Single-Molecule Detection Technologies: Advances in Devices, Transduction Mechanisms, and Functional Materials for Real-World Biomedical and Environmental Applications
Abstract
1. Introduction
2. Principles and Devices for Single-Molecule Detection
2.1. Surface Plasmon Resonance

2.2. Mechanochemical Sensing

2.3. Transistor-Based Sensing
2.4. Optical Microfibers
2.5. Fluorescence-Based Approaches
2.6. Raman Scattering

2.7. Recognition Tunneling
2.8. Nanopore-Based Sensing
| SMD Technique | Label-Free | Typical Detection Limit | Transduction Type | Advantages | Limitations | Ref. |
|---|---|---|---|---|---|---|
| Surface Plasmon Resonance (SPR) | Yes | Attomolar (10−18 M) | Optical (Refractive Index) | Real-time, label-free, high specificity | Surface fouling, baseline drift | [114,115] |
| Mechanochemical Sensing | Yes | Femtomolar to Attomolar | Mechanical/Force-Based | Direct force measurement, high sensitivity | Low throughput, complex setup | [53,116] |
| Transistor-Based Sensing | Yes | Single Molecule | Electrical | Miniaturized, electronic readout, real-time | Debye screening, surface instability | [117,118] |
| Optical Microfiber | Yes | Zeptomolar (10−21 M) | Optical (Phase/Intensity Shift) | Compact, scalable, ultrasensitive | Fiber fragility, complex modification | [119,120] |
| Fluorescence-Based Detection | No | Zeptomolar (10−21 M) | Optical (Fluorescence) | High spatial/temporal resolution, multiplexing | Photobleaching, autofluorescence | [121] |
| Raman Scattering (SERS/TERS) | Yes | Single Molecule | Optical (Inelastic Scattering) | Molecular fingerprinting, label-free | Hotspot variability, substrate fabrication | [122] |
| Recognition Tunneling | Yes | Single Molecule | Electronic (Tunneling Current) | Molecular specificity, ultralow volume | Reproducibility, signal variability | [102] |
3. Emerging Materials for Single-Molecule Detection
3.1. Graphene and Carbon Nanotubes (CNTs)

3.2. Quantum Dots
3.3. Nanoparticles

3.4. Upconversion Nanocrystals
3.5. MnO2 Nanosheets
3.6. Magnetic Nanoparticles
4. Different Applications of SMD
4.1. Biomedical Research and Diagnostics
4.2. Environmental Monitoring
4.3. Food Safety and Agriculture
4.4. Nanotechnology and Materials Science
4.5. Neuroscience and Cellular Biology
4.6. Quantum Technologies and Metrology
| Application Domain | Detection Limit | Label-Free | Platform Type | Key Role of SMD | Representative Techniques | Ref. |
|---|---|---|---|---|---|---|
| Biomedical Research and Diagnostics | Attomolar to femtomolar | Yes | FET chips, nanopores, microfluidics | Early disease diagnosis, drug discovery, real-time biomolecular interaction studies | SPR, fluorescence sensing, FET biosensors, nanopore sensing | [214,215] |
| Environmental Monitoring | Sub-nanomolar to nanomolar | Yes | Break junctions, field probes | Trace detection of pollutants (e.g., heavy metals, VOCs), microplastic mapping | Break junction sensing, mechanochemical transduction, Raman scattering | [216] |
| Food Safety and Agriculture | Nanomolar | Yes | SPR chips, optical fibers | Noninvasive detection of allergens, pathogens, and spoilage indicators | SPR, optical microfiber sensors, FET biosensors | [217,218] |
| Nanotechnology and Materials Science | Single-molecule resolution | Depends on probe | Scanning probes, 2D platforms | Molecular-level characterization of nanomaterials, surface chemistry studies | Fluorescence imaging, Raman spectroscopy, tunneling spectroscopy | [219,220] |
| Neuroscience and Cellular Biology | Single-molecule, single-vesicle | Yes | Microfibers, nanoelectrodes | Real-time monitoring of neurotransmitter dynamics, single-cell analysis | Fluorescence-based probes, optical microfibers, nanoelectrodes | [221,222] |
5. Challenges and Future Perspectives
5.1. Signal Amplification and Sensitivity Limitations
5.2. Reproducibility and Material Inconsistency
5.3. High Fabrication Costs and Lack of Scalability
5.4. Specificity and Selectivity in Complex Matrices
5.5. Data Interpretation and Computational Complexity
5.6. Biocompatibility and In Vivo Stability
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dey, S.; Dolci, M.; Zijlstra, P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS Phys. Chem. Au 2023, 3, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Maley, A.M.; Walt, D.R. Single-molecule measurements in microwells for clinical applications. Crit. Rev. Clin. Lab. Sci. 2020, 57, 270–290. [Google Scholar] [CrossRef]
- Goto, Y.; Akahori, R.; Yanagi, I.; Takeda, K.-I. Solid-state nanopores towards single-molecule DNA sequencing. J. Hum. Genet. 2020, 65, 69–77. [Google Scholar] [CrossRef]
- Zhao, Y.; Iarossi, M.; De Fazio, A.F.; Huang, J.-A.; De Angelis, F. Label-Free Optical Analysis of Biomolecules in Solid-State Nanopores: Toward Single-Molecule Protein Sequencing. ACS Photonics 2022, 9, 730–742. [Google Scholar] [CrossRef]
- Akkilic, N.; Geschwindner, S.; Höök, F. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; He, S.; Jiang, B.; Wang, Y.; Cheng, Y.; Peng, J.; Verpoort, F.; Wang, J.; Kou, Z. Single-atom metal-nitrogen-carbon catalysts energize single molecule detection for biosensing. InfoMat 2023, 5, e12421. [Google Scholar] [CrossRef]
- Su, Y.; Zhou, L. Review of single-molecule immunoassays: Non-chip and on-chip Assays. Anal. Chim. Acta 2024, 1322, 342885. [Google Scholar] [CrossRef]
- Hwang, D.-W.; Maekiniemi, A.; Singer, R.H.; Sato, H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat. Rev. Genet. 2024, 25, 272–285. [Google Scholar] [CrossRef]
- Shen, M.; Rackers, W.H.; Sadtler, B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. Chem. Biomed. Imaging 2023, 1, 692–715. [Google Scholar] [CrossRef] [PubMed]
- Möckl, L.; Moerner, W.E. Super-resolution Microscopy with Single Molecules in Biology and Beyond–Essentials, Current Trends, and Future Challenges. J. Am. Chem. Soc. 2020, 142, 17828–17844. [Google Scholar] [CrossRef]
- Han, H.-H.; Tian, H.; Zang, Y.; Sedgwick, A.C.; Li, J.; Sessler, J.L.; He, X.-P.; James, T.D. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem. Soc. Rev. 2021, 50, 9391–9429. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M.D.; Khatua, S.; Orrit, M. Photothermal Microscopy: Imaging the Optical Absorption of Single Nanoparticles and Single Molecules. ACS Nano 2020, 14, 16414–16445. [Google Scholar] [CrossRef]
