Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining
Abstract
1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Preparation of Ab2-PABA-AuNPs-GOx
2.3. Construction of Immunoelectrodes
2.4. ASV Detection Process
3. Results and Discussion
3.1. Characterization of Ab2-PABA-AuNPs-GOx and the Immunoelectrode
3.2. Electrochemical Immunoassay for IgG and CA125
Analyte | Label | Analytical Technique | LDR /ng mL−1 for IgG and U mL−1 for CA125 | LOD /pg mL−1 for IgG and U mL−1 for CA125 | References |
---|---|---|---|---|---|
IgG | HRP | Chronoamperometry for H2O2 | 0.1–200 | 50 | [30] |
glucose oxidase | Chronoamperometry | 0.005–1.0 | 2 | [26] | |
[Fe(CN)6]3−/4− probe | Differential pulse voltammetry | 0.1–1.0 × 104 | 32 | [31] | |
AuNPs and ALP | ASV for catalytically deposited Ag | 0.01–250 | 4.8/6.1 | [12] | |
CdTe QDs | Fluorometry/square wave voltammetry | 0.1–500 /5 × 10−3–100 | 30/5 | [32] | |
HRP | Potentiostatic amperometry | 0.33–75 | 0.1 | [33] | |
AuNPs | ASV for silver staining | 4 × 10−7–400 | 0.2 × 10−3 | [34] | |
AuNPs | ASV for copper staining | 4 × 10−7–400 | 0.3 × 10−3 | [35] | |
glucose oxidase | ASV for enzyme-catalyzed deposited Au | 5 × 10−8–500 | 0.25 × 10−3 | This work | |
CA125 | CdS/SnS2 | Photoelectrochemical | 10−7–102 | 5.48 × 10−8 | [36] |
Au@Pd | Electrochemical | 0.002–20 | 0.001 | [37] | |
HRP | Differential pulse voltammetry | 0.1–300 | 0.027 | [38] | |
Au-Ag core shell | Electrochemical impedance spectroscopy | 1–150 | 1.03 | [39] | |
Au/Ru | Resonance Rayleigh scattering | 1.3–80 | 0.6 | [40] | |
ALP | Optical/Electrochemical | 5–1000/5–1000 | 1.3/40 | [41] | |
SiO2(thionine-HRP) | Electrochemical immunoassay | 0.1–450 | 0.1 | [42] | |
CdSe | Electrochemiluminescence | 1.0 × 10−4–0.3 | 5.8 × 10−5 | [43] | |
glucose oxidase | ASV for catalytically deposited Au | 5 × 10−10–500 | 10 × 10−10 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, R.; He, L.; Jin, L.; Li, Z.; He, N.; Miao, W. Recent advancements in DNA nanotechnology-enabled extracellular vesicles detection and diagnosis: A mini review. Chin Chem. Lett. 2023, 34, 107926. [Google Scholar] [CrossRef]
- Yang, G.; Li, Z.; Usman, R.; Chen, Z.; Liu, Y.; Li, S.; Chen, H.; Deng, Y.; Fang, Y.; He, N. DNA walker induced “signal on” fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chin. Chem. Lett. 2025, 36, 109930. [Google Scholar] [CrossRef]
- Rafat, N.; Zhang, H.; Rudge, J.; Kim, Y.N.; Peddireddy, S.P.; Das, N.; Sarkar, A. Enhanced enzymatically amplified metallization on nanostructured surfaces for multiplexed point-of-care electrical detection of COVID-19 biomarkers. Small 2022, 18, 2203309. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, Y.; Zhu, L.; Liu, H.; Su, X.; Liu, Y.; Chen, Z.; Chen, H.; He, N. A novel cartridge for nucleic acid extraction, amplification and detection of infectious disease pathogens with the help of magnetic nanoparticles. Chin. Chem. Lett. 2023, 34, 108092. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, J.; Shi, K.; Zhang, C.; Ma, W.; Lyu, G.; Zhang, J.; Lu, J.; Liu, Q.; Luo, X.; et al. A new radioactive microsphere: Y-90 carbon microsphere for selective internal radiation therapy of advanced liver cancer. Chin. Chem. Lett. 2025, 36, 110662. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Wei, Y.; Qian, Z.; Wei, X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. Chin. Chem. Lett. 2023, 34, 108098. [Google Scholar] [CrossRef]
