Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Biomass as Renewable Feedstock
1.3. Scope and Structure of the Review
2. Review Methodology
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
3. Biomass Precursors for Carbon Nanomaterials
3.1. Classification of Biomass Sources
3.1.1. Agricultural Residues
3.1.2. Lignocellulosic Waste
3.1.3. Vegetable Oils (Including Waste Oils)
3.1.4. Algae and Aquatic Biomass
3.1.5. Food Industry and Urban Organic Waste
3.2. Chemical Composition and Characteristics
Cellulose, Hemicellulose, and Lignin
4. Types and Properties of Biomass-Derived Carbon Nanomaterials
4.1. Biochar and Activated Carbon
4.2. Carbon Dots
4.3. Graphene and Graphene Oxide
4.4. Carbon Nanotubes and Nanofibers
4.5. Hybrid and Composite Materials
4.5.1. Carbon–Metal Composites
4.5.2. Carbon–Metal Oxide Composites
4.5.3. Polymer–Carbon Composites
5. Green Synthesis Strategies for Carbon Nanomaterials
5.1. Conventional Thermal Methods
5.1.1. Pyrolysis
5.1.2. Carbonization
5.2. Hydrothermal and Solvothermal Methods
5.3. Assisted and Advanced Techniques
5.3.1. Microwave-Assisted Synthesis
5.3.2. Ultrasonication
5.3.3. Plasma-Assisted Synthesis
5.3.4. Hybrid/Combined Methods
5.4. Comparison of Methods
5.5. Interplay Between Synthesis Parameters, Activation Mechanisms, and Material Properties
6. Structure–Property–Performance Relationships in Environmental Applications
6.1. Role of Surface Chemistry and Functional Groups
6.2. Influence of Porosity and Surface Area
6.3. Graphitic Domains and Defect Density
6.4. Implications for Different Classes of Pollutants
7. Environmental Applications
7.1. Adsorption of Heavy Metals and Organic Pollutants
7.2. Photocatalysis and Advanced Oxidation Processes
7.3. Electrochemical Applications in Water Treatment
7.4. Sensing of Environmental Contaminants
7.5. Other Emerging Environmental Applications
8. Challenges and Future Perspectives
8.1. Environmental and Toxicological Assessment
8.2. Research Directions and Opportunities
8.3. Comparison with Fossil-Derived Carbon Materials and Life Cycle Considerations
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-L.; Zhang, C.-C.; Rong, F.; Guo, Z.-X.; Wang, K.-X. Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Chem. Eur. J. 2024, 30, e202304157. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Haider, A.; Moeen, S.; Haider, J. Carbon-Based Nanomaterials for Environmental Applications. In Engineering Materials; Springer: Cham, Switzerland, 2024; pp. 1–112. [Google Scholar]
- Sharma, S.; Kumar, R.; Kumar, K. Synthesis of Biowaste-Derived Carbon Nanomaterials: Efficiency, Quality, and Environmental Impact. Indian Chem. Eng. 2024, 1–20. [Google Scholar] [CrossRef]
- Paramasivam, G.; Palem, V.V.; Meenakshy, S.; Suresh, L.K.; Gangopadhyay, M.; Antherjanam, S.; Sundramoorthy, A.K. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf. B 2024, 241, 114032. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.A.; Verma, C. Carbon nanodots: Recent advances in synthesis and applications. Carbon Lett. 2022, 32, 1603–1629. [Google Scholar] [CrossRef]
- Mamidi, N.; Otero, J.F.F. Sustainable innovations in biomedical materials: A review of eco-friendly synthesis approaches. Glob. Transl. Med. 2024, 3, 4698. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Zahid, M.U.; Pervaiz, E.; Hussain, A.; Shahzad, M.I.; Niazi, M.B.K. Synthesis of carbon nanomaterials from different pyrolysis techniques: A review. Mater. Res. Express 2018, 5, 052002. [Google Scholar] [CrossRef]
- Yang, S.; Bachman, R.E.; Feng, X.; Müllen, K. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Acc. Chem. Res. 2013, 46, 116–128. [Google Scholar] [CrossRef]
- Rondeau-Gagné, S.; Morin, J.-F. Preparation of carbon nanomaterials from molecular precursors. Chem. Soc. Rev. 2014, 43, 85–98. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Mohamed, I.M.A.; Badr, M.M.; Ihara, I.; Rooney, D.W.; et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Bhushan, D.; Shoran, S.; Kumar, R.; Gupta, R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. Chemosphere 2024, 365, 143340. [Google Scholar] [CrossRef] [PubMed]
- Matveeva, V.G.; Bronstein, L.M. From renewable biomass to nanomaterials: Does biomass origin matter? Prog. Mater. Sci. 2022, 130, 100999. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Bairagi, S.; Kamali, M.R. Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: Progress and perspectives. Chem. Eng. J. Adv. 2023, 14, 100460. [Google Scholar] [CrossRef]
- Arora, A.; Nandal, P.; Singh, J.; Verma, M.L. Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Mater. Sci. Energy Technol. 2020, 3, 308–318. [Google Scholar] [CrossRef]
- Sakthivel, S.; Muthusamy, K.; Thangarajan, A.P.; Thiruvengadam, M.; Venkidasamy, B. Nano-based biofuel production from low-cost lignocellulose biomass: Environmental sustainability and economic approach. Bioprocess Biosyst. Eng. 2024, 47, 971–990. [Google Scholar] [CrossRef]
- Shahzadi, T.; Mehmood, S.; Irshad, M.; Anwar, Z.; Afroz, A.; Zeeshan, N.; Rashid, U.; Sughra, K. Advances in lignocellulosic biotechnology: A brief review on lignocellulosic biomass and cellulases. Adv. Biosci. Biotechnol. 2014, 5, 246–251. [Google Scholar] [CrossRef]
- Huang, H.-J.; Ramaswamy, S.; Al-Dajani, W.; Tschirner, U.; Cairncross, R.A. Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass Bioenergy 2009, 33, 234–246. [Google Scholar] [CrossRef]
- Uma Maheswari, R.; Mavukkandy, M.O.; Adhikari, U.; Naddeo, V.; Sikder, J.; Arafat, H.A. Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties. Biomass Bioenergy 2020, 134, 105486. [Google Scholar] [CrossRef]
- Lesch, R.; Visser, E.D.; Seroka, N.S.; Khotseng, L. Biomass-Derived Carbon-Based Nanomaterials: Current Research, Trends, and Challenges. J. Renew. Mater. 2025, 13, 1935–1977. [Google Scholar] [CrossRef]
- Wang, C.; Ma, D.; Bao, X. Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation. J. Phys. Chem. C 2008, 112, 17596–17602. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.L.; Del Buono, D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K. Agricultural Wastes and Their By-Products for the Energy Market. Energies 2024, 17, 2099. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Prog. Energy Combust. Sci. 2022, 92, 101023. [Google Scholar] [CrossRef]