- Khater, I.M.; Nabi, I.R.; Hamarneh, G. A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. Patterns 2020, 1, 100038. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, Y.; Wang, S.; Liu, X. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew. Chem. Int. Ed. Engl. 2020, 59, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.M.; Brolo, A.G.; Lindquist, N.C. Single-Molecule Surface-Enhanced Raman Spectroscopy: Challenges, Opportunities, and Future Directions. ACS Nano 2024, 18, 25930–25938. [Google Scholar] [CrossRef]
- Zalejski, J.; Sun, J.; Sharma, A. Unravelling the Mystery inside Cells by Using Single-Molecule Fluorescence Imaging. J. Imaging 2023, 9, 192. [Google Scholar] [CrossRef]
- Yang, W.; Wei, Z.; Nie, Y.; Tian, Y. Optical Detection and Imaging of Nonfluorescent Matter at the Single-Molecule/Particle Level. J. Phys. Chem. Lett. 2022, 13, 9618–9631. [Google Scholar] [CrossRef]
- Qiu, Y.; Kuang, C.; Liu, X.; Tang, L. Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 4889. [Google Scholar] [CrossRef]
- Maccaferri, N.; Barbillon, G.; Koya, A.N.; Lu, G.; Acuna, G.P.; Garoli, D. Recent advances in plasmonic nanocavities for single-molecule spectroscopy. Nanoscale Adv. 2021, 3, 633–642. [Google Scholar] [CrossRef]
- Wu, Y.; Bennett, D.; Tilley, R.D.; Gooding, J.J. How Nanoparticles Transform Single Molecule Measurements into Quantitative Sensors. Adv. Mater. 2020, 32, e1904339. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Liu, X.; Lu, C. Nanoparticle-based single molecule fluorescent probes. Luminescence 2022, 37, 1808–1821. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of nanotechnology in medical field: A brief review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Macchia, E.; Manoli, K.; Di Franco, C.; Scamarcio, G.; Torsi, L. New trends in single-molecule bioanalytical detection. Anal. Bioanal. Chem. 2020, 412, 5005–5014. [Google Scholar] [CrossRef]
- Zhou, J.; Chizhik, A.I.; Chu, S.; Jin, D. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50. [Google Scholar] [CrossRef]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef]
- Jiang, Z.; Han, X.; Zhao, C.; Wang, S.; Tang, X. Recent Advance in Biological Responsive Nanomaterials for Biosensing and Molecular Imaging Application. Int. J. Mol. Sci. 2022, 23, 1923. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wu, C.; Saqib, M.; Hao, R. Single-molecule fluorescence methods for protein biomarker analysis. Anal. Bioanal. Chem. 2023, 415, 3655–3669. [Google Scholar] [CrossRef]
- Dong, R.; Yi, N.; Jiang, D. Advances in single molecule arrays (SIMOA) for ultra-sensitive detection of biomolecules. Talanta 2024, 270, 125529. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, T.; Li, Z.; Khanna, K.; Montoya, K.; Tewari, M.; Walter, N.G.; Johnson-Buck, A. Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules. TrAC Trends Anal. Chem. 2020, 123, 115764. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023, 15, 1630. [Google Scholar] [CrossRef]
- Su, Z.; Li, T.; Wu, D.; Wu, Y.; Li, G. Recent Progress on Single-Molecule Detection Technologies for Food Safety. J. Agric. Food Chem. 2022, 70, 458–469. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.; Gao, S.; Wang, B.; Kong, H.; Yang, G.; Shu, W.; Xu, P.; Wei, G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. Biosensors 2022, 12, 314. [Google Scholar] [CrossRef]
- Petersen, M.; Yu, Z.; Lu, X. Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors 2021, 11, 187. [Google Scholar] [CrossRef]
- Toninelli, C.; Gerhardt, I.; Clark, A.S.; Reserbat-Plantey, A.; Götzinger, S.; Ristanović, Z.; Colautti, M.; Lombardi, P.; Major, K.D.; Deperasińska, I.; et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 2021, 20, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.E.; Shugayev, R.A.; Paudel, H.P.; Lu, P.; Syamlal, M.; Ohodnicki, P.R.; Chorpening, B.; Gentry, R.; Duan, Y. Quantum Sensing for Energy Applications: Review and Perspective. Adv. Quantum Technol. 2021, 4, 2100049. [Google Scholar] [CrossRef]
- Wasielewski, M.R.; Forbes, M.D.E.; Frank, N.L.; Kowalski, K.; Scholes, G.D.; Yuen-Zhou, J.; Baldo, M.A.; Freedman, D.E.; Goldsmith, R.H.; Goodson, T.; et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 2020, 4, 490–504. [Google Scholar] [CrossRef]
- Lelek, M.; Gyparaki, M.T.; Beliu, G.; Schueder, F.; Griffié, J.; Manley, S.; Jungmann, R.; Sauer, M.; Lakadamyali, M.; Zimmer, C. Single-molecule localization microscopy. Nat. Rev. Methods Prim. 2021, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Capelli, D.; Scognamiglio, V.; Montanari, R. Surface plasmon resonance technology: Recent advances, applications and experimental cases. TrAC Trends Anal. Chem. 2023, 163, 117079. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Z.-H.; Zhao, W.-M.; Wang, L.; Yan, X.; Zhu, A.-S.; Qiu, F.-M.; Zhang, K.-K. Research advances on surface plasmon resonance biosensors. Nanoscale 2022, 14, 564–591. [Google Scholar] [CrossRef]
- Yesudasu, V.; Pradhan, H.S.; Pandya, R.J. Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon 2021, 7, e06321. [Google Scholar] [CrossRef]
- Das, S.; Devireddy, R.; Gartia, M.R. Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. Biosensors 2023, 13, 396. [Google Scholar] [CrossRef] [PubMed]
- Kochylas, I.; Gardelis, S.; Likodimos, V.; Giannakopoulos, K.P.; Falaras, P.; Nassiopoulou, A.G. Improved Surface-Enhanced-Raman Scattering Sensitivity Using Si Nanowires/Silver Nanostructures by a Single Step Metal-Assisted Chemical Etching. Nanomaterials 2021, 11, 1760. [Google Scholar] [CrossRef]
- Pagano, R.; Syrgiannis, Z.; Bettini, S.; Ingrosso, C.; Valli, L.; Giancane, G.; Prato, M. Localized and Surface Plasmons Coupling for Ultrasensitive Dopamine Detection by means of SPR-Based Perylene Bisimide/Au Nanostructures Thin Film. Adv. Mater. Interfaces 2021, 8, 2101023. [Google Scholar] [CrossRef]
- Maphanga, C.; Manoto, S.; Ombinda-Lemboumba, S.; Ismail, Y.; Mthunzi-Kufa, P. Localized surface plasmon resonance biosensing of Mycobacterium tuberculosis biomarker for TB diagnosis. Sens. Bio-Sens. Res. 2023, 39, 100545. [Google Scholar] [CrossRef]
- Hao, X.; St-Pierre, J.-P.; Zou, S.; Cao, X. Localized surface plasmon resonance biosensor chip surface modification and signal amplifications toward rapid and sensitive detection of COVID-19 infections. Biosens. Bioelectron. 2023, 236, 115421. [Google Scholar] [CrossRef]
- Sarcina, L.; Macchia, E.; Loconsole, G.; D’aTtoma, G.; Saldarelli, P.; Elicio, V.; Palazzo, G.; Torsi, L. Surface Plasmon Resonance Assay for Label-Free and Selective Detection of Xylella fastidiosa. Adv. NanoBiomed Res. 2021, 1, 2100043. [Google Scholar] [CrossRef]
