Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors
Abstract
1. Introduction
2. Overview of Optical Biosensors
2.1. Colorimetric Optical Biosensors
2.2. Optical Biosensors Based on Fluorescence
2.3. Optical Biosensor Based on SERS
2.4. Optical Biosensor Based on SPR
3. Development of Optical Biosensors for Multiple Pathogen Detection
3.1. Microfluidics Technology
3.1.1. Paper-Based Microfluidic Optical Biosensors
3.1.2. Silicon-Based Microfluidic Optical Biosensors
3.1.3. Hydrogel-Based Microfluidic Optical Biosensors
3.1.4. Other Microfluidic Optical Biosensors
3.2. Nucleic Acid Amplification Technology
3.2.1. Multiplex PCR-Based Optical Biosensors
3.2.2. Multiplex LAMP-Based Optical Biosensors
3.2.3. Digital NAAT-Based Microfluidic Optical Biosensors
3.3. Nanomaterial Technology
3.3.1. Metal Nanomaterial-Based Optical Biosensors
3.3.2. Carbon Nanomaterial-Based Optical Biosensors
3.3.3. Magnetic Nanomaterial-Based Optical Biosensors
3.3.4. Optical Biosensors Based on Other Nanomaterials
4. Application of Optical Biosensors for Multiple Pathogen Detection in POCT
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Du, R.-H.; Li, B.; Zheng, X.-S.; Yang, X.-L.; Hu, B.; Wang, Y.-Y.; Xiao, G.-F.; Yan, B.; Shi, Z.-L.; et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect. 2020, 9, 386–389. [Google Scholar] [CrossRef]
- Giarola, J.F.; Soler, M.; Estevez, M.C.; Tarasova, A.; Le Poder, S.; Wasniewski, M.; Decaro, N.; Lechuga, L.M. Validation of a plasmonic-based serology biosensor for veterinary diagnosis of COVID-19 in domestic animals. Talanta 2024, 271, 125685. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Juhas, M.; Zhang, Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens. Bioelectron. 2020, 167, 112494. [Google Scholar] [CrossRef] [PubMed]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Islam, M.S.; Jia, F.; Cao, Y.; Li, Y.; Cao, C. Flexible Biosensors for Food Pathogen Detection. Adv. Electron. Mater. 2024, 10, 2300898. [Google Scholar] [CrossRef]
- Gao, D.; Ma, Z.; Jiang, Y. Recent advances in microfluidic devices for foodborne pathogens detection. TrAC Trends Anal. Chem. 2022, 157, 116788. [Google Scholar] [CrossRef]
- Xue, L.; Jiang, F.; Xi, X.; Li, Y.; Lin, J. Lab-on-chip separation and biosensing of pathogens in agri-food. Trends Food Sci. Technol. 2023, 137, 92–103. [Google Scholar] [CrossRef]
- Nazari-Vanani, R.; Negahdary, M. Recent advances in electrochemical aptasensors and genosensors for the detection of pathogens. Environ. Res. 2024, 243, 117850. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Kim, M.I. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. TrAC Trends Anal. Chem. 2020, 132, 116038. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, M.; Wang, Y.; Liu, J. Nanozyme and aptamer- based immunosorbent assay for aflatoxin B1. J. Hazard. Mater. 2020, 399, 123154. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.; Fan, F.; Chen, S.; Zhang, Y.; Zhang, Y.; Meng, X.; Lin, J.-M. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. TrAC Trends Anal. Chem. 2022, 157, 116737. [Google Scholar] [CrossRef]