- Vijeata, A.; Chaudhary, G.R.; Chaudhary, S.; Ibrahim, A.A.; Umar, A. Recent advancements and prospects in carbon-based nanomaterials derived from biomass for environmental remediation applications. Chemosphere 2024, 357, 141935. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Vo, D.V.N.; Gnana Prakash, D.; Adithya Joseph, A.; Viswanathan, S.; Arun, J. Environmental applications of carbon-based materials: A review. Environ. Chem. Lett. 2020, 19, 557–582. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 2019, 11, 11992–12014. [Google Scholar] [CrossRef]
- Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. [Google Scholar] [CrossRef]
- Waris, N.; Chaudhary, M.S.; Anwer, A.H.; Sultana, S.; Ingole, P.P.; Nami, S.A.A.; Khan, M.Z. A Review on Development of Carbon-Based Nanomaterials for Energy Storage Devices: Opportunities and Challenges. Energy Fuels 2023, 37, 19433–19460. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, W.; Wang, X. 3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochem. Energy Rev. 2021, 4, 269–335. [Google Scholar] [CrossRef]
- Zhang, Y.H.P. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 2008, 35, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Holtzapple, M.T.; Lundeen, J.E.; Sturgis, R.; Lewis, J.E.; Dale, B.E. Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 1992, 34, 5–21. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresour. Technol. 2016, 199, 92–102. [Google Scholar] [CrossRef]
- Prasad, R.K.; Chatterjee, S.; Mazumder, P.B.; Gupta, S.K.; Sharma, S.; Vairale, M.G.; Datta, S.; Dwivedi, S.K.; Gupta, D.K. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere 2019, 231, 588–606. [Google Scholar] [CrossRef]
- Kumar, A.; Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020, 6, e030153. [Google Scholar] [CrossRef]
- Roy, R.; Debnath, D.; Ray, S. Comprehensive Assessment of Various Lignocellulosic Biomasses for Energy Recovery in a Hybrid Energy System. Arab. J. Sci. Eng. 2022, 47, 5935–5948. [Google Scholar] [CrossRef]
- Alper, K.; Tekin, K.; Karagöz, S.; Ragauskas, A.J. Sustainable energy and fuels from biomass: A review focusing on hydrothermal biomass processing. Sustain. Energy Fuels 2020, 4, 4390–4414. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Rouboa, A. Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods—A review. Energy Convers. Manag. 2022, 270, 116271. [Google Scholar] [CrossRef]
- Tripathi, S.; Sharon, M.; Maldar, N.N.; Shukla, J. Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the taguchi method. Carbon Lett. 2013, 14, 210–217. [Google Scholar] [CrossRef]
- Zakaria, N.Z.J.; Rozali, S.; Mubarak, N.M.; Ibrahim, S. A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials. Biomass Convers. Biorefin. 2022, 14, 13–44. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M.; Rahdar, A. Composites of Vegetable Oil-Based Polymers and Carbon Nanomaterials. Macromol 2021, 1, 276–292. [Google Scholar] [CrossRef]
- Antunes Filho, S.; dos Santos, M.S.; dos Santos, O.A.L.; Backx, B.P.; Soran, M.-L.; Opriş, O.; Lung, I.; Stegarescu, A.; Bououdina, M. Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils. Molecules 2023, 28, 3060. [Google Scholar] [CrossRef]
- Maryam, M.; Abu Bakar, S.; Shamsudin, M.S.; Rusop Mahmood, M. Synthesis of carbon nanotubes from palm oil precursor by aerosol-assisted catalytic CVD method. Appl. Mech. Mater. 2012, 229–231, 247–251. [Google Scholar] [CrossRef]
- Nogueira, J.; Kovalevsky, A.V.; Daniel-da-Silva, A.L. Green synthesis of carbon nanomaterials from Chondrus crispus and Palmaria palmata algae biomass for ciprofloxacin and malachite green uptake from water. Biomass Convers. Biorefin. 2024, 15, 11887–11904. [Google Scholar] [CrossRef]
- Khan, F.; Shahid, A.; Zhu, H.; Wang, N.; Javed, M.R.; Ahmad, N.; Xu, J.; Alam, M.A.; Mehmood, M.A. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 2022, 293, 133571. [Google Scholar] [CrossRef]
- Barciela, P.; Carpena, M.; Li, N.Y.; Liu, C.; Jafari, S.M.; Simal-Gandara, J.; Prieto, M.A. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Adv. Colloid Interface Sci. 2023, 311, 102829. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Various Applications. In Handbook of Ecomaterials; Springer: Cham, Switzerland, 2018; pp. 1–45. [Google Scholar]
- Zhang, J.; Xia, A.; Chen, H.; Nizami, A.S.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Biobased carbon dots production via hydrothermal conversion of microalgae Chlorella pyrenoidosa. Sci. Total Environ. 2022, 839, 156144. [Google Scholar] [CrossRef]
- Dahoumane, S.A.; Mechouet, M.; Wijesekera, K.; Filipe, C.D.M.; Sicard, C.; Bazylinski, D.A.; Jeffryes, C. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—A review. Green Chem. 2017, 19, 552–587. [Google Scholar] [CrossRef]
- Taherzadeh Soureshjani, P.; Shadi, A.; Mohammadsaleh, F. Algae-mediated route to biogenic cuprous oxide nanoparticles and spindle-like CaCO3: A comparative study, facile synthesis, and biological properties. RSC Adv. 2021, 11, 10599–10609. [Google Scholar] [CrossRef]
- Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020, 10, 2316. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liang, H.W.; Chen, L.F.; Hu, B.C.; Yu, S.H. Bacterial cellulose: A robust platform for design of three-dimensional carbon-based functional nanomaterials. Acc. Chem. Res. 2016, 49, 96–105. [Google Scholar] [CrossRef]
- Fathy, N.A. Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. RSC Adv. 2017, 7, 28535–284541. [Google Scholar] [CrossRef]
- Li, D.; Lv, C.; Liu, L.; Xia, Y.; She, X.; Guo, S.; Yang, D. Egg-box structure in cobalt alginate: A new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Cent. Sci. 2015, 1, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liao, W.; Li, Z.; Sun, L.; Chen, C. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction. Nanoscale 2015, 7, 15990–15998. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Kim, D.S.; Hong, S.B.; Sim, J.W.; Kim, J.; Kim, S.S.; Choi, B.G. MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors. Langmuir 2017, 33, 5140–5147. [Google Scholar] [CrossRef]