- Çimen, D.; Bereli, N.; Günaydın, S.; Denizli, A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020, 219, 121259. [Google Scholar] [CrossRef]
- Choudhary, S.; Altintas, Z. Development of a Point-of-Care SPR Sensor for the Diagnosis of Acute Myocardial Infarction. Biosensors 2023, 13, 229. [Google Scholar] [CrossRef]
- Philip, A.; Kumar, A.R. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review. Coord. Chem. Rev. 2022, 458, 214424. [Google Scholar] [CrossRef]
- Karki, B.; Uniyal, A.; Pal, A.; Srivastava, V. Advances in Surface Plasmon Resonance-Based Biosensor Technologies for Cancer Cell Detection. Int. J. Opt. 2022, 2022, 1476254. [Google Scholar] [CrossRef]
- Masson, J.-F. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020, 145, 3776–3800. [Google Scholar] [CrossRef]
- Špringer, T.; Bocková, M.; Slabý, J.; Sohrabi, F.; Čapková, M.; Homola, J. Surface plasmon resonance biosensors and their medical applications. Biosens. Bioelectron. 2025, 278, 117308. [Google Scholar] [CrossRef]
- Hu, C.; Tahir, R.; Mao, H. Single-Molecule Mechanochemical Sensing. Accounts Chem. Res. 2022, 55, 1214–1225. [Google Scholar] [CrossRef]
- Shrestha, P.; Mandal, S.; Mao, H. Mechanochemical Sensing: A Biomimetic Sensing Strategy. Chemphyschem 2015, 16, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Rathod, R.V.; Bera, S.; Maity, P.; Mondal, D. Mechanochemical Synthesis of a Fluorescein-Based Sensor for the Selective Detection and Removal of Hg2+ Ions in Industrial Effluents. ACS Omega 2020, 5, 4982–4990. [Google Scholar] [CrossRef]
- Chen, W.; Gui, J.; Weng, X.; Tan, J.; Huang, J.; Lin, Z.; Zhao, B.; Wang, L.-H.; Zeng, X.-A.; Teng, C.; et al. Mechanochemical activation of 2D MnPS3 for sub-attomolar sensing. Nat. Commun. 2024, 15, 10195. [Google Scholar] [CrossRef] [PubMed]
- Penczner, S.H.; Kumar, P.; Patel, M.; Bouchard, L.-S.; Iacopino, D.; Patel, R. Innovations in mechanochemical synthesis: Luminescent materials and their applications. Mater. Today Chem. 2024, 39, 102177. [Google Scholar] [CrossRef]
- O’nEill, R.T.; Boulatov, R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat. Rev. Chem. 2021, 5, 148–167. [Google Scholar] [CrossRef]
- Dief, E.M.; Low, P.J.; Díez-Pérez, I.; Darwish, N. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat. Chem. 2023, 15, 600–614. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, T.; Jiang, H.; Xu, Y.; Chen, J.; Zhang, L.; Su, X. DNA nanotechnology enhanced single-molecule biosensing and imaging. TrAC Trends Anal. Chem. 2021, 140, 116267. [Google Scholar] [CrossRef]
- Bushra, K.A.; Prasad, K.S. Paper-based field-effect transistor sensors. Talanta 2022, 239, 123085. [Google Scholar] [CrossRef]
- Moudgil, A.; Leong, W.L. Highly Sensitive Transistor Sensor for Biochemical Sensing and Health Monitoring Applications: A Review. IEEE Sens. J. 2023, 23, 8028–8041. [Google Scholar] [CrossRef]
- Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A.A.; Ahmad, A.N.; Alhamlan, F.S.; Shuaib, M.; et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 2021, 5, 666–677. [Google Scholar] [CrossRef]
- Scandurra, C.; Björkström, K.; Sarcina, L.; Imbriano, A.; Di Franco, C.; Österbacka, R.; Bollella, P.; Scamarcio, G.; Torsi, L.; Macchia, E. Single Molecule with a Large Transistor—SiMoT cytokine IL-6 Detection Benchmarked against a Chemiluminescent Ultrasensitive Immunoassay Array. Adv. Mater. Technol. 2023, 8, 2201910. [Google Scholar] [CrossRef]
- Macchia, E.; Manoli, K.; Holzer, B.; Di Franco, C.; Picca, R.A.; Cioffi, N.; Scamarcio, G.; Palazzo, G.; Torsi, L. Selective single-molecule analytical detection of C-reactive protein in saliva with an organic transistor. Anal. Bioanal. Chem. 2019, 411, 4899–4908. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, Y.; Nadappuram, B.P.; Akpinar, B.; Klenerman, D.; Ivanov, A.P.; Edel, J.B.; Korchev, Y. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat. Commun. 2017, 8, 586. [Google Scholar] [CrossRef]
- Sun, C.; Feng, G.; Song, Y.; Cheng, S.; Lei, S.; Hu, W. Single Molecule Level and Label-Free Determination of Multibiomarkers with an Organic Field-Effect Transistor Platform in Early Cancer Diagnosis. Anal. Chem. 2022, 94, 6615–6620. [Google Scholar] [CrossRef]
- Chowdhury, D.; De, B.P.; Appasani, B.; Singh, N.K.; Kar, R.; Mandal, D.; Bizon, N.; Thounthong, P. A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules. Sensors 2023, 23, 2953. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Li, H.; Zhao, W.; Song, M.; Zhang, W.; Li, X.; Chen, J.; Wang, L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. Nanoscale 2024, 16, 20864–20884. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized Organic Thin Film Transistors for Biosensing. Accounts Chem. Res. 2019, 52, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Pu, H.; Shi, L.L.; He, T.-C.; Chen, J. Advancing transistor-based point-of-care (POC) biosensors: Additive manufacturing technologies and device integration strategies for real-life sensing. Nanoscale 2025, 17, 9804–9833. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Hou, G.; Xiao, A.; Chen, P.; Liang, H.; Huang, Y.; Zhao, X.; Liang, L.; Feng, X.; et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Sci. Adv. 2019, 5, eaax4659. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Tan, S.; Fang, F.; Yang, L.; Yuan, B.; Sun, Q. Recent advances in microfiber sensors for highly sensitive biochemical detection. J. Phys. D Appl. Phys. 2019, 52, 493002. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, P.; Zhou, L.; Zheng, J.; Wu, H.; Liang, J.; Xiao, A.; Li, J.; Guan, B. Plasmonic Coupling on an Optical Microfiber Surface: Enabling Single-Molecule and Noninvasive Dopamine Detection. Adv. Mater. 2023, 35, e2304116. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Huang, Y.; Bo, Y.; Liang, H.; Xiao, A.; Guan, B.-O. 3D nanointerface enhanced optical microfiber for real-time detection and sizing of single nanoparticles. Chem. Eng. J. 2021, 407, 127143. [Google Scholar] [CrossRef]
- Liu, X.; Lin, W.; Xiao, P.; Yang, M.; Sun, L.-P.; Zhang, Y.; Xue, W.; Guan, B.-O. Polydopamine-based molecular imprinted optic microfiber sensor enhanced by template-mediated molecular rearrangement for ultra-sensitive C-reactive protein detection. Chem. Eng. J. 2020, 387, 124074. [Google Scholar] [CrossRef]
- Shi, J.; Peng, y.; Ge, C.; Song, G.; Zhao, Y. Single Molecule Detection of Alpha-Fetoprotein Based on Optical Microfiber Coated with Au@Ws2. 2024. Available online: https://ssrn.com/abstract=5006115 (accessed on 27 August 2025).