- Puiu, M.; Nativi, C.; Bal, C. Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. TrAC-Trend. Anal. Chem. 2023, 160, 116981. [Google Scholar] [CrossRef]
- Ran, H.; Wang, S.; Ju, F.; Huang, Z.; Gao, Y.; Zhang, J.; He, N.; Nie, L. Metal nanocluster-based biosensors for DNA detection. Biosensors 2025, 15, 72. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, K.; Ju, F.; He, R.; Tang, Y.; Chen, Y.; He, X.; Zhang, J.; Nie, L. Copper nanocluster based cascade amplified DNA electrochemical detection combining with bio-barcode assay and surface-initiated enzyme polymerization. Bioelectrochemistry 2025, 163, 108857. [Google Scholar] [CrossRef]
- Tang, Z.; Ma, Z. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review. Biosens. Bioelectron. 2017, 98, 100–112. [Google Scholar] [CrossRef]
- Yang, G.; Lai, Y.; Xiao, Z.; Tang, C.; Deng, Y. Ultrasensitive electrochemical immunosensor of carcinoembryonic antigen based on gold-label silver-stain signal amplification. Chin. Chem. Lett. 2018, 29, 1857–1860. [Google Scholar] [CrossRef]
- Lai, G.; Yan, F.; Wu, J.; Leng, C.; Ju, H. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal. Chem. 2011, 83, 2726–2732. [Google Scholar] [CrossRef]
- Sui, Y.; Xu, A.; Jin, X.; Zheng, J.; He, X.; Cheng, Y.; Xie, Q.; Liu, R. In situ enzymatic generation of gold for ultrasensitive amperometric sandwich immunoassay of procalcitonin. Biosens. Bioelectron. 2018, 117, 422–428. [Google Scholar] [CrossRef]
- Ge, S.; Liang, L.; Lan, F.; Zhang, Y.; Wang, Y.; Yan, M.; Yu, J. Photoelectrochemical immunoassay based on chemiluminescence as internal excited light source. Sens. Actuator B Chem. 2016, 234, 324–331. [Google Scholar] [CrossRef]
- Liu, D.; Yang, J.; Wang, H.-F.; Wang, Z.; Huang, X.; Wang, Z.; Niu, G.; Walker, A.R.H.; Chen, X. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal. Chem. 2014, 86, 5800–5806. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-P.; Peng, Z.-F.; Luo, Y.; Qu, B.; Jiang, J.-H.; Zhang, X.-B.; Shen, G.-L.; Yu, R.-Q. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement. Biosens. Bioelectron. 2007, 23, 485–491. [Google Scholar] [CrossRef]
- Zhang, J.; Pearcea, M.C.; Ting, B.P.; Ying, J.Y. Ultrasensitive electrochemical immunosensor employing glucose oxidase catalyzed deposition of gold nanoparticles for signal amplification. Biosens. Bioelectron. 2011, 27, 53–57. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, E.; Kwak, J. Electrochemical detection of DNA hybridization using biometallization. Anal. Chem. 2005, 77, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Chao, L.; Xiao, H.; Sui, Y.; Liu, J.; Xie, Q.; Yao, S. Ultrasensitive electrochemical sensing of Hg2+ based on thymine-Hg2+-thymine interaction and signal amplification of alkaline phosphatase catalyzed silver deposition. Biosens. Bioelectron. 2018, 104, 95–101. [Google Scholar] [CrossRef]
- Qin, X.; Xu, A.; Liu, L.; Deng, W.; Chen, C.; Tan, Y.; Fu, Y.; Xie, Q.; Yao, S. Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chem. Commun. 2015, 51, 8540–8543. [Google Scholar] [CrossRef]