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133, 43794. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Zheng, X.; Wang, X.; Xu, Y.; Tang, H.; Kang, F.; Yang, Q.H.; Luo, J. Biomass organs control the porosity of their pyrolyzed carbon. Adv. Funct. Mater. 2017, 27, 1604687. [Google Scholar] [CrossRef]
- Imtiaz, S.; Zhang, J.; Zafar, Z.A.; Ji, S.; Huang, T.; Anderson, J.A.; Zhang, Z.; Huang, Y. Biomass-derived nanostructured porous carbons for lithium–sulfur batteries. Sci. China Mater. 2016, 59, 389–407. [Google Scholar] [CrossRef]
- Ravi, S.; Vadukumpully, S. Sustainable carbon nanomaterials: Recent advances and their applications in energy and environmental remediation. J. Environ. Chem. Eng. 2016, 4, 835–856. [Google Scholar] [CrossRef]
- Deng, J.; Li, M.; Wang, Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion. Green Chem. 2016, 18, 4824–4854. [Google Scholar] [CrossRef]
- Zhang, P.; Qiao, Z.A.; Dai, S. Recent advances in carbon nanospheres: Synthetic routes and applications. Chem. Commun. 2015, 51, 9246–9256. [Google Scholar] [CrossRef] [PubMed]
- Vivekanandhan, S.; Schreiber, M.; Muthuramkumar, S.; Misra, M.; Mohanty, A.K. Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. J. Appl. Polym. Sci. 2017, 134, 44255. [Google Scholar] [CrossRef]
- Chen, F.; Yang, J.; Bai, T.; Long, B.; Zhou, X. Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 192, 99–109. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Wang, W.; Wei, Z.; Wang, F.; Gong, P.; Wang, J.; Li, N.; Liu, B.; Zhang, Z.; et al. Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass. J. Mater. Chem. B 2017, 5, 4679–4689. [Google Scholar] [CrossRef]
- Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17. [Google Scholar] [CrossRef]
- Candelaria, S.L.; Shao, Y.; Zhou, W.; Li, X.; Xiao, J.; Zhang, J.G.; Wang, Y.; Liu, J.; Li, J.; Cao, G. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220. [Google Scholar] [CrossRef]
- Geng, Z.; Xiao, Q.; Lv, H.; Li, B.; Wu, H.; Lu, Y.; Zhang, C. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture. Sci. Rep. 2016, 6, 30049. [Google Scholar] [CrossRef]
- Long, W.; Fang, B.; Ignaszak, A.; Wu, Z.; Wang, Y.J.; Wilkinson, D. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev. 2017, 46, 7176–7190. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, H.; Guo, S.; Cheng, Q.; Hu, Y.; Li, C. Dual tuning of biomass-derived hierarchical carbon nanostructures for supercapacitors: The role of balanced meso/microporosity and graphene. Sci. Rep. 2015, 5, 15936. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Functionalized activated carbon derived from biomass for photocatalysis applications perspective. Int. J. Photoenergy 2015, 2015, 218743. [Google Scholar] [CrossRef]
- Zhuo, C.; Alves, J.O.; Tenorio, J.A.S.; Levendis, Y.A. Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Ind. Eng. Chem. Res. 2012, 51, 2922–2930. [Google Scholar] [CrossRef]
- He, H.; Zhang, R.; Zhang, P.; Wang, P.; Chen, N.; Qian, B.; Zhang, L.; Yu, J.; Dai, B. Functional carbon from nature: Biomass-derived carbon materials and the recent progress of their applications. Adv. Sci. 2023, 10, 2205557. [Google Scholar] [CrossRef]
- Gan, J.; Chen, L.; Chen, Z.; Zhang, J.; Yu, W.; Huang, C.; Wu, Y.; Zhang, K. Lignocellulosic biomass-based carbon dots: Synthesis processes, properties, and applications. Small 2023, 19, 2304066. [Google Scholar] [CrossRef]
- Li, T.; Takkellapati, S. The current and emerging sources of technical lignins and their applications. Biofuels Bioprod. Biorefin. 2018, 12, 756–787. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Apaydın Varol, E.; Mutlu, Ü. TGA-FTIR analysis of biomass samples based on the thermal decomposition behavior of hemicellulose, cellulose, and lignin. Energies 2023, 16, 3674. [Google Scholar] [CrossRef]
- Creteanu, A.; Lungu, C.N.; Lungu, M. Lignin: An adaptable biodegradable polymer used in different formulation processes. Pharmaceuticals 2024, 17, 1406. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Use of biomass-derived biochar as a sustainable material for carbon sequestration in soil: Recent advancements and future perspectives. npj Mater. Sustain. 2025, 3, 26. [Google Scholar] [CrossRef]
- Genuino, D.A.D.; de Luna, M.D.G.; Capareda, S.C. Improving the surface properties of municipal solid waste-derived pyrolysis biochar by chemical and thermal activation: Optimization of process parameters and environmental application. Waste Manag. 2018, 72, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Švábová, M.; Bičáková, O.; Vorokhta, M. Biochar as an effective material for acetone sorption and the effect of surface area on the mechanism of sorption. J. Environ. Manag. 2023, 348, 119205. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.; Nguyen, T.; Moreno, M.; Gilliard-Abdulaziz, K.L. Physiochemical properties of biochar and activated carbon from biomass residue: Influence of process conditions to adsorbent properties. ACS Omega 2021, 6, 10224–10233. [Google Scholar] [CrossRef] [PubMed]
- Herath, A.; Layne, C.A.; Perez, F.; Hassan, E.B.; Pittman, C.U.; Mlsna, T.E. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr (VI), Pb (II) and Cd (II). Chemosphere 2021, 269, 128409. [Google Scholar] [CrossRef]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef]
- Colomba, A.; Berruti, F.; Briens, C. Model for the physical activation of biochar to activated carbon. J. Anal. Appl. Pyrolysis 2022, 168, 105769. [Google Scholar] [CrossRef]
- Dai, L.; Lu, Q.; Zhou, H.; Shen, F.; Liu, Z.; Zhu, W.; Huang, H. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. J. Hazard. Mater. 2021, 420, 126547. [Google Scholar] [CrossRef]
- Fan, Q.; Sun, J.; Chu, L.; Cui, L.; Quan, G.; Yan, J.; Hussain, Q.; Iqbal, M. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere 2018, 207, 33–40. [Google Scholar] [CrossRef]