- Liang, L.; Xie, F.; Jin, L.; Yang, B.; Sun, L.; Guan, B. Optical Microfiber Biomedical Sensors: Classification, Applications, and Future Perspectives. Adv. Sens. Res. 2025, 4, 2400185. [Google Scholar] [CrossRef]
- Wang, W.; Xia, L.; Xiao, X.; Li, G. Recent Progress on Microfluidics Integrated with Fiber-Optic Sensors for On-Site Detection. Sensors 2024, 24, 2067. [Google Scholar] [CrossRef] [PubMed]
- Korec-Kosturek, J.; Moś, J.E. Advances in Optical Microfibers: From Fabrication to Functionalization and Sensing Applications. Materials 2025, 18, 2418. [Google Scholar] [CrossRef]
- Kumar, V.; Lakshman, P.K.C.; Prasad, T.K.; Manjunath, K.; Bairy, S.; Vasu, A.S.; Ganavi, B.; Jasti, S.; Kamariah, N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024, 10, e23864. [Google Scholar] [CrossRef]
- Nath, P.; Mahtaba, K.R.; Ray, A. Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes. Sensors 2023, 23, 5053. [Google Scholar] [CrossRef]
- Morgana, S.; Casentini, B.; Tirelli, V.; Grasso, F.; Amalfitano, S. Fluorescence-based detection: A review of current and emerging techniques to unveil micro/ nanoplastics in environmental samples. TrAC Trends Anal. Chem. 2024, 172, 117559. [Google Scholar] [CrossRef]
- Bhaskar, S.; Lis S, S.M.L.; Kanvah, S.; Bhaktha, B.N.S.; Ramamurthy, S.S. Single-Molecule Cholesterol Sensing by Integrating Silver Nanowire Propagating Plasmons and Graphene Oxide π-Plasmons on a Photonic Crystal-Coupled Emission Platform. ACS Appl. Opt. Mater. 2023, 1, 159–172. [Google Scholar] [CrossRef]
- Johnston, C.L.; Marzano, N.R.; Paudel, B.P.; Wright, G.; Benesch, J.L.; van Oijen, A.M.; Ecroyd, H. Single-molecule fluorescence-based approach reveals novel mechanistic insights into human small heat shock protein chaperone function. J. Biol. Chem. 2021, 296, 100161. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Cao, Y.; An, C.; Kang, S.H. Nanomaterial-based single-molecule optical immunosensors for supersensitive detection. Biosens. Bioelectron. X 2022, 11, 100191. [Google Scholar] [CrossRef]
- Gooran, N.; Kopra, K. Fluorescence-Based Protein Stability Monitoring—A Review. Int. J. Mol. Sci. 2024, 25, 1764. [Google Scholar] [CrossRef]
- Meher, N.; Barman, D.; Parui, R.; Iyer, P.K. Recent development of the fluorescence-based detection of volatile organic compounds: A mechanistic overview. J. Mater. Chem. C 2022, 10, 10224–10254. [Google Scholar] [CrossRef]
- Cutshaw, G.; Uthaman, S.; Hassan, N.; Kothadiya, S.; Wen, X.; Bardhan, R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem. Rev. 2023, 123, 8297–8346. [Google Scholar] [CrossRef]
- Mandal, P.; Tewari, B. Progress in surface enhanced Raman scattering molecular sensing: A review. Surf. Interfaces 2022, 28, 101655. [Google Scholar] [CrossRef]
- Tan, E.X.; Zhong, Q.-Z.; Chen, J.R.T.; Leong, Y.X.; Leon, G.K.; Tran, C.T.; Phang, I.Y.; Ling, X.Y. Surface-Enhanced Raman Scattering-Based Multimodal Techniques: Advances and Perspectives. ACS Nano 2024, 18, 32315–32334. [Google Scholar] [CrossRef]
- Yang, H.; Mo, H.; Zhang, J.; Hong, L.; Li, Z.-Y. Observation of single-molecule Raman spectroscopy enabled by synergic electromagnetic and chemical enhancement. PhotoniX 2024, 5, 3. [Google Scholar] [CrossRef]
- Bi, X.; Czajkowsky, D.M.; Shao, Z.; Ye, J. Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature 2024, 628, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Xu, D.; Yang, S.; Wang, B.; Zhang, Z. Highly ordered nanocavity as photonic-plasmonic-polaritonic resonator for single molecule miRNA SERS detection. Biosens. Bioelectron. 2024, 254, 116231. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, L.; Ye, J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater. Today Bio 2022, 13, 100205. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.; Schlücker, S. Convergence of Surface-Enhanced Raman Scattering with Molecular Diagnostics: A Perspective on Future Directions. ACS Nano 2024, 18, 5998–6007. [Google Scholar] [CrossRef]
- Yuan, K.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: A review. J. Nanobiotechnol. 2022, 20, 537. [Google Scholar] [CrossRef]
- Ying, Y.; Tang, Z.; Liu, Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. Nanoscale 2023, 15, 10860–10881. [Google Scholar] [CrossRef]
- Lv, S.-L.; Zeng, C.; Yu, Z.; Zheng, J.-F.; Wang, Y.-H.; Shao, Y.; Zhou, X.-S. Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements. Biosensors 2022, 12, 565. [Google Scholar] [CrossRef]
- Jiang, T.; Zeng, B.-F.; Zhang, B.; Tang, L. Single-molecular protein-based bioelectronics via electronic transport: Fundamentals, devices and applications. Chem. Soc. Rev. 2023, 52, 5968–6002. [Google Scholar] [CrossRef]
- Im, J.; Biswas, S.; Liu, H.; Zhao, Y.; Sen, S.; Biswas, S.; Ashcroft, B.; Borges, C.; Wang, X.; Lindsay, S.; et al. Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nat. Commun. 2016, 7, 13868. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; He, S.; Sun, M.; Zhou, J.; Wang, Z.; Li, Y.; Liu, S.; Nau, W.M.; Chang, S. Dynamic Interconversions of Single Molecules Probed by Recognition Tunneling at Cucurbit[7]uril-Functionalized Supramolecular Junctions. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203830. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Jena, M.K.; Pathak, B. Machine Learning-Assisted Direct RNA Sequencing with Epigenetic RNA Modification Detection via Quantum Tunneling. Anal. Chem. 2024, 96, 11516–11524. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, P.-K.; Chang, S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal. Chem. 2024, 96, 9303–9316. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, Z.; Zhao, C.; Wang, Z.; Huo, Y.; Xiang, D.; Jia, C.; Guo, X. Single-molecule characterization from the perspective of optics, photonics, and optoelectronics: A review. Adv. Photonics 2024, 6, 064002. [Google Scholar] [CrossRef]
- Downham, L.; Rol, M.L.; Forestier, M.; Romero, P.; Mendoza, L.; Mongelós, P.; Picconi, M.A.; Colucci, M.C.; Padin, V.M.; Flores, A.P.; et al. Field experience with the 8-HPV-type oncoprotein test for cervical cancer screening among HPV-positive women living with and without HIV in LMICs. Int. J. Cancer 2024, 155, 816–827. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Maccaferri, N.; Krahne, R.; Wang, K.; Garoli, D. Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Anal. Chem. 2022, 94, 503–514. [Google Scholar] [CrossRef]
- Mostafa, H.H. An evolution of Nanopore next-generation sequencing technology: Implications for medical microbiology and public health. J. Clin. Microbiol. 2024, 62, e0024624. [Google Scholar] [CrossRef]
- Pal, S.; Huttner, D.; Verma, N.C.; Nemirovsky, T.; Ziv, O.; Sher, N.; Yivgi-Ohana, N.; Meller, A. Amplification-Free Quantification of Endogenous Mitochondrial DNA Copy Number Using Solid-State Nanopores. ACS Nano 2025, 19, 11390–11402. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, Z.; Tian, L.; Wei, G.; Wang, Z.; Wanunu, M.; Si, W.; Zhao, Q. Quad-Nanopore Array Enables High-Resolution Identification of Four Single-Stranded DNA Homopolymers. ACS Nano 2025, 19, 11403–11411. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, G.; Wang, K.; Si, W. Slowing Down Peptide Translocation through MoSi2N4 Nanopores for Protein Sequencing. J. Phys. Chem. B 2025, 129, 2471–2481. [Google Scholar] [CrossRef]
