SnO2 Nanoparticles for Sensing and Bone Regeneration Application: Wet-Chemical and Plant-Based Green Synthesis, Spectroscopic Characterization, Photocatalytic, and SERS Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis SnO2 Nanoparticles
- Wet chemical synthesis
- Green synthesis
2.3. Spectroscopic Characterization of SnO2 Nanoparticles
- Thermogravimetric analysis (TGA)
- Calcination
- Transmission electron microscopy (TEM) and EDS
- Dynamic light scattering (DLS)
- UV–Vis spectroscopy
- X-ray diffraction (XRD)
- Raman spectroscopy
- ATR-FTIR spectroscopy
2.4. Photocatalytic Activity of SnO2 Nanoparticles
2.5. Surface-Enhanced Raman Scattering (SERS) Measurements
2.6. Spectral Analysis
3. Results and Discussion
3.1. Spectroscopic Characterization
3.2. Photocatalytic Activity
3.3. Adsorption Monitored by SERS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karmaoui, M.; Jorge, A.B.; McMillan, P.F.; Aliev, A.E.; Pullar, R.C.; Labrincha, J.A.; Tobaldi, D.M. One-Step Synthesis, Structure, and Band Gap Properties of SnO2 Nanoparticles Made by a Low Temperature Nonaqueous Sol–Gel Technique. ACS Omega 2018, 3, 13227–13238. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Wang, S.F.; Lu, M.K.; Zhou, G.J.; Xu, D.; Yuan, D.R. Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method. J. Phys. Chem. B 2004, 108, 8119–8123. [Google Scholar] [CrossRef]
- Kharbanda, J.; Priya, R. Synthesis and Applications of Tin Oxide Nanoparticles: An Overview. Mater. Today Proc. 2022, 68, 916–921. [Google Scholar] [CrossRef]
- Sharma, V. Optical Properties of Tin Oxide Nanomaterials. In Tin Oxide Materials: Synthesis, Properties, and Applications; Orlandi, M.O., Ed.; Academic Press: London, UK, 2020; Chapter 4; pp. 61–99. [Google Scholar] [CrossRef]
- Zhang, J.; Su, P.; Chen, H.; Qiao, M.; Yang, B.; Zhao, X. Impact of Reactive Oxygen Species on Cell Activity and Structural Integrity of Gram-Positive and Gram-Negative Bacteria in Electrochemical Disinfection System. Chem. Eng. 2023, 452, 138879. [Google Scholar] [CrossRef]
- Giridasappa, A.; Shareef, M.I.; Gopinath, S.M.; Rangappa, D.; Shivaramu, P.; Sabbanahalli, C. Synthesis, Antioxidant, Bactericidal and Antihemolytic Activity of Al2O3 and SnO2 Nanoparticles. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2023, 93, 871–882. [Google Scholar] [CrossRef]
- Michalec, K.; Mozgawa, B.; Kusior, A.; Pietrzyk, P.; Sojka, Z.; Radecka, M. Tunable Generation of Reactive Oxygen Species in SnO2/SnS2 Nanostructures: Mechanistic Insights into Indigo Carmine Photodegradation. Phys. Chem. Chem. Phys. 2024, 128, 5011–5029. [Google Scholar] [CrossRef]
- Masuda, Y. Recent Advances in SnO2 Nanostructure Based Gas Sensors. Sens. Actuators B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Dar, M.A.; Neelamegan, H.; Priyadharshini, V.J.; Ahamed, S.R.; Arularasan, P.; Mishra, M.; Rather, A.A. Enhancing Superca-pacitor, Photovoltaic and Magnetic Properties of SnO2 Nanoparticles Doped with Cu and Zn Ions. Bull. Mater. Sci. 2024, 47, 219. [Google Scholar] [CrossRef]