- Moreno-Guzmán, M.; Ojeda, I.; Villalonga, R.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. Biosens. Bioelectron. 2012, 35, 82–86. [Google Scholar] [CrossRef]
- Fu, Y.; Li, P.; Xie, Q.; Xu, X.; Lei, L.; Chen, C.; Zou, C.; Deng, W.; Yao, S. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv. Funct. Mater. 2009, 19, 1784–1791. [Google Scholar] [CrossRef]
- Bitinis, N.; Hernandez, M.; Verdejo, R.; Kenny, J.M.; Lopez-Manchado, M.A. Recent advances in clay/polymer nanocomposites. Adv. Mater. 2011, 23, 5229–5236. [Google Scholar] [CrossRef]
- Huang, Y.; Qin, X.; Li, Z.; Fu, Y.; Qin, C.; Wu, F.; Su, Z.; Ma, M.; Xie, Q.; Yao, S.; et al. Fabrication of a chitosan/glucose oxidase–poly(anilineboronic acid)–Aunano/Au-plated Au electrode for biosensor and biofuel cell. Biosens. Bioelectron. 2012, 31, 357–362. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, J.; Zhou, A.; Zhang, Y.; Liu, H.; Xu, Z.; Yuan, Y.; Deng, M.; Yao, S. A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system. Anal. Chem. 1999, 71, 4649–4656. [Google Scholar] [CrossRef]
- Fu, Y.; Li, P.; Bu, L.; Wang, T.; Xie, Q.; Xu, X.; Lei, L.; Zou, C.; Yao, S. Chemical/biochemical preparation of new polymeric bionanocomposites with enzyme labels immobilized at high load and activity for high-performance electrochemical immunoassay. J. Phys. Chem. C 2010, 114, 1472–1480. [Google Scholar] [CrossRef]
- Annavarapu, S.; Apelian, D.; Lawley, A. Spray casting of steel strip: Process analysis. Metall. Mater. Trans. A 1990, 21, 3237–3256. [Google Scholar] [CrossRef]
- Li, Z.; Pan, J.; Tang, J. Highly sensitive and selective spectrophotometric method for determination of trace gold in geological samples with 5-(2-hydroxy-5-nitrophenylazo)rhodanine. Anal. Bioanal. Chem. 2003, 375, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Comamala, M.; Pinard, M.; Thériault, C.; Matte, I.; Albert, A.; Boivin, M.; Beaudin, J.; Piché, A.; Rancourt, C. Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH: OVCAR3 ovarian carcinoma cells. Brit. J. Cancer. 2011, 104, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, J.-J.; Wang, C.; Zhu, J.-J. Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens. Bioelectron. 2011, 26, 3627–3632. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Song, Z.; Han, R.; Li, Y.; Luo, X. Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum. Biosens. Bioelectron. 2021, 178, 113016. [Google Scholar] [CrossRef]
- Cui, R.; Pan, H.-C.; Zhu, J.-J.; Chen, H.-Y. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal. Chem. 2007, 79, 8494–8501. [Google Scholar] [CrossRef] [PubMed]
- Jofre, C.F.; Regiart, M.; Fernández-Baldo, M.A.; Bertotti, M.; Raba, J.; Messina, G.A. Electrochemical microfluidic immunosensor based on TESAuNPs@Fe3O4 and CMK-8 for IgG anti-Toxocara canis determination. Anal. Chim. Acta 2020, 1096, 120–129. [Google Scholar] [CrossRef]
- Qin, X.; Liu, L.; Xu, A.; Wang, L.; Tan, Y.; Chen, C.; Xie, Q. Ultrasensitive immunoassay of proteins based on gold label/silver staining, galvanic replacement reaction enlargement, and in situ microliter-droplet anodic stripping voltammetry. J. Phys. Chem. C 2016, 120, 2855–2865. [Google Scholar] [CrossRef]