- Nnachi, R.C.; Sui, N.; Ke, B.; Luo, Z.; Bhalla, N.; He, D.; Yang, Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environ. Int. 2022, 166, 107357. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, Y.; Wang, Z.; Wang, Z.; Xie, J.; Zhai, H.; Huang, Z.; Wang, Y.; Wu, Q.; Ding, Y.; et al. The recent advances of high-throughput biosensors for rapid detection of foodborne pathogens. TrAC Trends Anal. Chem. 2024, 176, 117736. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Kaminski, T.; Gunnarsson, A.; Geschwindner, S. Harnessing the Versatility of Optical Biosensors for Target-Based Small-Molecule Drug Discovery. ACS Sens. 2017, 2, 10–15. [Google Scholar] [CrossRef]
- Kapoor, A.; Ramamoorthy, S.; Sundaramurthy, A.; Vaishampayan, V.; Sridhar, A.; Balasubramanian, S.; Ponnuchamy, M. Paper-based lab-on-a-chip devices for detection of agri-food contamination. Trends Food Sci. Technol. 2024, 147, 104476. [Google Scholar] [CrossRef]
- Sun, R.; Li, Y.; Du, T.; Qi, Y. Recent advances in integrated dual-mode optical sensors for food safety detection. Trends Food Sci. Technol. 2023, 135, 14–31. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, M. Optical biosensors for environmental monitoring: Recent advances and future perspectives in bacterial detection. Environ. Res. 2023, 236, 116826. [Google Scholar] [CrossRef]
- Parihar, A.; Yadav, S.; Sadique, M.A.; Ranjan, P.; Kumar, N.; Singhal, A.; Khare, V.; Khan, R.; Natarajan, S.; Srivastava, A.K. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng. Transl. Med. 2023, 8, e10481. [Google Scholar] [CrossRef]
- Zong, H.; Zhang, Y.; Liu, X.; Xu, Z.; Ye, J.; Lu, S.; Guo, X.; Yang, Z.; Zhang, X.; Chai, M.; et al. Recent trends in smartphone-based optical imaging biosensors for genetic testing: A review. View 2023, 4, 20220062. [Google Scholar] [CrossRef]
- Sun, M.; Sun, H.; Yu, C.; Lu, P.; Feng, F.; Zhang, J.; Li, W.; Yao, L. Force-Encoding DNA Nanomachines for Simultaneous and Direct Detection of Multiple Pathogenic Bacteria in Blood. Anal. Chem. 2024, 96, 4314–4321. [Google Scholar] [CrossRef] [PubMed]
- Vaquer, A.; Adrover-Jaume, C.; Clemente, A.; Viana, J.; Rodríguez, R.; Rojo-Molinero, E.; Oliver, A.; de la Rica, R. OriPlex: Origami-enabled multiplexed detection of respiratory pathogens. Biosens. Bioelectron. 2024, 257, 116341. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, J.; Moon, J.; Lee, T.; Kim, J.; Jeong, Y.; Lim, E.-K.; Jung, J.; Jung, Y.; Lee, S.J.; et al. Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra. Small 2024, 20, 2308317. [Google Scholar] [CrossRef]
- Mi, F.; Hu, C.; Wang, Y.; Wang, L.; Peng, F.; Geng, P.; Guan, M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: A review. Anal. Bioanal. Chem. 2022, 414, 2883–2902. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ma, B.; Li, J.; Shuai, J.; Zhang, M. Multiplex reverse transcription recombinase polymerase amplification combined with lateral flow biosensor for simultaneous detection of three viral pathogens in cattle. Talanta 2025, 281, 126775. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, T.; Guo, J.; Lu, H.; Yao, Y.; Chen, X.; Zhang, X.; Sui, G.; Guan, M. A LAMP-based microfluidic module for rapid detection of pathogen in cryptococcal meningitis. Talanta 2022, 236, 122827. [Google Scholar] [CrossRef]