- Romero, D.G.; Di Mario, L.; Yan, F.; Ibarra-Barreno, C.M.; Mutalik, S.; Protesescu, L.; Rudolf, P.; Loi, M.A. Understanding the Surface Chemistry of SnO2 Nanoparticles for High Performance and Stable Organic Solar Cells. Adv. Funct. Mater. 2023, 34, 2307958. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Zhou, L.; Yang, Q. Preparation and Performance of SnO2 Nanoparticles Encapsulated in Carbon Nanofibers as Anodes for Lithium-Ion Battery. Mater. Lett. 2023, 352, 135076. [Google Scholar] [CrossRef]
- Din, S.U.; Kiani, S.H.; Haq, S.; Ahmad, P.; Khandaker, M.U.; Faruque, M.R.I.; Idris, A.M.; Sayyed, M.I. Bio-Synthesized Tin Oxide Nanoparticles: Structural, Optical, and Biological Studies. Crystals 2022, 12, 614. [Google Scholar] [CrossRef]
- Rehman, S.; Asiri, S.M.; Khan, F.A.; Jermy, B.R.; Khan, H.; Akhtar, S.; Jindan, R.A.; Khan, K.M.; Qurashi, A. Biocompatible Tin Oxide Nanoparticles: Synthesis, Antibacterial, Anticandidal and Cytotoxic Activities. Chem. Select 2019, 4, 44013–44017. [Google Scholar] [CrossRef]
- Prasad, R.G.S.V.; Phani, A.R.; Rao, K.N.; Kumar, R.R.; Prasad, S.; Prabhakara, G.; Sheeja, M.S.; Salins, C.P.; Endrino, J.L.; Raju, D.B. Biocompatible and Antibacterial SnO2 Nanowire Films Synthesized by E-Beam Evaporation Method. J. Biomed. Nanotechnol. 2015, 11, 942–950. [Google Scholar] [CrossRef]
- Schwartz, V.B.; Thetiot, F.; Ritz, S.; Putz, S.; Choritz, L.; Lappas, A.; Forch, R.; Landfester, K.; Jonas, U. Antibacterial Surface Coatings from Zinc Oxide Nanoparticles Embedded in Poly(N-Isopropylacrylamide) Hydrogel Surface Layers. Adv. Funct. Mater. 2012, 22, 2376–2386. [Google Scholar] [CrossRef]
- Sagadevan, S.; Lett, J.A.; Fatimah, I.; Lokanathan, Y.; Léonard, E.; Oh, W.C.; Hossain, M.A.M.; Johan, M.R. Current Trends in the Green Syntheses of Tin Oxide Nanoparticles and Their Biomedical Applications. Mater. Res. Express 2021, 8, 082001. [Google Scholar] [CrossRef]
- Zhou, R.; Li, Y.L.; Li, M.; Cao, J.; Cheng, J.; Wei, D.; Li, B.; Wang, Y.; Jia, D.; Jiang, B.; et al. Electrical Responsive Coating with a Multilayered TiO2–SnO2–RuO2 Heterostructure on Ti for Controlling Antibacterial Ability and Improving Osseointegration. ACS Appl. Mater. Interfaces 2024, 16, 39064–39078. [Google Scholar] [CrossRef]
- Hsu, S.-H.; Liao, H.-T.; Chen, R.-S.; Chiu, S.-C.; Tsai, F.-Y.; Lee, M.S.; Hu, C.-Y.; Tseng, W.-Y. The Influence on Surface Characteristic and Biocompatibility of Nano-SnO2–Modified Titanium Implant Material Using Atomic Layer Deposition Technique. J. Formos. Med. Assoc. 2023, 122, 230–238. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A. Antibacterial SnO2 Nanorods as Efficient Fillers of Poly(Propylene Fumarate-Co-Ethylene Glycol) Biomaterials. Mater. Sci. Eng. C 2017, 1, 806–816. [Google Scholar] [CrossRef]