- Dutt, S.; Shao, H.; Karawdeniya, B.; Bandara, Y.M.N.D.Y.; Daskalaki, E.; Suominen, H.; Kluth, P. High Accuracy Protein Identification: Fusion of Solid-State Nanopore Sensing and Machine Learning. Small Methods 2023, 7, e2300676. [Google Scholar] [CrossRef]
- Motone, K.; Kontogiorgos-Heintz, D.; Wee, J.; Kurihara, K.; Yang, S.; Roote, G.; Fox, O.E.; Fang, Y.; Queen, M.; Tolhurst, M.; et al. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 2024, 633, 662–669. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, P.; Chen, Y. Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution. Biosensors 2024, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Macchia, E.; Di Franco, C.; Scandurra, C.; Sarcina, L.; Piscitelli, M.; Catacchio, M.; Caputo, M.; Bollella, P.; Scamarcio, G.; Torsi, L. Plasmonic Single-Molecule Affinity Detection at 10−20 Molar. Adv. Mater. 2025, 37, e2418610. [Google Scholar] [CrossRef]
- Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5, 491–505. [Google Scholar] [CrossRef]
- Sorgenfrei, S.; Chiu, C.-Y.; Johnston, M.; Nuckolls, C.; Shepard, K.L. Debye Screening in Single-Molecule Carbon Nanotube Field-Effect Sensors. Nano Lett. 2011, 11, 3739–3743. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Wang, Q.; Xiao, M.; Zhong, D.; Sun, W.; Zhang, G.; Zhang, Z. Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett. 2019, 19, 1437–1444. [Google Scholar] [CrossRef]
- Kamil, Y.M.; Abu Bakar, M.H.; Zainuddin, N.H.; Yaacob, M.H.; Mahdi, M.A. Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors 2023, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Gorai, P.; Shrivastav, A.; Pathak, A. Label-Free Biochemical Sensing Using Processed Optical Fiber Interferometry: A Review. ACS Omega 2024, 9, 3037–3069. [Google Scholar] [CrossRef] [PubMed]
- Shashkova, S.; Leake, M.C. Single-molecule fluorescence microscopy review: Shedding new light on old problems. Biosci. Rep. 2017, 37, BSR20170031. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, S.; Xiang, H.; Li, X.; Wang, C.; Wu, Y.; Li, G. Three-Dimensional SERS Substrates: Architectures, Hot Spot Engineering, and Biosensing Applications. Biosensors 2025, 15, 555. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: Review on their properties and applications. J. Mater. Sci. 2019, 55, 2682–2724. [Google Scholar] [CrossRef]
- Ferrier, D.C.; Honeychurch, K.C. Carbon Nanotube (CNT)-Based Biosensors. Biosensors 2021, 11, 486. [Google Scholar] [CrossRef] [PubMed]
- Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube—A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sens. Int. 2020, 1, 100003. [Google Scholar] [CrossRef]
- Landry, M.P.; Ando, H.; Chen, A.Y.; Cao, J.; Kottadiel, V.I.; Chio, L.; Yang, D.; Dong, J.; Lu, T.K.; Strano, M.S. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 2017, 12, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Renegar, N.; Levi, R.; Strano, M.S. Machine learning for the discovery of molecular recognition based on single-walled carbon nanotube corona-phases. NPJ Comput. Mater. 2022, 8, 135. [Google Scholar] [CrossRef]
- Peng, W.; Yan, S.; Zhou, K.; Wu, H.-C.; Liu, L.; Zhao, Y. High-resolution discrimination of homologous and isomeric proteinogenic amino acids in nanopore sensors with ultrashort single-walled carbon nanotubes. Nat. Commun. 2023, 14, 2662. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Kwak, S.-Y.; Cho, S.-Y.; Lundberg, D.; Liu, A.T.; McGee, M.K.; Strano, M.S. Single-Molecule Methane Sensing Using Palladium-Functionalized nIR Fluorescent Single-Walled Carbon Nanotubes. ACS Sensors 2023, 8, 4207–4215. [Google Scholar] [CrossRef]
- Lee, Y.; Buchheim, J.; Hellenkamp, B.; Lynall, D.; Yang, K.; Young, E.F.; Penkov, B.; Sia, S.; Stojanovic, M.N.; Shepard, K.L. Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics. Nat. Nanotechnol. 2024, 19, 660–667. [Google Scholar] [CrossRef]
- Kamińska, I.; Bohlen, J.; Yaadav, R.; Schüler, P.; Raab, M.; Schröder, T.; Zähringer, J.; Zielonka, K.; Krause, S.; Tinnefeld, P. Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy. Adv. Mater. 2021, 33, 2101099. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Guo, X. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Acc. Chem. Res. 2020, 53, 159–169. [Google Scholar] [CrossRef]
- Tan, T.; Yuan, Z.; Zhang, H.; Yan, G.; Zhou, S.; An, N.; Peng, B.; Soavi, G.; Rao, Y.; Yao, B. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 2021, 12, 8–15. [Google Scholar] [CrossRef]
- Ganesh, S.; Venkatakrishnan, K.; Tan, B. Tailoring carbon for single molecule detection—Broad spectrum 3D quantum sensor. Sens. Actuators B Chem. 2020, 317, 128216. [Google Scholar] [CrossRef]
- Chen, Z.; Grace, I.M.; Woltering, S.L.; Chen, L.; Gee, A.; Baugh, J.; Briggs, G.A.D.; Bogani, L.; Mol, J.A.; Lambert, C.J.; et al. Quantum interference enhances the performance of single-molecule transistors. Nat. Nanotechnol. 2024, 19, 986–992. [Google Scholar] [CrossRef]
- Burdanova, M.G.; Kharlamova, M.V.; Kramberger, C.; Nikitin, M.P. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials 2021, 11, 3020. [Google Scholar] [CrossRef]
- Gacem, A.; Modi, S.; Yadav, V.K.; Islam, S.; Patel, A.; Dawane, V.; Jameel, M.; Inwati, G.K.; Piplode, S.; Solanki, V.S.; et al. Recent Advances in Methods for Synthesis of Carbon Nanotubes and Carbon Nanocomposite and their Emerging Applications: A Descriptive Review. J. Nanomater. 2022, 2022, 7238602. [Google Scholar] [CrossRef]
- Pandey, R.R.; Chusuei, C.C. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules 2021, 26, 6674. [Google Scholar] [CrossRef]
- Molaei, M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar] [CrossRef]
- Kargozar, S.; Hoseini, S.J.; Milan, P.B.; Hooshmand, S.; Kim, H.; Mozafari, M. Quantum Dots: A Review from Concept to Clinic. Biotechnol. J. 2020, 15, e2000117. [Google Scholar] [CrossRef]
- Giordano, M.G.; Seganti, G.; Bartoli, M.; Tagliaferro, A. An Overview on Carbon Quantum Dots Optical and Chemical Features. Molecules 2023, 28, 2772. [Google Scholar] [CrossRef]
- Zahid, M.U.; Ma, L.; Lim, S.J.; Smith, A.M. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state. Nat. Commun. 2018, 9, 1830. [Google Scholar] [CrossRef]
- Knapper, K.A.; Pan, F.; Rea, M.T.; Horak, E.H.; Rogers, J.D.; Goldsmith, R.H. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. Opt. Express 2018, 26, 25020–25030. [Google Scholar] [CrossRef]
- Liu, X.; Huang, C.; Zong, C.; Liang, A.; Wu, Z.; Zhang, Y.; Zhang, Q.; Zhao, W.; Gai, H. A Single-Molecule Homogeneous Immunoassay by Counting Spatially “Overlapping” Two-Color Quantum Dots with Wide-Field Fluorescence Microscopy. ACS Sens. 2018, 3, 2644–2650. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.M.; Chiang, W.; Hammond, J.W.; Cogan, N.M.B.; Litzburg, A.; Burke, R.; Stern, H.A.; Gelbard, H.A.; Nilsson, B.L.; Krauss, T.D. Quantum Dots for Improved Single-Molecule Localization Microscopy. J. Phys. Chem. B 2021, 125, 2566–2576. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Kim, D.-H.; Zhou, K.; Jeong, M.G.; Park, S.; Kwon, Y.; Hong, T.M.; Noh, J.; Ryu, S.H. Improved resolution in single-molecule localization microscopy using QD-PAINT. Exp. Mol. Med. 2021, 53, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Huang, Q.; Canady, T.D.; Barya, P.; Liu, S.; Arogundade, O.H.; Race, C.M.; Che, C.; Wang, X.; Zhou, L.; et al. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat. Commun. 2022, 13, 4647. [Google Scholar] [CrossRef]