- Lin, X.; Fang, M.; Yi, C.; Jiang, Y.; Zhang, C.; Pan, X.; Luo, Z. Functional hydrogel for fast, precise and inhibition-free point-of-care bacteria analysis in crude food samples. Biomaterials 2022, 280, 121278. [Google Scholar] [CrossRef]
- Cao, Y.; Ye, C.; Zhang, C.; Zhang, G.; Hu, H.; Zhang, Z.; Fang, H.; Zheng, J.; Liu, H. Simultaneous detection of multiple foodborne bacteria by loop-mediated isothermal amplification on a microfluidic chip through colorimetric and fluorescent assay. Food Control 2022, 134, 108694. [Google Scholar] [CrossRef]
- Denyingyhot, A.; Srinulgray, T.; Mahamad, P.; Ruangprach, A.; Sa-I, S.; Saerae, T.; Vesaratchavest, M.; Dahlan, W.; Keeratipibul, S. Modern on-site tool for monitoring contamination of halal meat with products from five non-halal animals using multiplex polymerase chain reaction coupled with DNA strip. Food Control 2022, 132, 108540. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Q.; Liu, Y.; Huang, B.; Man, S.; Ye, S.; Ma, L. Sample-in-answer-out centrifugal microfluidic chip reaction biosensor powered by Thermus thermophilus Argonaute (TtAgo) for rapid, highly sensitive and multiplexed molecular diagnostics of foodborne bacterial pathogens. Chem. Eng. J. 2024, 495, 153434. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Chen, L.; Kaushik, A.; Hu, K.; Wang, T.-H. ddRFC: A scalable multiplexed droplet digital nucleic acid amplification test platform. Biosens. Bioelectron. 2020, 167, 112499. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, L.; Ye, Z.; Gong, J.; Hao, P.; Ping, J.; Ying, Y. TriD-LAMP: A pump-free microfluidic chip for duplex droplet digital loop-mediated isothermal amplification analysis. Anal. Chim. Acta 2022, 1233, 340513. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef]
- Mazur, F.; Han, Z.; Tjandra, A.D.; Chandrawati, R. Digitalization of Colorimetric Sensor Technologies for Food Safety. Adv. Mater. 2024, 36, 2404274. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, Y.; Wang, H.; Yang, W.; Xu, Z.; Liu, D.; Chen, H.-J.; Zhang, D. An Improved Automated High-Throughput Efficient Microplate Reader for Rapid Colorimetric Biosensing. Biosensors 2022, 12, 284. [Google Scholar] [CrossRef]
- Ajay Piriya, V.S.; Joseph, P.; Kiruba Daniel, S.C.G.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Trinh, T.N.D.; Lee, N.Y. Fully integrated and slidable paper-embedded plastic microdevice for point-of-care testing of multiple foodborne pathogens. Biosens. Bioelectron. 2019, 135, 120–128. [Google Scholar] [CrossRef]
- Chen, W.; Li, M.; Chen, Z.; Yan, Z.; Li, J.; Guo, L.; Ding, C.; Huang, Y. Dual enzyme induced colorimetric sensor for simultaneous identifying multiple pathogens. Biosens. Bioelectron. 2023, 234, 115344. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Liang, X.; Liu, J.; Zhao, T.-Y.; Li, X.; Zhang, Y.; Guo, G.; Zhang, Z.; Zeng, J. An achromatic colorimetric nanosensor for sensitive multiple pathogen detection by coupling plasmonic nanoparticles with magnetic separation. Talanta 2023, 256, 124271. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Yang, Y.; Yang, X.; Wang, H.; Yun, Y.; Pan, X.; Lian, Z.; Kuzmin, A.; Ponkratova, E.; et al. Rapid Identification and Monitoring of Multiple Bacterial Infections Using Printed Nanoarrays. Adv. Mater. 2023, 35, 2211363. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Xu, Z.; Guo, X.; Yang, W.; Zhang, X.; Liao, Y.; Fan, M.; Zhang, D. A Portable Smartphone-Based System for the Detection of Blood Calcium Using Ratiometric Fluorescent Probes. Biosensors 2022, 12, 917. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Wu, Q.; Qi, R.; Li, L.; Xu, L.; Yuan, H. High-throughput fluorescence sensing array based on tetraphenylethylene derivatives for detecting and distinguishing pathogenic microbes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124435. [Google Scholar] [CrossRef] [PubMed]
- Svechkarev, D.; Sadykov, M.R.; Bayles, K.W.; Mohs, A.M. Ratiometric Fluorescent Sensor Array as a Versatile Tool for Bacterial Pathogen Identification and Analysis. ACS Sens. 2018, 3, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, Y.; Fu, J.; Fang, H.; Li, Y.; Huang, X.; Xiong, Y. A self-luminous bifunctional bacteria directed fluorescent immunosensor for the simultaneous detection and quantification of three pathogens in milk. Sens. Actuators B Chem. 2021, 338, 129757. [Google Scholar] [CrossRef]
- Chu, J.; Ejaz, A.; Lin, K.M.; Joseph, M.R.; Coraor, A.E.; Drummond, D.A.; Squires, A.H. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. Nat. Nanotechnol. 2024, 19, 1150–1157. [Google Scholar] [CrossRef]
- Renuka, R.M.; Maroli, N.; Achuth, J.; Ponmalai, K.; Kadirvelu, K. Highly adaptable and sensitive FRET-based aptamer assay for the detection of Salmonella paratyphi A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 243, 118662. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, M.; Du, J.; Bai, H.; Shan, G.; Kwok, R.T.K.; Chau, J.H.C.; Zhang, J.; Lam, J.W.Y.; Huang, P.; et al. One stone, three birds: One AIEgen with three colors for fast differentiation of three pathogens. Chem. Sci. 2020, 11, 4730–4740. [Google Scholar] [CrossRef]
- Tadesse, L.F.; Safir, F.; Ho, C.-S.; Hasbach, X.; Khuri-Yakub, B.; Jeffrey, S.S.; Saleh, A.A.E.; Dionne, J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J. Chem. Phys. 2020, 152, 240902. [Google Scholar] [CrossRef]
- Liu, S.; Hu, Q.; Li, C.; Zhang, F.; Gu, H.; Wang, X.; Li, S.; Xue, L.; Madl, T.; Zhang, Y.; et al. Wide-Range, Rapid, and Specific Identification of Pathogenic Bacteria by Surface-Enhanced Raman Spectroscopy. ACS Sens. 2021, 6, 2911–2919. [Google Scholar] [CrossRef]
- Lyu, N.; Potluri, P.R.; Rajendran, V.K.; Wang, Y.; Sunna, A. Multiplex detection of bacterial pathogens by PCR/SERS assay. Analyst 2024, 149, 2898–2904. [Google Scholar] [CrossRef]
- Li, J.; Shen, W.; Liang, X.; Zheng, S.; Yu, Q.; Wang, C.; Wang, C.; Gu, B. 2D Film-Like Magnetic SERS Tag with Enhanced Capture and Detection Abilities for Immunochromatographic Diagnosis of Multiple Bacteria. Small 2024, 20, 2310014. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, C.; Li, J.; Tu, Z.; Gu, B.; Wang, S. Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosens. Bioelectron. 2022, 214, 114525. [Google Scholar] [CrossRef] [PubMed]
- Kearns, H.; Goodacre, R.; Jamieson, L.E.; Graham, D.; Faulds, K. SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Anal. Chem. 2017, 89, 12666–12673. [Google Scholar] [CrossRef]
- D’Agata, R.; Bellassai, N.; Spoto, G. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review. Talanta 2024, 266, 125033. [Google Scholar] [CrossRef]