- Fakhria, A.; Behrouzb, S. Synthesis, Photocatalytic and Antimicrobial Properties of SnO2, SnS2 and SnO2/SnS2 Nanostructure. J. Photochem. Photobiol. B 2015, 149, 45–50. [Google Scholar] [CrossRef]
- Liang, X.; Dai, R.; Wang, Q.; Zhang, B. Antibacterial Activity of SnO2 in Visible Light Enhanced by Erbium–Cobalt Co-Doping. Colloids Surf. A 2023, 676, 132257. [Google Scholar] [CrossRef]
- Bamagous, G.A.; Ibrahim, I.A.A.; Alzahrani, A.R.; Shahid, I.; Shahzad, N.; Falemban, A.H.; Alanazi, I.M.M.; Hussein-Al-Ali, S.H.; Arulselvan, P.; Thangavelu, I. Multifunctional SnO2–Chitosan–D-Carvone Nanocomposite: A Promising Antimicrobial, Anticancer, and Antioxidant Agent for Biomedical Applications. J. Inorg. Organomet. Polym. Mater. 2025, 35, 3111–3127. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Y.; Zhao, X.; Song, S.; Qian, B. Exploring the Anticancer Effects of Tin Oxide Nanoparticles Synthesized by Pulsed Laser Ablation Technique against Breast Cancer Cell Line Through Downregulation of PI3K/AKT/mTOR Signaling Pathway. Arab. J. Chem. 2021, 14, 103212. [Google Scholar] [CrossRef]
- Ruan, R.; Chen, R.; Yu, H. Synthesized Tin Oxide Nanoparticles Promote Apoptosis in Human Osteosarcoma Cells. Arab. J. Chem. 2024, 17, 105694. [Google Scholar] [CrossRef]
- Hanna, D.H.; Saad, G. Induction of Mitochondria Mediated Apoptosis in Human Ovarian Cancer Cells by Folic Acid Coated Tin Oxide Nanoparticles. PLoS ONE 2021, 16, e0258115. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; Akhtar, M.J.; Majeed Khan, M.A.; Alhadlaq, H.A. Oxidative Stress Mediated Cytotoxicity of Tin (IV) Oxide (SnO2) Nanoparticles in Human Breast Cancer (MCF-7) Cells. Colloids Surf. B 2018, 172, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Ahmadabada, L.E.; Kalantaria, F.S.; Liu, H.; Hasan, A.; Gamasaee, N.A.; Edis, Z.; Attar, F.; Ale-Ebrahim, M.; Rouholla, F.; Babadaei, M.M.N.; et al. Hydrothermal Method-Based Synthesized Tin Oxide Nanoparticles: Albumin Binding and Antiproliferative Activity Against K562 Cells. Mater. Sci. Eng. C 2021, 119, 111649. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, M.; Zhang, C.; Wu, X.; Yang, G. Synthesis of L. Acidissima Mediated Tin Oxide Nanoparticles for Cervical Car-cinoma Treatment in Nursing Care. J. Drug Deliv. Sci. Technol. 2020, 57, 101745. [Google Scholar] [CrossRef]
- Wan, W.; Li, Y.; Ren, X.; Zhao, Y.; Gao, F.; Zhao, H. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol. Nanomaterials 2018, 8, 112. [Google Scholar] [CrossRef]
- Amalric-Popescu, D.; Bozon-Verduraz, F. Infrared Studies on SnO2 and Pd/SnO. Catal. Today 2001, 70, 139–154. [Google Scholar] [CrossRef]
- Ghiotti, G.; Chiorino, A.; Boccuzzi, F. Infrared study of surface chemistry and electronic effects of different atmospheres on SnO2. Sens. Actuators B 1989, 19, 151–157. [Google Scholar] [CrossRef]
- Ma, X.L.; Li, Y.; Zhu, Y.L. Growth mode of the SnO2 nanobelts synthesized by rapid oxidation. Chem. Phys. Lett. 2003, 376, 794–798. [Google Scholar] [CrossRef]