- Xiong, X.; Liu, Z.; Zhao, L.; Huang, M.; Dai, L.; Tian, D.; Zou, J.; Zeng, Y.; Hu, J.; Shen, F. Tailoring biochar by PHP towards the oxygenated functional groups (OFGs)-rich surface to improve adsorption performance. Chin. Chem. Lett. 2022, 33, 3097–3100. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, S.B.; Liu, Y.G.; Gu, Y.L.; Zeng, G.M.; Hu, X.J.; Wang, X.; Liu, S.H.; Jiang, L. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Loong, C.F.J.; Chen, W.; Ge, L.; Chan, W.P.; Veksha, A.; Lisak, G. Closed-Loop K2CO3 Activation of Biochar for Coproduction of Microporous Carbon and Syngas. Energy Fuels 2024, 38, 3186–3197. [Google Scholar] [CrossRef]
- Angin, D.; Altintig, E.; Köse, T.E. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour. Technol. 2013, 148, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Activated carbon from hydrolysis lignin: Effect of activation method on carbon properties. Biomass Bioenergy 2022, 159, 106387. [Google Scholar] [CrossRef]
- Plavniece, A.; Dobele, G.; Volperts, A.; Zhurinsh, A. Hydrothermal Carbonization vs. Pyrolysis: Effect on the Porosity of the Activated Carbon Materials. Sustainability 2022, 14, 15982. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, M.; Tang, Y.; Zang, R.; Zhang, X.; Huang, X.; Chen, Y.; Yamauchi, Y.; Kaskel, S.; Pang, H. Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Adv. Funct. Mater. 2022, 32, 2204714. [Google Scholar] [CrossRef]
- Zhao, Q.; Song, W.; Zhao, B.; Yang, B. Spectroscopic studies of the optical properties of carbon dots: Recent advances and future prospects. Mater. Chem. Front. 2020, 4, 472–488. [Google Scholar] [CrossRef]
- Meng, W.; Bai, X.; Wang, B.; Liu, Z.; Lu, S.; Yang, B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater. 2019, 2, 172–192. [Google Scholar] [CrossRef]
- Wareing, T.C.; Gentile, P.; Phan, A.N. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano 2021, 15, 15471–15501. [Google Scholar] [CrossRef]
- Jin, X.; Bai, H.; Ma, Y.; Li, Y.; Chen, W. Green Synthesis of Biomass-Based Fluorescent Carbon Dots for the Detection and Adsorption of Fe (III). ChemistrySelect 2023, 8, e202204852. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, H.L.; Tan, K.J.; Dong, L. One-step solvothermal synthesis of full-color fluorescent carbon dots for information encryption and anti-counterfeiting applications. Nanoscale 2024, 16, 11642–11650. [Google Scholar] [CrossRef]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Pang, K.; Wang, F.; Xu, Z.; Gao, W.; Gao, C. Environmentally stable macroscopic graphene films with specific electrical conductivity exceeding metals. Carbon 2020, 156, 205–211. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Tadyszak, K.; Wychowaniec, J.K.; Litowczenko, J. Biomedical Applications of Graphene-Based Structures. Nanomaterials 2018, 8, 944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; He, P.; Zhao, Y.; Yang, S.; Yu, Q.; Xie, X.; Ding, G. Oxidating Fresh Porous Graphene Networks toward Ultra-Large Graphene Oxide with Electrical Conductivity. Adv. Funct. Mater. 2022, 32, 2202697. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; Xiao, G.; Fan, Y.; Ma, J.; Gao, Y.; Hou, R.; Yin, X.; Wang, Y.; Mei, X. The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chem. Eng. J. 2020, 389, 124375. [Google Scholar] [CrossRef]
- Sanei, A.; Dashtian, K.; Yousefi Seyf, J.; Seidi, F.; Kolvari, E. Biomass derived reduced-graphene-oxide supported α-Fe2O3/ZnO S-scheme heterostructure: Robust photocatalytic wastewater remediation. J. Environ. Manag. 2023, 332, 117377. [Google Scholar] [CrossRef]
- Preethy, K.R.; Ammu Chandhini, A.; Chamundeeswari, M. Bio-waste valorization to formulate an eco-friendly reduced graphene oxide based bio-gel for clinical applications. Environ. Dev. Sustain. 2024, 27, 25353–25380. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Hasnain, M.S.; Nayak, A.K. Carbon Nanotubes for Targeted Drug Delivery; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2019. [Google Scholar]
- Zhao, C.; Kang, J.; Li, Y.; Wang, Y.; Tang, X.; Jiang, Z. Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application. Cyborg Bionic Syst. 2023, 4, 0022. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Wang, M.; Lee, S.K.; Kang, J.; Nam, J.D.; Ci, L.; Suhr, J. Tensile properties of millimeter-long multi-walled carbon nanotubes. Sci. Rep. 2017, 7, 9512. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, Z.; Gong, W.; Xu, F.; Song, X.; He, X.; Fan, M. Electrospun Carbon Nanofibers and Their Applications in Several Areas. ACS Omega 2023, 8, 22316–22330. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, T.; Naraghi, M.; Chasiotis, I. Mechanical properties of vapor grown carbon nanofibers. Carbon 2010, 48, 239–244. [Google Scholar] [CrossRef]
- Masud, M.A.; Samaraweera, H.; Mondol, M.M.H.; Septian, A.; Kumar, R.; Terry, L.G. Iron biochar synergy in aquatic systems through surface functionalities electron transfer and reactive species dynamics. npj Clean Water 2025, 8, 46. [Google Scholar] [CrossRef]
- Buaki-Sogó, M.; Zubizarreta, L.; García-Pellicer, M.; Quijano-López, A. Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules 2020, 25, 3123. [Google Scholar] [CrossRef]
- Gado, W.S.; Morshedy, A.S.; Masoud, A.M.; Mohammed, A.E.M.; Taha, E.H.; El-Zahhar, A.A.; Alghamdi, M.M.; Naggar, A.M.A.E.; El-Fawal, E.M. Ultrasound-assisted synthesis of biomass-derived carbon-supported binary metal oxides for efficient adsorption of heavy metals from wastewater. RSC Adv. 2025, 15, 13662–13680. [Google Scholar] [CrossRef]
- Tong, W.; Xie, Y.; Hu, W.; Peng, Y.; Liu, W.; Li, Y.; Zhang, Y.; Wang, Y. A bifunctional CoP/N-doped porous carbon composite derived from a single source precursor for bisphenol A removal. RSC Adv. 2020, 10, 9976–9984. [Google Scholar] [CrossRef]
- Fan, X.; Wang, X.; Cai, Y.; Xie, H.; Han, S.; Hao, C. Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb2+, Cu2+ and MB. J. Hazard. Mater. 2022, 423, 127191. [Google Scholar] [CrossRef]
- Chand, S.; Kumar, R.; Thakur, N.; Kumar, K.; Umar, A.; Almas, T.; Baskoutas, S. Sustainable synthesis and multifunctional applications of biowaste-derived carbon nanomaterials and metal oxide composites: A review. Chemosphere 2025, 385, 144540. [Google Scholar] [CrossRef]