- Luo, H.-Y.; Jiang, C.; Dou, S.-X.; Wang, P.-Y.; Li, H. Quantum Dot-Based Three-Dimensional Single-Particle Tracking Characterizes the Evolution of Spatiotemporal Heterogeneity in Necrotic Cells. Anal. Chem. 2024, 96, 11682–11689. [Google Scholar] [CrossRef]
- Hao, S.; Suebka, S.; Su, J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. Light Sci. Appl. 2024, 13, 195. [Google Scholar] [CrossRef]
- Loskutova, A.; Seitkali, A.; Aliyev, D.; Bukasov, R. Quantum Dot-Based Luminescent Sensors: Review from Analytical Perspective. Int. J. Mol. Sci. 2025, 26, 6674. [Google Scholar] [CrossRef]
- Ghaffarkhah, A.; Hosseini, E.; Kamkar, M.; Sehat, A.A.; Dordanihaghighi, S.; Allahbakhsh, A.; van der Kuur, C.; Arjmand, M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. Small 2022, 18, 2102683. [Google Scholar] [CrossRef]
- Nesakumar, N.; Srinivasan, S.; Alwarappan, S. Graphene quantum dots: Synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Microchim. Acta 2022, 189, 258. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 5622. [Google Scholar] [CrossRef]
- Khan, Y.; Sadia, H.; Shah, S.Z.A.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Ben Khedher, N.; et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022, 12, 1386. [Google Scholar] [CrossRef]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.-Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S.H.; Raeeszadeh, M. Applications of Green Synthesized Metal Nanoparticles—A Review. Biol. Trace Elem. Res. 2024, 202, 360–386. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-R.; Han, R.; Sun, W.; Jiang, Y.; Fujimoto, B.S.; Yu, J.; Kuo, C.-T.; Rong, Y.; Zhou, X.-H.; Chiu, D.T. Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles. Anal. Chem. 2018, 90, 6089–6095. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Qian, K.; Cai, A.; Tang, J.; Liu, J. Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection. Sens. Actuators B Chem. 2019, 300, 126846. [Google Scholar] [CrossRef]
- Mereuta, L.; Asandei, A.; Dragomir, I.S.; Bucataru, I.C.; Park, J.; Seo, C.H.; Park, Y.; Luchian, T. Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci. Rep. 2020, 10, 11323. [Google Scholar] [CrossRef]
- Trofymchuk, K.; Glembockyte, V.; Grabenhorst, L.; Steiner, F.; Vietz, C.; Close, C.; Pfeiffer, M.; Richter, L.; Schütte, M.L.; Selbach, F.; et al. Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope. Nat. Commun. 2021, 12, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Sonn-Segev, A.; Schumacher, A.; Cole, D.; Young, G.; Thorpe, S.; Style, R.W.; Dufresne, E.R.; Kukura, P. Micromirror Total Internal Reflection Microscopy for High-Performance Single Particle Tracking at Interfaces. ACS Photonics 2021, 8, 3111–3118. [Google Scholar] [CrossRef]
- Dukhno, O.; Ghosh, S.; Greiner, V.; Bou, S.; Godet, J.; Muhr, V.; Buchner, M.; Hirsch, T.; Mély, Y.; Przybilla, F. Targeted Single Particle Tracking with Upconverting Nanoparticles. ACS Appl. Mater. Interfaces 2024, 16, 11217–11227. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors 2022, 12, 892. [Google Scholar] [CrossRef]
- Borse, S.; Rafique, R.; Murthy, Z.V.P.; Park, T.J.; Kailasa, S.K. Applications of upconversion nanoparticles in analytical and biomedical sciences: A review. Analyst 2022, 147, 3155–3179. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yi, J.; Li, X.; He, F.; Niu, N.; Chen, L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. Biosensors 2022, 12, 1036. [Google Scholar] [CrossRef] [PubMed]
- Sklenárová, D.; Hlaváček, A.; Křivánková, J.; Brandmeier, J.C.; Weisová, J.; Řiháček, M.; Gorris, H.H.; Skládal, P.; Farka, Z. Single-molecule microfluidic assay for prostate-specific antigen based on magnetic beads and upconversion nanoparticles. Lab Chip 2024, 24, 3536–3545. [Google Scholar] [CrossRef]
- Luo, Y.; Luo, Y.; Liu, Y.; Huang, Y.; Yu, P.; Ma, H.; Li, X.; Zhang, Z.; Zhang, C.; Chen, C.; et al. A hybrid strategy to enhance small-sized upconversion nanocrystals. Biosens. Bioelectron. 2025, 271, 117003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, R.; Hu, J.; Guan, D.; Qiu, X.; Zhang, Y.; Kohane, D.S.; Liu, Q. Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration. Nat. Commun. 2022, 13, 5927. [Google Scholar] [CrossRef]
- Shida, J.F.; Ma, K.; Toll, H.W.; Salinas, O.; Ma, X.; Peng, C.S. Multicolor Long-Term Single-Particle Tracking Using 10 nm Upconverting Nanoparticles. Nano Lett. 2024, 24, 4194–4201. [Google Scholar] [CrossRef]
- Luo, Y.; Kong, F.-F.; Tian, X.-J.; Yu, Y.-J.; Jing, S.-H.; Zhang, C.; Chen, G.; Zhang, Y.; Zhang, Y.; Li, X.-G.; et al. Anomalously bright single-molecule upconversion electroluminescence. Nat. Commun. 2024, 15, 1677. [Google Scholar] [CrossRef]
- Lustig, D.R.; Buz, E.; Bird, O.F.; Mulvey, J.T.; Prasad, P.R.; Patterson, J.P.; Dukovic, G.; Kittilstved, K.R.; Sambur, J.B. Single-Molecule Fluorescence Microscopy Reveals Energy Transfer Active versus Inactive Nanocrystal/Dye Conjugate Pairs. Chem. Biomed. Imaging 2025, 3, 547–559. [Google Scholar] [CrossRef]
- Khan, I.A.; Yu, T.; Yang, M.; Liu, J.; Chen, Z. A Systematic Review of Toxicity, Biodistribution, and Biosafety in Upconversion Nanomaterials: Critical Insights into Toxicity Mitigation Strategies and Future Directions for Safe Applications. BME Front. 2025, 6, 0120. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Li, H.; Lv, Z.; Zhai, Y.; Tian, B.; Luo, Y.; Zhou, Y.; Han, S. Challenges and Opportunities of Upconversion Nanoparticles for Emerging NIR Optoelectronic Devices. Adv. Mater. 2025, 2025, e2419678. [Google Scholar] [CrossRef] [PubMed]
- Paramasivam, G.; Yadavali, S.P.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Recent advances in the medical applications of two-dimensional MXene nanosheets. Nanomedicine 2024, 19, 2633–2654. [Google Scholar] [CrossRef]
- Liu, B.; Duan, H.; Liu, Z.; Liu, Y.; Chu, H. DNA-functionalized metal or metal-containing nanoparticles for biological applications. Dalton Trans. 2024, 53, 839–850. [Google Scholar] [CrossRef]
- Sun, C.; Liu, N.; Liu, J.; Lv, T.; Yang, C.; Su, C.; Zhang, N.; Li, H.; Yan, X. MnO2 nanosheets anchored gold nanoclusters@ZIF-8 based ratiometric fluorescence sensor for monitoring chlorpyrifos degradation. Sens. Actuators B Chem. 2023, 375, 132924. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, J.; Ling, G.; Zhang, P. Tunable metal–organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem. Soc. Rev. 2023, 52, 7549–7578. [Google Scholar] [CrossRef]
- Chai, H.; Ma, X.; Sun, H.; Miao, P. DNA–MnO2 Nanoconjugates Investigation and Application for Electrochemical Polymerase Chain Reaction. Anal. Chem. 2022, 94, 4565–4569. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Li, H.; Zhang, B.; Miao, P. MnO2@Au nanostructures supported colorimetric biosensing with duplex-specific nuclease-assisted DNA structural transition. Mater. Today Bio 2023, 19, 100571. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Zhang, Q.; Chen, W.; Wu, S.; Yang, H.; Zhou, Y. MnO2 nanosheets-triggered oxVB1 fluorescence immunoassay for detection zearalenone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 286, 121954. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.d.S.; dos Santos, D.M.; Andre, R.d.S.; Correa, D.S. Zein/MnO2 Nanosheet Composites Integrated with a Smartphone for Colorimetric Sensors for On-Site Detection of Adulterants in Milk. ACS Appl. Nano Mater. 2024, 7, 13701–13711. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.-S.; Cheng, K.; Liu, B.; Chen, W.; Fan, J.-X.; Zhao, Y.-D. One-step detection of glutathione based on MnO2 nanosheet and pregnancy test strip. Sens. Actuators B Chem. 2024, 410, 135652. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, J.; Liu, M.; Wu, J.; Zhao, Z.; Ma, T.; Fang, Y. A Ratiometric Biosensor Containing Manganese Dioxide Nanosheets and Nitrogen-Doped Quantum Dots for 2,4-Dichlorophenoxyacetic Acid Monitoring. Biosensors 2024, 14, 63. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Liu, L.; Jia, M.; Li, X.; Li, J. Nano-biosensor based on manganese dioxide nanosheets and carbon dots for dual-mode determination of Staphylococcus aureus. Food Chem. 2024, 432, 137144. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, F.; Zhu, X.; Wang, M.; Wen, Y.; Zeng, T.; Zhong, W.; Xing, C.; Lu, C. Multifunctional MnO2 nanosheet based DNA tetrahedron- photosensitizer nanoplatform for gene-photodynamic modulation. Chem. Eng. J. 2025, 505, 159807. [Google Scholar] [CrossRef]