- Huo, Z.; Li, Y.; Chen, B.; Zhang, W.; Yang, X.; Yang, X. Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023, 255, 124213. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Cho, Y.-W.; Kim, T.-H. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors 2022, 12, 180. [Google Scholar] [CrossRef]
- Wen, J.; Zhu, Y.; Liu, J.; He, D. Smartphone-based surface plasmon resonance sensing platform for rapid detection of bacteria. RSC Adv. 2022, 12, 13045–13051. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.; Huang, L.; Ouyang, Z.; Wang, Z.; Kong, X.; Li, T.; Yin, Y.; Wu, Y.; He, Q. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef]
- Somvanshi, S.B.; Ulloa, A.M.; Zhao, M.; Liang, Q.; Barui, A.K.; Lucas, A.; Jadhav, K.M.; Allebach, J.P.; Stanciu, L.A. Microfluidic paper-based aptasensor devices for multiplexed detection of pathogenic bacteria. Biosens. Bioelectron. 2022, 207, 114214. [Google Scholar] [CrossRef]
- Bai, W.; Chen, J.; Chen, D.; Zhu, Y.; Hu, K.; Lin, X.; Chen, J.; Song, D. Sensitive and rapid detection of three foodborne pathogens in meat by recombinase polymerase amplification with lateral flow dipstick (RPA-LFD). Int. J. Food Microbiol. 2024, 422, 110822. [Google Scholar] [CrossRef]
- Yin, J.; Zou, Z.; Hu, Z.; Zhang, S.; Zhang, F.; Wang, B.; Lv, S.; Mu, Y. A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens. Lab A Chip 2020, 20, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Huang, Y.; Xu, J.; Wu, H.; Li, T.; Yu, Z.; Huang, S.; Gan, N. A multi-channel microfluidic chip based on fluorescent distance readout-mode for rapid, simultaneous and visual detection of multiplex pathogens using phage-AIEgen-antimicrobial peptide-encoded tags. Sens. Actuators B Chem. 2025, 424, 136867. [Google Scholar] [CrossRef]
- Shang, Y.; Xing, G.; Lin, H.; Sun, Y.; Chen, S.; Lin, J.-M. Development of nucleic acid extraction and real-time recombinase polymerase amplification (RPA) assay integrated microfluidic biosensor for multiplex detection of foodborne bacteria. Food Control 2024, 155, 110047. [Google Scholar] [CrossRef]
- Jia, Z.; Müller, M.; Le Gall, T.; Riool, M.; Müller, M.; Zaat, S.A.J.; Montier, T.; Schönherr, H. Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioact. Mater. 2021, 6, 4286–4300. [Google Scholar] [CrossRef]
- Roh, Y.H.; Lee, C.Y.; Lee, S.; Kim, H.; Ly, A.; Castro, C.M.; Cheon, J.; Lee, J.-H.; Lee, H. CRISPR-Enhanced Hydrogel Microparticles for Multiplexed Detection of Nucleic Acids. Adv. Sci. 2023, 10, 2206872. [Google Scholar] [CrossRef]
- Ou, H.; Wang, Y.; Wang, Q.; Ma, Y.; Liu, C.; Jia, L.; Zhang, Q.; Li, M.; Feng, X.; Li, M.; et al. Rapid detection of multiple pathogens by the combined loop-mediated isothermal amplification technology and microfluidic chip technology. Ann. Palliat. Med. 2021, 10, 11053–11066. [Google Scholar] [CrossRef]
- Li, Q.; Duan, L.; Jin, D.; Chen, Y.; Lou, Y.; Zhou, Q.; Xu, Z.; Chen, F.; Chen, H.; Xu, G.; et al. A real-time fluorogenic recombinase polymerase amplification microfluidic chip (on-chip RPA) for multiple detection of pathogenic microorganisms of penaeid shrimp. Aquaculture 2024, 578, 740017. [Google Scholar] [CrossRef]