- Qin, X.; Xu, A.; Wang, L.; Liu, L.; Chao, L.; He, F.; Tan, Y.; Chen, C.; Xie, Q. In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins. Biosens. Bioelectron. 2016, 79, 914–921. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Chen, M.; Zheng, S.; Tan, H.; Yu, S.; Chen, Y.; Huang, X.; Gao, W. Core-double-shell structure and heterojunction in CdS/SnS2 boosting fast carrier separation for ultrasensitive detection of carbohydrate antigen 125. Sens. Actuator B Chem. 2023, 380, 133352. [Google Scholar] [CrossRef]
- Guo, A.; Wu, D.; Ma, H.; Zhang, Y.; Li, H.; Du, B.; Wei, Q. An ultrasensitive enzyme-free electrochemical immunosensor for CA125 using Au@Pd core–shell nanoparticles as labels and platforms for signal amplification. J. Mater. Chem. B 2013, 1, 4052. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Yan, Y.; Yao, J.; Zhong, F.; Xie, S.; Zhang, M.; Zhang, H.; Jin, M.; Shui, L. A multi-unit integrated electrochemical biosensor array for synergistic signal enhancing carbohydrate antigen 125 detection. Sens. Actuator B Chem. 2023, 393, 134224. [Google Scholar] [CrossRef]
- Raghav, R.; Srivastava, S. Core-shell gold-silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sens. Actuator B Chem. 2015, 220, 557–564. [Google Scholar] [CrossRef]
- Tang, M.; Wen, G.; Luo, Y.; Liang, A.; Jiang, Z. A simple resonance Rayleigh scattering method for determination of trace CA125 using immuno-AuRu nanoalloy as probe via ultrasonic irradiation. Spectrochim. Acta A 2015, 135, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Al-Ogaidi, I.; Aguilar, Z.P.; Suri, S.; Gou, H.; Wu, N. Dual detection of cancer biomarker CA125 using absorbance and electrochemical methods. Analyst 2013, 138, 5647–5653. [Google Scholar] [CrossRef]
- Tang, D.; Su, B.; Tang, J.; Ren, J.; Chen, G. Nanoparticle-Based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal. Chem. 2010, 82, 1527–1534. [Google Scholar] [CrossRef]
- Ge, J.; Dou, J.; Yu, X.; Sun, Y.; Song, H.; Shen, D. Simultaneous determination of α-fetoprotein and carbohydrate antigens 125 and 19-9 in potential- and spectrum-resolved dual-mode electrochemiluminescence. Microchem. J. 2024, 199, 110117. [Google Scholar] [CrossRef]
Serum Samples | Reference Method [a]/U mL−1 | Our Method [b]/U mL−1 | RSD(%) |
---|---|---|---|
1 | 57.3 | 54.6 | −4.9 |
2 | 77.8 | 84.9 | 9.1 |
3 | 110 | 115 | 4.3 |
4 | 128 | 138 | 8.2 |
5 | 3513 | 3444 | −2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, L.; Wu, Z.; Qi, S.; Xu, A.; Huang, Z.; Yan, D. Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining. Biosensors 2025, 15, 689. https://doi.org/10.3390/bios15100689
Chao L, Wu Z, Qi S, Xu A, Huang Z, Yan D. Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining. Biosensors. 2025; 15(10):689. https://doi.org/10.3390/bios15100689
Chicago/Turabian StyleChao, Long, Zhisong Wu, Shiqiang Qi, Aigui Xu, Zhao Huang, and Dexuan Yan. 2025. "Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining" Biosensors 15, no. 10: 689. https://doi.org/10.3390/bios15100689
APA StyleChao, L., Wu, Z., Qi, S., Xu, A., Huang, Z., & Yan, D. (2025). Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining. Biosensors, 15(10), 689. https://doi.org/10.3390/bios15100689