- Udomphon, S.; Nasongkla, N.; Chavalitsarot, M.; Watthanaphanit, A. Controlled Formation of MnO2 Nanosheets for Cancer Treatment. ACS Appl. Nano Mater. 2024, 7, 24189–24200. [Google Scholar] [CrossRef]
- Carretero, G.; Samarasekara, H.K.; Battigelli, A.; Mojsoska, B. Uprising Unconventional Nanobiomaterials: Peptoid Nanosheets as a Multi-Modular Platform for Advanced Biological Studies. Small 2025, 21, e2406128. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, H.; Ye, C.; Wang, X.; Ji, D.; Zhang, Z.; Cao, Y.; Zou, W. Graphene Oxide Nanosheets Induce Mitochondrial Toxicity in Human Ovarian Granulosa Cells: Implications for Female Reproductive Health. Int. J. Nanomed. 2025, 20, 4461–4479. [Google Scholar] [CrossRef]
- Mittal, A.; Roy, I.; Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry 2022, 8, 107. [Google Scholar] [CrossRef]
- Rezaei, B.; Yari, P.; Sanders, S.M.; Wang, H.; Chugh, V.K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.; Gómez-Pastora, J.; et al. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small 2024, 20, e2304848. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, T.; Niu, Q.; Hui, Y.; Hou, Z. A Method and Device for Detecting the Number of Magnetic Nanoparticles Based on Weak Magnetic Signal. Processes 2019, 7, 480. [Google Scholar] [CrossRef]
- Wu, K.; Liu, J.; Saha, R.; Su, D.; Krishna, V.D.; Cheeran, M.C.-J.; Wang, J.-P. Magnetic Particle Spectroscopy for Detection of Influenza A Virus Subtype H1N1. ACS Appl. Mater. Interfaces 2020, 12, 13686–13697. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, A.A.; Yurenya, A.Y.; Zatsepin, T.S.; Aparin, I.O.; Chekhonin, V.P.; Majouga, A.G.; Farle, M.; Wiedwald, U.; Abakumov, M.A. Magnetic Nanoparticles as a Tool for Remote DNA Manipulations at a Single-Molecule Level. ACS Appl. Mater. Interfaces 2021, 13, 14458–14469. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, Z.; Li, W.; Yu, P.; Shi, Q.; Kong, F.; Zhang, Q.; Wang, P.; Wang, Y.; Shi, F.; et al. Digital Magnetic Detection of Biomolecular Interactions with Single Nanoparticles. Nano Lett. 2023, 23, 2636–2643. [Google Scholar] [CrossRef] [PubMed]
- Yabukami, S.; Murayama, T.; Kaneko, K.; Honda, J.; Tonthat, L.; Okita, K. Magnetic response of aggregation mixed with magnetic nanoparticles and protein for simultaneous protein detection. AIP Adv. 2024, 14, 836. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, K.; Li, C.; Zhang, R.; Zhu, Y.; Xia, L.; Ma, Y.; Wyss, H.M.; Cheng, X.; He, S. Single-Molecule Protein Analysis by Centrifugal Droplet Immuno-PCR with Magnetic Nanoparticles. Anal. Chem. 2024, 96, 1872–1879. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; López-Saucedo, F.; Vera-Graziano, R.; Mendizabal, E.; Bucio, E. Magnetic Nanoparticles for Medical Applications: Updated Review. Macromol 2022, 2, 374–390. [Google Scholar] [CrossRef]
- Aram, E.; Moeni, M.; Abedizadeh, R.; Sabour, D.; Sadeghi-Abandansari, H.; Gardy, J.; Hassanpour, A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials 2022, 12, 3567. [Google Scholar] [CrossRef]
- Kritika; Roy, I. Therapeutic applications of magnetic nanoparticles: Recent advances. Mater. Adv. 2022, 3, 7425–7444. [Google Scholar] [CrossRef]
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Sel. 2022, 3, 792–828. [Google Scholar] [CrossRef]
- Camarca, A.; Varriale, A.; Capo, A.; Pennacchio, A.; Calabrese, A.; Giannattasio, C.; Almuzara, C.M.; D’auria, S.; Staiano, M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors 2021, 21, 906. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-Y.; Huang, C.-C.; Chen, P.-H.; Tripathi, A.; Wang, Y.-R.; Chen, J.-C. Rapid Drug-Screening Platform Using Field-Effect Transistor-Based Biosensors: A Study of Extracellular Drug Effects on Transmembrane Potentials. Anal. Chem. 2022, 94, 2679–2685. [Google Scholar] [CrossRef]
- Hesse, J.; Wechselberger, C.; Sonnleitner, M.; Schindler, H.; Schütz, G.J. Single-molecule reader for proteomics and genomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 782, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Shanmugavel, A.; Rene, E.R.; Balakrishnan, S.P.; Krishnakumar, N.; Jose, S.P. Heavy metal ion sensing strategies using fluorophores for environmental remediation. Environ. Res. 2024, 260, 119544. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, S.; Bayansal, F.; Ahmadi, A. Emerging Methods of Monitoring Volatile Organic Compounds for Detection of Plant Pests and Disease. Biosensors 2022, 12, 239. [Google Scholar] [CrossRef]
- Nevetha, R.; Sandhya, K.; Yashini, M.; Rajeshwari, S.; Mamathi, C.A.; Nirmal, T.; Sunil, C.K. Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: A review. Crit. Rev. Food Sci. Nutr. 2021, 63, 1055–1077. [Google Scholar] [CrossRef]
- Butt, M.A. Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review. Biosensors 2025, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.M.; Pereira, T.S.; Facure, M.H.; dos Santos, D.M.; Mercante, L.A.; Mattoso, L.H.; Correa, D.S. Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sens. Actuators Rep. 2022, 4, 100068. [Google Scholar] [CrossRef]
- Yan, J.; Cheng, L.; Li, Y.; Wang, R.; Wang, J. Advancements in Single-Molecule Fluorescence Detection Techniques and Their Expansive Applications in Drug Discovery and Neuroscience. Biosensors 2025, 15, 283. [Google Scholar] [CrossRef]
- McCold, C.E.; Fu, Q.; Hihath, S.; Han, J.-M.; Halfon, Y.; Faller, R.; van Benthem, K.; Zang, L.; Hihath, J. Ligand exchange based molecular doping in 2D hybrid molecule-nanoparticle arrays: Length determines exchange efficiency and conductance. Mol. Syst. Des. Eng. 2017, 2, 440–448. [Google Scholar] [CrossRef]
- Richter, L.; Szalai, A.M.; Manzanares-Palenzuela, C.L.; Kamińska, I.; Tinnefeld, P. Exploring the Synergies of Single-Molecule Fluorescence and 2D Materials Coupled by DNA. Adv. Mater. 2023, 35, e2303152. [Google Scholar] [CrossRef]
- Gao, N.; Zhou, W.; Jiang, X.; Hong, G.; Fu, T.-M.; Lieber, C.M. General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-Based Nanoelectronic Sensors. Nano Lett. 2015, 15, 2143–2148. [Google Scholar] [CrossRef]
- Gao, C.; Gao, Q.; Zhao, C.; Huo, Y.; Zhang, Z.; Yang, J.; Jia, C.; Guo, X. Technologies for investigating single-molecule chemical reactions. Natl. Sci. Rev. 2024, 11, nwae236. [Google Scholar] [CrossRef] [PubMed]
- Sakata, T. Signal transduction interfaces for field-effect transistor-based biosensors. Commun. Chem. 2024, 7, 35. [Google Scholar] [CrossRef]