- Li, F.; Li, B.; Dang, H.; Kang, Q.; Yang, L.; Wang, Y.; Aguilar, Z.P.; Lai, W.; Xu, H. Viable pathogens detection in fresh vegetables by quadruplex PCR. LWT-Food Sci. Technol. 2017, 81, 306–313. [Google Scholar] [CrossRef]
- Yuan, T.; Qazi, I.H.; Huang, X.; Liu, J. Rapid detection of virulence-related genes by multiplex PCR in five pathogenic bacteria of mulberry bacterial wilt. Chem. Biol. Technol. Agric. 2024, 11, 72. [Google Scholar] [CrossRef]
- Huang, C.; Zheng, R.; Ding, Y.; Nugen, S.R.; Wang, X. Dual phage amplification-mediated multiplex detection strategies for the simultaneous detection of Salmonella enterica and Staphylococcus aureus. Talanta 2023, 253, 124095. [Google Scholar] [CrossRef]
- Hashimoto, K.; Inada, M.; Ito, K. Multiplex Real-Time Loop-Mediated Isothermal Amplification Using an Electrochemical DNA Chip Consisting of a Single Liquid-Flow Channel. Anal. Chem. 2019, 91, 3227–3232. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Kim, H.-J.; Kim, H.-Y. Direct triplex loop-mediated isothermal amplification assay for the point-of-care molecular detection of Salmonella genus, subspecies I, and serovar Typhimurium. Food Control 2021, 120, 107504. [Google Scholar] [CrossRef]
- Wang, H.; Wen, T.; Zhu, W.; Li, K.; Gong, X.; Li, Z. Microfluidic strategies for biomimetic lung chip establishment and SARS-CoV2 study. Mater. Today Bio 2024, 24, 100905. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, C.; Uludağ, İ.; İnce, B.; Sezgintürk, M.K. Lab-on-a-chip systems for cancer biomarker diagnosis. J. Pharm. Biomed. Anal. 2023, 226, 115266. [Google Scholar] [CrossRef]
- di Toma, A.; Brunetti, G.; Colapietro, P.; Ciminelli, C. High-Resolved Near-Field Sensing by Means of Dielectric Grating with a Box-Like Resonance Shape. IEEE Sens. J. 2024, 24, 6045–6053. [Google Scholar] [CrossRef]
- Yoo, K.M.; Fan, K.C.; Hlaing, M.; Jain, S.; Ning, S.; An, Y.; Chen, R.T. Lab-on-a-Chip Optical Biosensor Platform: Micro Ring Resonator Integrated with Near-Infrared Fourier Transform Spectrometer. Opt. Lett. 2023, 20, 5371–5374. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, Y.; Li, Y.; Miao, Y.; Gao, S.; Lin, F.; Deng, Y.; Geng, L. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosens. Bioelectron. 2019, 126, 697–706. [Google Scholar] [CrossRef]
- Choi, J.W.; Seo, W.H.; Kang, T.; Kang, T.; Chung, B.G. Droplet digital recombinase polymerase amplification for multiplexed detection of human coronavirus. Lab A Chip 2023, 23, 2389–2398. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Z.; Cai, D.; Huang, D.; Huang, E.; Yang, X.; Zhang, T.; Wen, H.; Wang, Y.; Zhao, M.; et al. Rapid Detection of Uropathogens Using an Integrated Multiplex Digital Nucleic Acid Detection Assay Powered by a Digital-to-Droplet Microfluidic Device. Anal. Chem. 2024, 96, 12561–12569. [Google Scholar] [CrossRef]
- Quan, H.; Wang, S.; Xi, X.; Zhang, Y.; Ding, Y.; Li, Y.; Lin, J.; Liu, Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens. Bioelectron. 2024, 245, 115837. [Google Scholar] [CrossRef]
- Qin, Z.; Xiang, X.; Xue, L.; Cai, W.; Gao, J.; Yang, J.; Liang, Y.; Wang, L.; Chen, M.; Pang, R.; et al. Development of a novel RAA-based microfluidic chip for absolute quantitative detection of human norovirus. Microchem. J. 2021, 164, 106050. [Google Scholar] [CrossRef]