- Diacon, A.; Mocanu, A.; Răducanu, C.E.; Busuioc, C.; Șomoghi, R.; Trică, B.; Dinescu, A.; Rusen, E. New carbon/ZnO/Li2O nanocomposites with enhanced photocatalytic activity. Sci. Rep. 2019, 9, 16840. [Google Scholar] [CrossRef] [PubMed]
- Ghandali, M.V.; Safarzadeh, S.; Ghasemi-Fasaei, R.; Zeinali, S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO2 nanoparticle-modified biochar. Sci. Rep. 2024, 14, 10684. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhou, L.; Li, Z.; Liu, Y.; Ao, X.; Ouyang, J.; Le, Z.; Liu, Z.; Adesina, A.A. Electrodeposited polypyrrole/biomass-derived carbon composite electrodes with high hybrid capacitance and hierarchical porous structure for enhancing U(VI) electrosorption from aqueous solution. Sep. Purif. Technol. 2022, 302, 122169. [Google Scholar] [CrossRef]
- Luo, K.H.; Yan, M.; Hung, Y.H.; Kuang, J.Y.; Chang, H.C.; Lai, Y.J.; Yeh, J.M. Polyaniline Composites Containing Eco-Friendly Biomass Carbon from Agricultural-Waste Coconut Husk for Enhancing Gas Sensor Performance in Hydrogen Sulfide Detection. Polymers 2023, 15, 4554. [Google Scholar] [CrossRef]
- Devi, M.; Rawat, S.; Sharma, S. A comprehensive review of the pyrolysis process: From carbon nanomaterial synthesis to waste treatment. Oxf. Open Mater. Sci. 2021, 1, itab014. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, W.; Li, H.; Wu, J.; Liu, D.; Mi, J.; Chen, H. Red Emission Carbon Nanoparticles Which Can Simultaneously Responding to Hypochlorite and pH. J. Fluoresc. 2025, 35, 145–154. [Google Scholar] [CrossRef]
- Mondal, A.K.; Kretschmer, K.; Zhao, Y.; Liu, H.; Fan, H.; Wang, G. Naturally nitrogen-doped porous carbon derived from waste shrimp shells for high-performance lithium-ion batteries and supercapacitors. Microporous Mesoporous Mater. 2017, 246, 72–80. [Google Scholar] [CrossRef]
- Yu, S.; Wang, L.; Li, Q.; Zhang, Y.; Zhou, H. Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Mater. Today Sustain. 2022, 19, 100209. [Google Scholar] [CrossRef]
- Xu, C.; Li, S.; Hou, Z.; Yang, L.; Fu, W.; Wang, F.; Kuang, Y.; Zhou, H.; Chen, L. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: Conversion mechanism and electrochemical performance. Front. Chem. Sci. Eng. 2023, 17, 679–690. [Google Scholar] [CrossRef]
- Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci. Rep. 2020, 10, 2563. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Q.; Cao, L.; Li, S.; Zeng, X.; Zhou, W.; Zhang, C. Synthesis and application of porous carbon nanomaterials from pomelo peels: A review. Molecules 2023, 28, 4429. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Ren, L. Large Scale Synthesis of Carbon Dots and Their Applications: A Review. Molecules 2025, 30, 774. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, B.; Yang, G.; He, S.; Jiang, S.; Yang, H.; Han, J.; Li, X.; Wu, F.; Zhang, Q. Progress of 0D Biomass-Derived Porous Carbon Materials Produced by Hydrothermal Assisted Synthesis for Advanced Supercapacitors. J. Colloid Interface Sci. 2025, 685, 487–508. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Xiu, S.; Meng, L.Y.; Quan, B. Solvothermal synthesis and applications of micro/nano carbons: A review. Chem. Eng. J. 2023, 451, 138572. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.J.; Hao, X.; Peng, P.; Shi, J.Y.; Peng, F.; Sun, R.C. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: A review. Adv. Compos. Hybrid Mater. 2020, 3, 267–284. [Google Scholar] [CrossRef]
- Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Adv. 2021, 3, 5722–5744. [Google Scholar] [CrossRef]
- Adeola, A.O.; Duarte, M.P.; Naccache, R. Microwave-assisted synthesis of carbon-based nanomaterials from biobased resources for water treatment applications: Emerging trends and prospects. Front. Carbon 2023, 2, 1220021. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Kar, K.K. Microwave as a Tool for Synthesis of Carbon-Based Electrodes for Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 20306–20325. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. Eng 2024, 5, 2223–2263. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Y.; Liu, K.; Zhou, R.; Shan, C. Multicolor biomass based carbon nanodots for bacterial imaging. Chin. Chem. Lett. 2022, 33, 798–802. [Google Scholar] [CrossRef]
- Teng, Z.; Han, K.; Wang, M.; Qi, J.; Liu, J.; Li, Y. Dual-frequency ultrasonic-assisted enzymolysis for synthesis of microstructure regulated biomass-derived porous carbon for high-performance supercapacitors. Ultrason. Sonochem. 2025, 112, 107213. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Adolfsson, K.H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustain. Mater. Technol. 2021, 29, e00304. [Google Scholar] [CrossRef]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 2023, 28, 2639. [Google Scholar] [CrossRef] [PubMed]
- Vela, A.J.; Villanueva, M.; Ronda, F. Ultrasonication: An Efficient Alternative for the Physical Modification of Starches, Flours and Grains. Foods 2024, 13, 2325. [Google Scholar] [CrossRef]
- Jing, H.H.; Bardakci, F.; Akgöl, S.; Kusat, K.; Adnan, M.; Alam, M.J.; Gupta, R.; Sahreen, S.; Chen, Y.; Gopinath, S.C.B.; et al. Green Carbon Dots: Synthesis, Characterization, Properties and Biomedical Applications. J. Funct. Biomater. 2023, 14, 27. [Google Scholar] [CrossRef]
- Sabavath, G.; Rahman, M.; Sarmah, T.; Dihingia, P.; Srivastava, D.N.; Sharma, S.; Pandey, L.M.; Kakati, M. Single-step, DC thermal plasma-assisted synthesis of Ag-C nanocomposites with less than 10 nm sizes for antibacterial applications. J. Phys. D Appl. Phys. 2020, 53, 365201. [Google Scholar] [CrossRef]
- Xing, X.; Zhang, B.; Li, H.; Zhang, J.; Zhang, X.; Xia, G.; Di, L. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surf. Interfaces 2024, 44, 103690. [Google Scholar] [CrossRef]
- Sun, X.; Mao, Z.; Wang, R.; Pi, X.; Chen, C.; Zhong, J.; Wang, Q.; Ostrikov, K.K. Plasma-enabled synthesis of ordered PtFe alloy nanoparticles encapsulated with ultrathin N-doped carbon shells for efficient methanol electrooxidation. Nano Res. 2023, 16, 2065–2075. [Google Scholar] [CrossRef]
- Cvelbar, U.; Santhosh, N.M. (Invited) Plasma-Assisted Synthesis of Advanced Carbon Nanostructures for Batteries and Supercapacitors. ECS Meet. Abstr. 2022, MA2022-01, 621. [Google Scholar] [CrossRef]