- Pandey, M.; Bhaiyya, M.; Rewatkar, P.; Zalke, J.B.; Narkhede, N.P.; Haick, H. Advanced Materials for Biological Field-Effect Transistors (Bio-FETs) in Precision Healthcare and Biosensing. Adv. Healthc. Mater. 2025, 14, e2500400. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, B.; Yang, S.; Jiao, Z.; Zhang, M.; Yang, Y.; Gao, Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. Environ. Int. 2025, 197, 109365. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, P.; Leema, A.A.; Jothiaruna, N.; Assudani, P.J.; Sankar, K.; Kulkarni, M.B.; Bhaiyya, M. Artificial intelligence for food safety: From predictive models to real-world safeguards. Trends Food Sci. Technol. 2025, 163, 105153. [Google Scholar] [CrossRef]
- Deshmukh, M.T.; Wankhede, P.; Chakole, N.; Kale, P.D.; Jadhav, M.R.; Kulkarni, M.B.; Bhaiyya, M. Towards intelligent food safety: Machine learning approaches for aflatoxin detection and risk prediction. Trends Food Sci. Technol. 2025, 161, 105055. [Google Scholar] [CrossRef]
- Doležal, J.; Sagwal, A.; Ferreira, R.C.d.C.; Švec, M. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. Nano Lett. 2024, 24, 1629–1634. [Google Scholar] [CrossRef]
- Sellies, L.; Eckrich, J.; Gross, L.; Donarini, A.; Repp, J. Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules. Nat. Nanotechnol. 2025, 20, 27–35. [Google Scholar] [CrossRef]
- Zhang, C.; Du, X.; Zhang, Z. Development of micro/nanoelectrodes for single-cell analysis. Sens. Actuators Rep. 2025, 10, 100348. [Google Scholar] [CrossRef]
- Ma, B.; Li, L.; Bao, Y.; Yuan, L.; Liu, S.; Qi, L.; Tong, S.; Xiao, Y.; Qi, L.; Fang, X.; et al. Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects. Chem. Biomed. Imaging 2024, 2, 27–46. [Google Scholar] [CrossRef]
- Chu, J.; Ejaz, A.; Lin, K.M.; Joseph, M.R.; Coraor, A.E.; Drummond, D.A.; Squires, A.H. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. Nat. Nanotechnol. 2024, 19, 1150–1157. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, T.; Li, Y.; Ao, X.; Liang, S.; Yang, X.; Wang, L.; Xu, X.; Zhang, W. Recent Advances in Enhancing the Sensitivity of Biosensors Based on Field Effect Transistors. Adv. Electron. Mater. 2024, 11, 2400712. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhou, Y.; Wu, J.; Zhao, Z.; Fan, J.; Deng, F.; Wu, Z.; Xiao, G.; He, J.; et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat. Biotechnol. 2023, 41, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Du, Z.; Li, Y.; Cao, L.; Zhu, B.; Kitaguchi, T.; Huang, C. A Review on the Application of Biosensors for Monitoring Emerging Contaminants in the Water Environment. Sensors 2025, 25, 4945. [Google Scholar] [CrossRef] [PubMed]
- Bhaiyya, M.; Panigrahi, D.; Rewatkar, P.; Haick, H. Role of Machine Learning Assisted Biosensors in Point-of-Care-Testing For Clinical Decisions. ACS Sens. 2024, 9, 4495–4519. [Google Scholar] [CrossRef]
- Zhu, C.; Ekinci, H.; Pan, A.; Cui, B.; Zhu, X. Electron beam lithography on nonplanar and irregular surfaces. Microsyst. Nanoeng. 2024, 10, 52. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Khandelwal, S.; Manekar, K.; Assudani, P.J.; Girhe, R.; Kulkarni, M.B.; Bhaiyya, M. Portable 3D-printed electrochemiluminescence sensor for simultaneous glucose and lactate monitoring. Sci. Rep. 2025, 15, 34592. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Pattnaik, P.K.; Goel, S. A brief review on miniaturized electrochemiluminescence devices: From fabrication to applications. Curr. Opin. Electrochem. 2021, 30, 100800. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Khandelwal, S.; Thakre, Y.; Rangole, J.; Kulkarni, M.B.; Bhaiyya, M. A Review on 3D-Printed Miniaturized Devices for Point-of-Care-Testing Applications. Biosensors 2025, 15, 340. [Google Scholar] [CrossRef]
- Chavan, S.G.; Rathod, P.R.; Koyappayil, A.; Go, A.; Lee, M.-H. “Two-step” signal amplification for ultrasensitive detection of dopamine in human serum sample using Ti3C2T -MXene. Sens. Actuators B Chem. 2024, 404, 135308. [Google Scholar] [CrossRef]
- Sha, P.; Zhu, C.; Wang, T.; Dong, P.; Wu, X. Detection and Identification of Pesticides in Fruits Coupling to an Au–Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis. Nanomaterials 2024, 14, 717. [Google Scholar] [CrossRef] [PubMed]
- Beeg, M.; Nobili, A.; Orsini, B.; Rogai, F.; Gilardi, D.; Fiorino, G.; Danese, S.; Salmona, M.; Garattini, S.; Gobbi, M. A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies. Sci. Rep. 2019, 9, 2064. [Google Scholar] [CrossRef]
- Li, K.; Li, T.; Wang, K.; Wang, Y.; Wang, Z.; Cheng, B.; Ouyang, Y.; Zhang, P.; Huang, S. In-house nanopore analysis of urine metabolites and its applications in nutrition and sport monitoring. Matter 2025, 2025, 102329. [Google Scholar] [CrossRef]
- Roesel, T.; Dahlin, A.; Piliarik, M.; Fitzpatrick, L.W.; Špačková, B. Label-free single-molecule optical detection. NPJ Biosensing 2025, 2, 32. [Google Scholar] [CrossRef]
- Götz, M.; Barth, A.; Bohr, S.S.-R.; Börner, R.; Chen, J.; Cordes, T.; Erie, D.A.; Gebhardt, C.; Hadzic, M.C.A.S.; Hamilton, G.L.; et al. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat. Commun. 2022, 13, 5402. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Tang, L.; Li, J. Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges. Precis. Chem. 2024, 2, 518–538. [Google Scholar] [CrossRef]
- Soto, R.J.; Hall, J.R.; Brown, M.D.; Taylor, J.B.; Schoenfisch, M.H. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal. Chem. 2016, 89, 276–299. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564. [Google Scholar] [CrossRef]
- Bui, H.L.; Nguyen, H.N.; Lai, J.-Y.; Huang, C.-J. Engineering principles of zwitterionic hydrogels: Molecular architecture to manufacturing innovations for advanced healthcare materials. Mater. Today Bio 2025, 33, 102085. [Google Scholar] [CrossRef]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barman, S.M.; Parakh, A.; Leema, A.A.; Balakrishnan, P.; Avthankar, A.; Tulaskar, D.P.; Assudani, P.J.; Nemane, S.; Rewatkar, P.; Kulkarni, M.B.; et al. Single-Molecule Detection Technologies: Advances in Devices, Transduction Mechanisms, and Functional Materials for Real-World Biomedical and Environmental Applications. Biosensors 2025, 15, 696. https://doi.org/10.3390/bios15100696
Barman SM, Parakh A, Leema AA, Balakrishnan P, Avthankar A, Tulaskar DP, Assudani PJ, Nemane S, Rewatkar P, Kulkarni MB, et al. Single-Molecule Detection Technologies: Advances in Devices, Transduction Mechanisms, and Functional Materials for Real-World Biomedical and Environmental Applications. Biosensors. 2025; 15(10):696. https://doi.org/10.3390/bios15100696
Chicago/Turabian StyleBarman, Sampa Manoranjan, Arpita Parakh, A. Anny Leema, P. Balakrishnan, Ankita Avthankar, Dhiraj P. Tulaskar, Purshottam J. Assudani, Shon Nemane, Prakash Rewatkar, Madhusudan B. Kulkarni, and et al. 2025. "Single-Molecule Detection Technologies: Advances in Devices, Transduction Mechanisms, and Functional Materials for Real-World Biomedical and Environmental Applications" Biosensors 15, no. 10: 696. https://doi.org/10.3390/bios15100696
APA StyleBarman, S. M., Parakh, A., Leema, A. A., Balakrishnan, P., Avthankar, A., Tulaskar, D. P., Assudani, P. J., Nemane, S., Rewatkar, P., Kulkarni, M. B., & Bhaiyya, M. (2025). Single-Molecule Detection Technologies: Advances in Devices, Transduction Mechanisms, and Functional Materials for Real-World Biomedical and Environmental Applications. Biosensors, 15(10), 696. https://doi.org/10.3390/bios15100696