- Park, S.Y.; Sivakumar, R.; Lee, N.Y. D-Glucose-Mediated Gold Nanoparticle Fabrication for Colorimetric Detection of Foodborne Pathogens. Biosensors 2024, 14, 284. [Google Scholar] [CrossRef] [PubMed]
- Dayalan, S.; Gedda, G.; Li, R.N.; Zulfajri, M.; Huang, G.G. Vancomycin functionalization of gold nanostars for sensitive detection of foodborne pathogens through surface-enhanced Raman scattering. J. Chin. Chem. Soc. 2022, 69, 2049–2060. [Google Scholar] [CrossRef]
- Zopf, D.; Pittner, A.; Dathe, A.; Grosse, N.; Csáki, A.; Arstila, K.; Toppari, J.J.; Schott, W.; Dontsov, D.; Uhlrich, G.; et al. Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection. ACS Sens. 2019, 4, 335–343. [Google Scholar] [CrossRef]
- Huo, B.; Xia, L.; Hu, Y.; Li, G. Flexible microfluidic co-recognition coupled with magnetic enrichment and silent SERS sensing for simultaneous analysis of bacteria in food. Biosens. Bioelectron. 2024, 255, 116227. [Google Scholar] [CrossRef]
- Nißler, R.; Bader, O.; Dohmen, M.; Walter, S.G.; Noll, C.; Selvaggio, G.; Groß, U.; Kruss, S. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat. Commun. 2020, 11, 5995. [Google Scholar] [CrossRef]
- Zhou, Z.; Xiao, R.; Cheng, S.; Wang, S.; Shi, L.; Wang, C.; Qi, K.; Wang, S. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Anal. Chim. Acta 2021, 1160, 338421. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wang, P.; Fan, L.; Shi, Y. Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags. Talanta 2022, 243, 123369. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zhuo, P.; Hu, Q.; Chen, Z.; Zhou, L. Identification of eight pathogenic microorganisms by single concentration-dependent multicolor carbon dots. J. Mater. Chem. B 2020, 8, 5877–5882. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, C.C.; Liu, A.; Liu, Y.; Dong, J.; Wang, Z.; Wei, W.; Liu, S. Simultaneous detection of foodborne pathogenic bacteria in milk by fluorescence immunoassay. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121830. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Liao, Z.; Sun, Y.; Cheng, Q.; Song, Y.; Song, E.; Tan, W. Magnetism-Resolved Separation and Fluorescence Quantification for Near-Simultaneous Detection of Multiple Pathogens. Anal. Chem. 2018, 90, 9621–9628. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, Y.; Wen, J.; Huang, J.; Ma, G.; Liu, Y.; Tan, H. Multiplex Aptamer-Based Fluorescence Assay Using Magnetism-Encoded Nanoparticles for Simultaneous Detection of Multiple Pathogenic Bacteria. Anal. Chem. 2024, 96, 2341–2350. [Google Scholar] [CrossRef] [PubMed]
- Chai, F.; Wang, D.; Shi, F.; Zheng, W.; Zhao, X.; Chen, Y.; Mao, C.; Zhang, J.; Jiang, X. Dual Functional Ultrasensitive Point-of-Care Clinical Diagnosis Using Metal–Organic Frameworks-Based Immunobeads. Nano Lett. 2023, 23, 9056–9064. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Ma, B.; Mei, Q.; Xu, S.; Deng, X.; Hong, Y.; Li, J.; Xu, H.; Zhang, M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors Combined with Recombinase Polymerase Amplification for Simultaneous Detection of Five Zoonotic Foodborne Pathogens. Biosensors 2023, 13, 652. [Google Scholar] [CrossRef]
- Dong, X.; Tang, Z.; Jiang, X.; Fu, Q.; Xu, D.; Zhang, L.; Qiu, X. A highly sensitive, real-time centrifugal microfluidic chip for multiplexed detection based on isothermal amplification. Talanta 2024, 268, 125319. [Google Scholar] [CrossRef]