- Gao, C.; Yuan, S.; Cao, B.; Yu, J. SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells. Chem. Eng. J. 2017, 325, 378–385. [Google Scholar] [CrossRef]
- Li, Y.; Peng, R.; Xiu, X.; Zheng, X.; Zhang, X.; Zha, G. Growth of SnO2 nanoparticles via thermal evaporation method. Superlattices Microstruct. 2011, 50, 511–516. [Google Scholar] [CrossRef]
- Li, X.-B.; Wang, X.-W.; Shen, Q.; Zheng, J.; Liu, W.-H.; Zhao, H.; Yang, F.; Yang, H.-Q. Controllable Low-Temperature Chemical Vapor Deposition Growth and Morphology Dependent Field Emission Property of SnO2 Nanocone Arrays with Different Mor-phologies. ACS Appl. Mater. Interfaces 2013, 5, 3033–3041. [Google Scholar] [CrossRef]
- Patel, G.H.; Chakia, S.H.; Kannaujiya, R.M.; Parekh, Z.R.; Hirpara, A.B.; Khimani, A.J.; Deshpande, M.P. Sol–gel synthesis and thermal characterization of SnO2 nanoparticles. Phys. B 2021, 613, 412987. [Google Scholar] [CrossRef]
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu/eli/dir/1999/31/oj?utm_source=chatgpt.com (accessed on 14 November 2025).
- Waste Framework Directive legislation. Available online: https://echa.europa.eu/pl/wfd-legislation?utm_source=chatgpt.com (accessed on 14 November 2025).
- Marakatti, V.S.; Shanbhag, G.V.; Halgeri, A.B. Condensation reactions assisted by acidic hydrogen bonded hydroxyl groups in solid tin(II) hydroxychloride. RSC Adv. 2013, 3, 10795–10800. [Google Scholar] [CrossRef]
- Ocafia, M.; Serna, C.J.; Matijevic, E. Formation of “monodispersed” SnO2 powders of various morphologies. Colloid. Polym. Sci. 1995, 273, 681–686. [Google Scholar] [CrossRef]
- Séby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. A critical review of thermodynamic data for inorganic tin species. Geochim. Cosmochim. Acta 2001, 65, 3041–3053. [Google Scholar] [CrossRef]
- Patil, G.E.; Kajale, D.D.; Gaikwad, V.B.; Jain, G.H. Preparation and characterization of SnO2 nanoparticles by hydrothermal route. Int. Nano Lett. 2012, 2, 17. [Google Scholar] [CrossRef]
- Khanam, J.; Hasan, R.; Biswas, B.; Ahmed, F.; Mostofa, S.; Akhtar, U.S.; Hossain, K.; Quddus, S.; Ahmed, S.; Sharmin, N.; et al. Effect of low temperature calcination on microstructure of hematite nanoparticles synthesized from waste iron source. Heliyon 2024, 10, e411030. [Google Scholar] [CrossRef]
- Baalousha, M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, 2093–2101. [Google Scholar] [CrossRef]
- Behrens, M.A.; Franzén, A.; Carlert, S.; Skantze, U.; Lindfors, L.; Olsson, U. On the Ostwald ripening of crystalline and amorphous nanoparticles. Soft Matter 2025, 21, 2349. [Google Scholar] [CrossRef]
- Doubi, Y.; Hartiti, B.; Batan, A.; Siadat, M.; Labrim, H.; Tahiri, M.; Kotbi, A.; Thevenin, P.; Jouiad, M. Controlled SnO2 nanostructures for enhanced sensing of hydrogen sulfide and nitrogen dioxide. Sens. Actuators B 2025, 440, 137878. [Google Scholar] [CrossRef]
