced fluorescence quenching |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García García, B.; Fernández-Manteca, M.G.; Zografopoulos, D.C.; Gómez-Galdós, C.; Ocampo-Sosa, A.A.; Rodríguez-Cobo, L.; Algorri, J.F.; Cobo, A. Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques. Biosensors 2025, 15, 401. https://doi.org/10.3390/bios15070401
García García B, Fernández-Manteca MG, Zografopoulos DC, Gómez-Galdós C, Ocampo-Sosa AA, Rodríguez-Cobo L, Algorri JF, Cobo A. Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques. Biosensors. 2025; 15(7):401. https://doi.org/10.3390/bios15070401
Chicago/Turabian StyleGarcía García, Borja, María Gabriela Fernández-Manteca, Dimitrios C. Zografopoulos, Celia Gómez-Galdós, Alain A. Ocampo-Sosa, Luis Rodríguez-Cobo, José Francisco Algorri, and Adolfo Cobo. 2025. "Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques" Biosensors 15, no. 7: 401. https://doi.org/10.3390/bios15070401
APA StyleGarcía García, B., Fernández-Manteca, M. G., Zografopoulos, D. C., Gómez-Galdós, C., Ocampo-Sosa, A. A., Rodríguez-Cobo, L., Algorri, J. F., & Cobo, A. (2025). Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques. Biosensors, 15(7), 401. https://doi.org/10.3390/bios15070401