- Xie, M.; Chen, T.; Xin, X.; Cai, Z.; Dong, C.; Lei, B. Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip. Food Control 2022, 136, 108824. [Google Scholar] [CrossRef]
- Chen, P.; Chen, C.; Su, H.; Zhou, M.; Li, S.; Du, W.; Feng, X.; Liu, B.-F. Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens. Talanta 2021, 224, 121844. [Google Scholar] [CrossRef]
- Yang, K.; Pan, J.; Deng, G.; Hua, C.; Zhu, C.; Liu, Y.; Zhu, L. Mkit: A mobile nucleic acid assay based on a chitosan-modified minimalistic microfluidic chip (CM3-chip) and smartphone. Anal. Chim. Acta 2023, 1253, 341030. [Google Scholar] [CrossRef]
- Yin, P.; Wang, J.; Li, T.; Pan, Q.; Zhu, L.; Yu, F.; Zhao, Y.-Z.; Liu, H.-B. A smartphone-based fluorescent sensor for rapid detection of multiple pathogenic bacteria. Biosens. Bioelectron. 2023, 242, 115744. [Google Scholar] [CrossRef]
- Yin, X.; Wang, Z.; You, H.; Shu, T.; Hua, C.; Zhao, J.; Yang, K.; Deng, G.; Liu, Y.; Zhu, L.; et al. SEDphone: Spatial encoding of centrifugal microfluidic disc integrated smartphone-controlled platform via RT/LAMP-CRISPR/Cas12a system for influenza virus subtypes detection. Sens. Actuators B Chem. 2024, 417, 136196. [Google Scholar] [CrossRef]
- Srivastava, S.; Wang, W.; Zhou, W.; Jin, M.; Vikesland, P.J. Machine Learning-Assisted Surface-Enhanced Raman Spectroscopy Detection for Environmental Applications: A Review. Environ. Sci. Technol. 2024, 58, 20830–20848. [Google Scholar] [CrossRef]
- Cui, R.; Tang, H.; Huang, Q.; Ye, T.; Chen, J.; Huang, Y.; Hou, C.; Wang, S.; Ramadan, S.; Li, B.; et al. AI-assisted smartphone-based colorimetric biosensor for visualized, rapid and sensitive detection of pathogenic bacteria. Biosens. Bioelectron. 2024, 259, 116369. [Google Scholar] [CrossRef]
Technique | Principle | Sensitivity | Multiplex Capacity | Portability | References |
---|---|---|---|---|---|
Colorimetric | Enzymatic/chemical-induced color shift | 10–106 CFU/mL | 3–5 targets | High (naked-eye readout) | [39] |
Fluorescence | QDs/CDs as fluorescent probes | 10–103 CFU/mL | 5–8 targets | Moderate (UV excitation) | [43,44] |
SERS | Hotspot-enhanced Raman signals | 1–10 CFU/mL | >10 targets | Low (laser required) | [53] |
SPR | Refractive index changes | 102–104 CFU/mL | 3–4 targets | Moderate (chip-based) | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xu, X.; Zhu, Y.; Wan, J.; Wang, X.; Zhou, X.; Li, X.; Zhou, W. Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors. Biosensors 2025, 15, 378. https://doi.org/10.3390/bios15060378
Wu Y, Xu X, Zhu Y, Wan J, Wang X, Zhou X, Li X, Zhou W. Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors. Biosensors. 2025; 15(6):378. https://doi.org/10.3390/bios15060378
Chicago/Turabian StyleWu, Yue, Xing Xu, Yinchu Zhu, Jiaxin Wan, Xingbo Wang, Xin Zhou, Xiangjun Li, and Weidong Zhou. 2025. "Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors" Biosensors 15, no. 6: 378. https://doi.org/10.3390/bios15060378
APA StyleWu, Y., Xu, X., Zhu, Y., Wan, J., Wang, X., Zhou, X., Li, X., & Zhou, W. (2025). Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors. Biosensors, 15(6), 378. https://doi.org/10.3390/bios15060378