- Nandihalli, N. Microwave-driven synthesis and modification of nanocarbons and hybrids in liquid and solid phases. J. Energy Storage 2025, 111, 115315. [Google Scholar] [CrossRef]
- Park, S.Y.; Thongsai, N.; Chae, A.; Jo, S.; Kang, E.B.; Paoprasert, P.; Park, S.Y.; In, I. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J. Ind. Eng. Chem. 2017, 47, 329–335. [Google Scholar] [CrossRef]
- Wang, C.; Li, D.; Lu, Z.S.; Song, M.; Xia, W. Synthesis of carbon nanoparticles in a non-thermal plasma process. Chem. Eng. Sci. 2020, 227, 115921. [Google Scholar] [CrossRef]
- Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Adsorption of heavy metal onto biomass-derived activated carbon: Review. RSC Adv. 2023, 13, 4275–4302. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A.T.; Nižetić, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Pham, V.V.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959. [Google Scholar] [CrossRef]
- Abiodun, O.A.O.; Oluwaseun, O.; Oladayo, O.K.; Abayomi, O.; George, A.A.; Opatola, E.; Orah, R.F.; Isukuru, E.J.; Ede, I.C.; Oluwayomi, O.T.; et al. Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models. Clean Technol. 2023, 5, 934–960. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M. Biomass-Based Adsorbents for Removal of Dyes from Wastewater: A Review. Front. Environ. Sci. 2021, 9, 764958. [Google Scholar] [CrossRef]
- Chávez-García, D.; Guzman, M.; Sanchez, V.; Cadena-Nava, R.D. Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue. Beilstein J. Nanotechnol. 2024, 15, 755–766. [Google Scholar] [CrossRef]
- Williams, N.E.; Oba, O.A.; Aydinlik, N.P. Modification, Production, and Methods of KOH-Activated Carbon. ChemBioEng Rev. 2022, 9, 164–189. [Google Scholar] [CrossRef]
- Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef]
- Fernandes, B.C.C.; Mendes, K.F.; Júnior, A.F.D.; Caldeira, V.P.S.; Teófilo, T.M.S.; Silva, T.S.; Mendonça, V.; de Freitas Souza, M.; Silva, D.V. Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials 2020, 13, 5841. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Z.; Nafsun, A.I.; Feng, W. Preparation of Nitrogen-Doped Biochar and Its Adsorption Performance for Cr6+ and Pb2+ in Aqueous Systems. Toxics 2025, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Chen, X.; Sun, D.; Sun, Y.; Liu, L.; Li, J.; Li, S. Preparation of Biomass Activated Carbon and Its Adsorption Performance for Anionic/Cationic Dyes (10 mg/L): A Case Study of Coffee Grounds, Hemp Stalks and Macadamia Nut Shells. Next Mater. 2025, 9, 101258. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, C.; Lao, D.; Nguyen, X.C.; Paramasivan, B.; Qian, X.; Inyinbor, A.A.; Hu, X.; You, Y.; Li, F. Unveiling the Drives behind Tetracycline Adsorption Capacity with Biochar through Machine Learning. Sci. Rep. 2023, 13, 11512. [Google Scholar] [CrossRef]
- Dong, M.; He, L.; Jiang, M.; Zhu, Y.; Wang, J.; Gustave, W.; Wang, S.; Deng, Y.; Zhang, X.; Wang, Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. Int. J. Environ. Res. Public Health 2023, 20, 1679. [Google Scholar] [CrossRef]
- Wystalska, K.; Kwarciak-Kozłowska, A.; Włodarczyk, R. Influence of Technical Parameters of the Pyrolysis Process on the Surface Area, Porosity, and Hydrophobicity of Biochar from Sunflower Husk Pellet. Sustainability 2023, 15, 394. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, Y.; Xie, H.; Zhang, Y.; Fu, Y.; Ye, C.; Du, Y.; Zhu, M. Green and Controllable Synthesis of Kelp-Like Carbon Nitride Nanosheets via an Ultrasound-Mediated Self-Assembly Strategy. J. Colloid Interface Sci. 2022, 628, 397–408. [Google Scholar] [CrossRef]
- Chopra, T.; Parkesh, R. Microwave-Assisted Synthesis of Functionalized Carbon Nanospheres Using Banana Peels: pH-Dependent Synthesis, Characterization, and Selective Sensing Applications. ACS Omega 2024, 9, 4555–4571. [Google Scholar] [CrossRef]
- Ji, C.; Han, Q.; Zhou, Y.; Wu, J.; Shi, W.; Gao, L.; Leblanc, R.M.; Peng, Z. Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon 2022, 192, 198–208. [Google Scholar] [CrossRef]
- Gallego-Ramírez, C.; Chica, E.; Rubio-Clemente, A. Combination of Biochar and Advanced Oxidation Processes for the Sustainable Elimination of Pharmaceuticals in Water. Sustainability 2024, 16, 10761. [Google Scholar] [CrossRef]
- Jiang, J.J.; Ma, X.J.; Zhou, J.; Batol, A.; Gou, H.; Zhang, W.B. Biomass-derived carbons and their modification techniques in electrochemical capacitive deionization desalination. RSC Sustain. 2025, 3, 4364–4409. [Google Scholar] [CrossRef]
- Wen, L.; An, Y.; Lei, Y. Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater. Catalysts 2025, 15, 818. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Huang, S.; Lan, J.; Li, H.; Yue, H. Biomass-Derived Carbon Materials for Electrochemical Sensing: Recent Advances and Future Perspectives. Crit. Rev. Anal. Chem. 2024, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Zhou, T.; Zhang, J.; Zhang, Y.; Wu, Y.; Wang, Y.; Luo, W. Competing CO and HCOOH Pathways in CO2 Electroreduction. ChemCatChem 2024, 16, e202400504. [Google Scholar] [CrossRef]
- Gong, C.; Peng, Y.; Xu, M.; Wei, X.; Sheng, G.; Liu, J.; Wu, X.; Han, X.; Dai, F.; Dong, J.; et al. Selective Electrocatalytic Synthesis of Urea Using Entangled Iron Porphyrins in Covalent Organic Frameworks. Nat. Synth. 2025, 4, 720–729. [Google Scholar] [CrossRef]
- Thanjavur, N.; Kim, Y.J. Illuminating Pollutants: The Role of Carbon Dots in Environmental Sensing. Chemosensors 2025, 13, 241. [Google Scholar] [CrossRef]
- Dong, M.; Jiang, M.; He, L.; Zhang, Z.; Gustave, W.; Vithanage, M.; Niazi, N.K.; Chen, B.; Zhang, X.; Wang, H.; et al. Challenges in safe environmental applications of biochar: Identifying risks and unintended consequence. Biochar 2025, 7, 12. [Google Scholar] [CrossRef]
- Odinga, E.S.; Waigi, M.G.; Gudda, F.O.; Wang, J.; Yang, B.; Hu, X.; Li, S.; Gao, Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environ. Int. 2020, 134, 105172. [Google Scholar] [CrossRef]
- Janus, Ł.; Piatkowski, M.; Radwan-Pragłowska, J.; Bogdał, D.; Matysek, D. Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization. Nanomaterials 2019, 9, 274. [Google Scholar] [CrossRef]
