Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride
Abstract
:1. Introduction
2. Results
2.1. Wettability Investigations on AlN/Si Substrates
2.2. Wettability Investigations on BAW-SMR Substrates
2.3. Strain and Doping Investigations via Spatially-Resolved Raman Spectroscopy
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
RF | Radio frequency |
MEMS | Microelectromechanical system |
CVD | Chemical vapor deposition |
AlN | Aluminum nitride |
PMMA | Poly (methyl methacrylate) |
BAW | Bulk acoustic wave |
SMR | Solidly mounted resonator |
AFM | Atomic force microscopy |
CA | Contact angle |
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lakin, K.M. A review of thin-film resonator technology. IEEE Microw. Mag. 2003, 4, 61–67. [Google Scholar] [CrossRef]
- Bi, F.Z.; Barber, B.P. Bulk acoustic wave RF technology. IEEE Microw. Mag. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Qian, Z.; Hui, Y.; Liu, F.; Kang, S.; Kar, S.; Rinaldi, M. Graphene—Aluminum nitride NEMS resonant infrared detector. Microsyst. Nanoeng. 2016, 2, 16026. [Google Scholar] [CrossRef]
- Lee, S.; Adiga, V.P.; Barton, R.A.; Van Der Zande, A.M.; Lee, G.H.; Ilic, B.R.; Gondarenko, A.; Parpia, J.M.; Craighead, H.G.; Hone, J. Graphene metallization of high-stress silicon nitride resonators for electrical integration. Nano Lett. 2013, 13, 4275–4279. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Dong, S.R.; Luo, J.K.; Milne, W.I. Generalised Butterworth-Van Dyke equivalent circuit for thin-film bulk acoustic resonator. Electron. Lett. 2011, 47, 424. [Google Scholar] [CrossRef]
- Thalhammer, R.; Fattinger, G.; Handtmann, M.; Marksteiner, S. Ohmic effects in BAW-resonators. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 7–10. [Google Scholar]
- Miao, C.; Zheng, C.; Liang, O.; Xie, Y. Chemical Vapor Deposition of Graphene. In Physics and Applications of Graphene—Experiments; InTech: Rijeka, Croatia, 2011; p. 540. ISBN 978-953-307-217-3. [Google Scholar]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colomba, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Kidambi, P.R.; Bayer, B.C.; Weijtens, C.; Kuhn, A.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Robertson, J.; Hofmann, S. Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Sci. Rep. 2015, 4, 5380. [Google Scholar] [CrossRef] [PubMed]
- Graphenea Inc. Logo. Available online: https://www.graphenea.com/collections/buy-graphene-films (accessed on 20 July 2017).
- Qian, Z.; Liu, F.; Hui, Y.; Kar, S.; Rinaldi, M. Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems. Nano Lett. 2015, 15, 4599–4604. [Google Scholar] [CrossRef] [PubMed]
- Gun Oh, J.; Ki Hong, S.; Kim, C.K.; Hoon Bong, J.; Shin, J.; Choi, S.Y.; Jin Cho, B. High performance graphene field effect transistors on an aluminum nitride substrate with high surface phonon energy. Appl. Phys. Lett. 2014, 104, 193112. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, X.L.; Gai, J.G. Progress and Challenges in Transfer of Large-Area Graphene Films. Adv. Sci. 2016, 3, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Hui, Y.; Liu, F.; Kai, S.; Rinaldi, M. 1.27 GHz Graphene-Aluminum Nitride nano plate resonant infrared detector. In Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 1429–1432. [Google Scholar] [CrossRef]
- Gao, W.; Huang, R. Effect of surface roughness on adhesion of graphene membranes. J. Phys. D Appl. Phys. 2011, 44, 452001. [Google Scholar] [CrossRef]
- Sönmez, T.; Fazeli Jadidi, M.; Kazmanli, K.; Birer, Ö.; Ürgen, M. Role of different plasma gases on the surface chemistry and wettability of RF plasma treated stainless steel. Vacuum 2016, 129, 63–73. [Google Scholar] [CrossRef]
- Williams, D.L.; Kuhn, A.T.; Amann, M.A.; Hausinger, M.B.; Konarik, M.M.; Nesselrode, E.I. Computerised measurement of contact angles. Galvanotechnik 2010, 101, 2502–2512. [Google Scholar]
- Quéré, D. Wetting and Roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. [Google Scholar] [CrossRef]
- Seo, K.; Kim, M.; Kim, D.H. Re-derivation of Young’s Equation, Wenzel Equation, and Cassie-Baxter Equation Based on Energy Minimization. Surf. Energy 2015. [Google Scholar] [CrossRef]
- Prysiazhnyi, V. Atmospheric Pressure Plasma Treatment and Following Aging Effect of Chromium Surfaces. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 138–145. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Chakraborty, B.; Piscanec, S.; Pisana, S.; Sood, A.K.; Ferrari, A.C. Phonon renormalization in doped bilayer graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 155417. [Google Scholar] [CrossRef]
- Das, A.; Pisana, S.; Piscanec, S.; Chakraborty, B.; Saha, S.K.; Waghmare, U.V.; Yiang, R.; Krishnamurhthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Electrochemically Top Gated Graphene: Monitoring Dopants by Raman Scattering. Nat. Nanotechnol. 2007, 3, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.; Son, Y.W.; Cheong, H. Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys. Rev. Lett. 2011, 106, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 2010, 1, 273–291. [Google Scholar] [CrossRef]
- Wang, Q.J.; Chung, Y.-W. Encyclopedia of Tribology, 1st ed.; Springer International Publishing: Basel, Switzerland, 2013; ISBN 9780387928982. [Google Scholar]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Wu, Z.T.; Zhao, W.W.; Chen, W.Y.; Jiang, J.; Nan, H.Y.; Guo, X.T.; Liang, Z.; Chen, Y.M.; Chen, Y.F.; Ni, Z.H. The influence of chemical solvents on the properties of CVD graphene. J. Raman Spectrosc. 2015, 46, 21–24. [Google Scholar] [CrossRef]
- Shang, J.; Flury, M.; Harsh, J.B.; Zollars, R.L. Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interface Sci. 2008, 328, 299–307. [Google Scholar] [CrossRef] [PubMed]
Substrate | Substrate Size | Graphene Layer Size |
---|---|---|
AlN/Si | 20 × 20 mm2 | 10 × 15 mm2 |
B1 (AlN/TiAlCu) | 3″ wafer | 40 × 40 mm2 |
B2 (AlN/MoAlN) | 3″ wafer | 40 × 40 mm2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapp, M.; Hoffmann, R.; Cimalla, V.; Ambacher, O. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride. Nanomaterials 2017, 7, 226. https://doi.org/10.3390/nano7080226
Knapp M, Hoffmann R, Cimalla V, Ambacher O. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride. Nanomaterials. 2017; 7(8):226. https://doi.org/10.3390/nano7080226
Chicago/Turabian StyleKnapp, Marius, René Hoffmann, Volker Cimalla, and Oliver Ambacher. 2017. "Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride" Nanomaterials 7, no. 8: 226. https://doi.org/10.3390/nano7080226
APA StyleKnapp, M., Hoffmann, R., Cimalla, V., & Ambacher, O. (2017). Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride. Nanomaterials, 7(8), 226. https://doi.org/10.3390/nano7080226