- Islam, N.; Dihingia, A.; Manna, P.; Das, T.; Kalita, J.; Dekaboruah, H.P.; Saikia, B.K. Environmental and toxicological assessment of nanodiamond-like materials derived from carbonaceous aerosols. Sci. Total Environ. 2019, 679, 209–220. [Google Scholar] [CrossRef]
- Mishra, V.; Patil, A.; Thakur, S.; Kesharwani, P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov. Today 2018, 23, 1219–1232. [Google Scholar] [CrossRef]
- Sanchís, J.; Olmos, M.; Vincent, P.; Farré, M.; Barceló, D. New Insights on the Influence of Organic Co-Contaminants on the Aquatic Toxicology of Carbon Nanomaterials. Environ. Sci. Technol. 2015, 50, 961–969. [Google Scholar] [CrossRef]
- Stanley, J.K.; Laird, J.G.; Kennedy, A.J.; Steevens, J.A. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna. Environ. Toxicol. Chem. 2016, 35, 200–204. [Google Scholar] [CrossRef]
- Arabzadeh Nosratabad, N.; Yan, Q.; Cai, Z.; Wan, C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024, 10, e37123. [Google Scholar] [CrossRef]
- Ai, Z.; Luo, S.; Xu, Z.; Cao, J.; Leng, L.; Li, H. Prediction and Optimization Design of Porous Structure Properties of Biomass-Derived Biochar Using Machine Learning Methods. Energy 2024, 313, 133707. [Google Scholar] [CrossRef]
- Arfasa, G.F.; Tilahun, Z.A. Life-Cycle Impacts of Biochar, MOFs, and Biomass Adsorbents: A Meta-Analysis for Wastewater and Carbon Management. Environ. Challenges 2025, 21, 101331. [Google Scholar] [CrossRef]








| S.N | Sources of Biomass | Conversion Method | Type of Nanostructure | Application and Year | Ref. |
|---|---|---|---|---|---|
| 1 | Bacterial cellulose | Pyrolysis/Carbonization | 3D carbon nanofiber aerogels | Supercapacitors, batteries (2016) | [55] |
| 2 | Agricultural residues (rice straw) | Hydrothermal carbonization + CVD | Carbon nanotubes | Electrodes, catalysis (2017) | [56] |
| 3 | Natural alginate (algae) | Pyrolysis with Co/N doping | N-doped mesoporous carbon nanofibers | Li-ion batteries, ORR (2015) | [57] |
| 4 | Mushroom (enoki) | High-temperature pyrolysis | N-doped carbon | Oxygen reduction catalysis (2015) | [58] |
| 5 | Hemp stalk | Chemical activation + hydrothermal treatment | 3D activated carbon + MnO2 nanowires | Supercapacitors (2017) | [59] |
| 6 | Cellulose/lignin | Direct carbonization | Carbon fibers and nanofibers | Purification, storage (2016) | [60] |
| 7 | Plant stems and leaves | Direct pyrolysis | Porous carbon | Supercapacitors (2016) | [61] |
| 8 | Various biomass | Pyrolysis, hydrothermal carbonization | Nanostructured porous carbons | Li–S batteries (2016) | [62] |
| 9 | Diverse biomass | Green synthesis, carbonization | Various carbon nanomaterials | Energy and environmental remediation (2016) | [63] |
| 10 | Various biomass | Pyrolysis, hydrothermal carbonization | Porous carbons | Batteries, supercapacitors (2016) | [64] |
| 11 | Biomolecules | Hydrothermal carbonization | Carbon nanospheres | Catalysis, encapsulation (2015) | [65] |
| 12 | Vegetable oils, plant residues | Pyrolysis, CVD | Carbon nanotubes | Electronics, sensors (2017) | [66] |
| 13 | Soy residues | Easy carbonization and activation | Nitrogen–oxygen co-doped porous carbon with honeycomb structure | Lithium–sulfur batteries (2016) | [67] |
| 14 | Rice husk | Direct synthesis | Silica-supported carbon quantum dots | Bioimaging, sensors (2017) | [68] |
| 15 | Various biomass | Pyrolysis, CVD, activation | Nanotubes, graphene, fibers | Agriculture, environment (2016) | [69] |
| 16 | Various biomass | Chemical activation | Nanoporous carbons | Batteries, supercapacitors (2012) | [70] |
| 17 | Corn cobs | NH3 activation | N-doped microporous monoliths | Selective CO2 capture (2016) | [71] |
| 18 | Various biomass | Carbonization, composites | Carbons and composites | Li-ion battery anodes (2017) | [72] |
| 19 | Auricularia (mushroom) | Balanced meso/micropore synthesis | Hierarchical graphene–carbon hybrids | Flexible supercapacitors (2015) | [73] |
| 20 | Lignocellulosic biomass | Fe-catalyzed graphitization | Nanostructured graphitic carbon | Electrodes, filtration (2014) | [74] |
| 21 | Sugarcane bagasse, corn residues, tire chips, post-consumer PP/PET | Pyrolysis and partial oxidation | Carbon nanomaterials | Bulk production (2012) | [75] |
| 22 | Food waste | Carbonization, activation | Porous carbons, carbon dots | Environmental remediation, sensors (2024) | [28] |
| 23 | Lignocellulose (cellulose, lignin) | Carbonization, activation | Carbon dots, nanofibers | Bioimaging, sensors, LEDs (2023) | [76] |
| 24 | Lignocellulosic biomass | Green synthesis, carbonization | Carbon dots, nanofibers | Water treatment, biomedical diagnostics (2022) | [77] |
| Reaction Time | Type | CNM Characteristics | Treatments Additional | Scale-Up | References | ||
|---|---|---|---|---|---|---|---|
| Pyrolysis | Hours | CDs Graphene-based materials | High purity and adjustable porosity. | - | Requires high temperature. | [140] | |
| Hydrothermal/solvothermal | Hours | CDs, GDs, Nanospheres, Porous carbons | Precursor-dependent. | Purification processes | Depends on carbon sources and solvent concentrations. Requires large amounts of solvent. | [140] | |
| CDs Doped-Materials with N, S and/or B | Uniform size. Flexible control over reduction degree. Heteroatom doping. | Filtration and drying | Scalable. High yield. | [135] | |||
| Hydrothermal carbonization | 24 h to 180 °C | Doped-CD with N | One-step conversion of biomass to carbon-rich materials. Adjustable morphology. | Purification processes | Allows industrial waste processing. | [140] | |
| Ultrasonication | Minutes–hours | CDs Graphene CNTs Nanodiamonds | High quality. Adjustable size and morphology. High photostability. Heteroatom doping. | Calcination or filtration | Limited scalability depending on precursor. | [142,156] | |
| Microwave | ≥30 min | CD | Uniform size. | Purified trough centrifugation, filtration and drying | Scalable. High yield. | [135,140] | |
| Seconds | CNTs Palladium-graphene Oxide-based CNTs | Flexible control over reduction degree. Heteroatom doping. | - | Flexible control over reduction degree. | [157] | ||
| Plasma-assisted Synthesis | Minutes | GQD Doped–CQD with N. CNTs | High purity. | Simple purification processes | With scalability potential. | [135] | |
| 15 min | Nanospheres | Small size (less than 50 nm). Flexible control over reduction degree. Doping regulation. | Simple purification processes | High conversion efficiency. | [158] | ||
| Hybrid/combined methods | Microwave- assisted Pyrolysis | ≥11 min | Water-soluble CQD | High photoluminescence quantum yield. Reduced size. | - | Scalable. Feasible for mass production. | [154] |
| Microwave- assisted hydrothermal. | 12 h | NIR–CD with o-PDA | Fluorescence emission tuning. | Filtration | Scalable kilogram-scale synthesis with extremely low cost (0.1 dollar/g). | [159] | |
| Minutes | CDs | Accurate control over size, morphology and surface properties. High photoluminescence. Doping with S and N. Ultraviolet-absorption properties. | - | Reduced production time and more uniform products. | [142] | ||
| CDs | Particle size depends on biomass source and process temperature. | Freeze-drying | Biomass source dependent. | [145] | |||
| Solvothermal ultrasound-assisted | - | Sulfur-doped rose-like carbon nitride (RCN) | Adjustable morphology and doping with sulfur. | Calcination | Scalable. | [160] | |
| Ultrasound-assisted hydrothermal. | CDs | High quality. Control over size and morphology. Enhanced optical properties. | - | Efficient and rapid with scalability potential. | [142] | ||
| Synthesis Method | Typical Temperature Range | Dominant Pore Type/Morphology | Surface Functional Groups (General Trend) | Main Advantages | Main Limitations | References |
|---|---|---|---|---|---|---|
| Pyrolysis (O2-free) | ≈300–800 °C | Hard, amorphous to graphitic carbons, micro/mesoporosity, CNTs/nanofibers at high T with catalysts. | Low T: O-rich surfaces. high T: oxygen loss and graphitic ordering. | Scalable and versatile, wide range of carbon nanostructures. | High energy demand, limited porosity control without activation, loss of surface polarity at high T | [128,129,130,131] |
| Carbonization (biomass/MOFs) | ≈500–900 °C (biomass); up to ~1400 °C (highly graphitized/MOF-derived) | Tunable micro-/mesoporosity, possible closed pores. | Decreasing O content, heteroatom or metal doping from precursors. | Good control of texture, suitable for doped and MOF-derived carbons. | Often requires activation, energy intensive. | [27,128,129,130,132,133,134] |
| Hydrothermal and solvothermal | 120–250 °C; up to ~350 °C | Spheres, dots, sheets, moderate porosity, mostly amorphous. | Abundant O/N functional groups. | Low-temperature, green processes, good morphology control. | Low surface area and conductivity without post-treatment. | [135,136,137,138] |
| Microwave-assisted synthesis | Typically 120–300 °C | Carbon dots, nanoparticles, porous carbons with uniform size. | Highly functionalized (N, O, S), tunable surface chemistry. | Fast, homogeneous heating, high yields, short processing times. | Limited industrial scale: MW field control required | [135,139,140,141] |
| Ultrasonication | Ambient to mildly elevated | Exfoliation and fragmentation of existing carbons, defect generation. | Mild oxygen functionalization, improved wettability. | Enhanced dispersion, effective post-treatment. | No intrinsic carbon synthesis, risk of structural damage. | [120,135,140,142,144,145,147] |
| Plasma-assisted synthesis/functionalization | Near ambient to <500 °C (macroscopic) | Surface activation, nanoparticle redistribution, ultrathin doped carbon shells. | High density of reactive sites, efficient heteroatom doping. | Fast, dry, single-step, precise NP control, avoids harsh chemicals. | Limited penetration depth, scale-up challenges, specialized equipment. | [149,150,151,152,153] |
| Class of Pollutant | Dominant Material Property | Primary Removal Mechanism | Typical Synthesis/Activation Route |
|---|---|---|---|
| Heavy metals (Pb2+, Cr6+, Cd2+) | Abundant surface –COOH/–OH groups and N-dopants | Chelation/complexation and ion exchange (surface complexation, redox for Cr6+) | Biochar pyrolysis followed by chemical activation (e.g., KOH/steam); heteroatom doping (NH3, urea) |
| Dyes (cationic/anionic) | Charged surface functional groups; aromatic π-surface | Electrostatic attraction (to opposite charges), π–π stacking, H-bonding, pore filling | Acid or alkali activation (H3PO4, KOH) to create micro/mesopores; tuning pH |
| Antibiotics (e.g., tetracycline) | High surface area, π-conjugated domains, polar moieties | π–π interactions, hydrogen bonding, electrostatic interactions (pH-dependent) | Pyrolysis-derived biochar, often with N-doping or alkaline modification |
| Aromatic organics (phenols, EDCs) | High aromaticity (graphitic domains) and hydrophobic microporosity | π–π donor–acceptor interactions, hydrophobic partitioning | High-T pyrolysis (to maximize graphitization) and activation (CO2, KOH) for microporosity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Almaraz-Vega, E.; Morales-Vargas, A.I.; Gómez Delgado, G.; Castellanos-Arteaga, L.; Iñiguez Gómez, O.; Flores Salcedo, C.C. Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications. Nanomaterials 2026, 16, 75. https://doi.org/10.3390/nano16010075
Almaraz-Vega E, Morales-Vargas AI, Gómez Delgado G, Castellanos-Arteaga L, Iñiguez Gómez O, Flores Salcedo CC. Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications. Nanomaterials. 2026; 16(1):75. https://doi.org/10.3390/nano16010075
Chicago/Turabian StyleAlmaraz-Vega, Ernesto, Aislinn Itzel Morales-Vargas, Guillermo Gómez Delgado, Laura Castellanos-Arteaga, Ofelia Iñiguez Gómez, and Claudia Cecilia Flores Salcedo. 2026. "Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications" Nanomaterials 16, no. 1: 75. https://doi.org/10.3390/nano16010075
APA StyleAlmaraz-Vega, E., Morales-Vargas, A. I., Gómez Delgado, G., Castellanos-Arteaga, L., Iñiguez Gómez, O., & Flores Salcedo, C. C. (2026). Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications. Nanomaterials, 16(1), 75. https://doi.org/10.3390/nano16010075