- Hettler, S.; Dries, M.; Hermann, P.; Obermair, M.; Gerthsen, D.; Malac, M. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications. Micron 2017, 96, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, W.; Izydorczyk, J. Structure, Surface Morphology, Chemical Composition, and Sensing Properties of SnO2 Thin Films in an Oxidizing Atmosphere. Sensors 2021, 21, 5741. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Optimization of Deposition Parameters of SnO2 Particles on Tubular Alumina Substrate for H2 Gas Sensing. Appl. Sci. 2024, 14, 1567. [Google Scholar] [CrossRef]
- Rahman, M.d.T.; Ahmed, Z.; Islam, M.d.J.; Kamaruzzaman; Khatun, M.d.T.; Gafur, M.d.A.; Bashar, M.d.S.; Alam, M.d.M. Comparative Study of Structural, Optical and Electrical Properties of SnO2 Thin Film Growth via CBD, Drop-Cast and Dip-Coating Methods. Mater. Sci. Appl. 2021, 12, 578–594. [Google Scholar] [CrossRef]
- Manjula, N.; Selvan, G.; Perumalsamy, R.; Thirumamagal, R.; Ayeshamariam, A.; Jayachandran, M. Synthesis, Structural and Electrical Characterizations of SnO2 Nanoparticles. Int. J. Nanoelectron. Mater. 2016, 9, 143–156. [Google Scholar]
- Gebreslassie, Y.T.; Gebretnsae, H.G. Green and Cost-Effective Synthesis of Tin Oxide Nanoparticles: A Review on the Synthesis Methodologies, Mechanism of Formation, and Their Potential Applications. Nano Res. Lett. 2021, 16, 97. [Google Scholar] [CrossRef]
- Quintero González, E.; Lugo Medina, E.; Quevedo Robles, R.V.; Garrafa Gálvez, H.E.; Baez Lopez, Y.A.; Vargas Viveros, E.; Aguilera Molina, F.; Vilchis Nestor, A.R.; Luque Morales, P.A. A Study of the Optical and Structural Properties of SnO2 Nanoparticles Synthesized with Tilia cordata Applied in Methylene Blue Degradation. Symmetry 2022, 14, 2231. [Google Scholar] [CrossRef]
- Tasisa, Y.E.; Sarma, T.K.; Sahu, T.K.; Sahu, T.K.; Krishnaraj, R. Phytosynthesis and characterization of tin-oxide nanoparticles (SnO2-NPs) from Croton macrostachyus leaf extract and its application under visible light photocatalytic activities. Sci. Rep. 2024, 14, 10780. [Google Scholar] [CrossRef]
- Chang, S.-S.; Yoon, S.O.; Park, H.J. Characteristics of SnO2 Annealed in Reducing Atmosphere. Ceram. Internat. 2005, 31, 405–410. [Google Scholar] [CrossRef]
- Liaqat, F.; Vosqa, U.t.; Khan, F.; Haleem, A.; Shaik, M.R.; Siddiqui, M.R.H.; Khan, M. Light-Driven Catalytic Activity of Green-Synthesized SnO2/WO3−x Hetero-Nanostructures. ACS Omega 2023, 8, 20042–20055. [Google Scholar] [CrossRef] [PubMed]
- Osuntokun, J.; Onwudiwe, D.C.; Ebenso, E.E. Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower. J. Clust. Sci. 2017, 28, 1883–1896. [Google Scholar] [CrossRef]
- Alagdal, I.A.; West, A.R. Oxygen Non-Stoichiometry, Conductivity and Gas Sensor Response of SnO2 Pellets. J. Mater. Chem. A 2015, 3, 18119–18127. [Google Scholar] [CrossRef]
- Woo, S.W.; Seo, H.B.; Choi, J.; Bae, B.S.; Yun, E.-J. Effects of Process Parameters on the Properties of Sputter-Deposited Tin Oxide Thin Films. J. Nanosci. Nanotechnol. 2019, 19, 1301–1307. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Zheng, J.; Li, Q.; Zuo, Y.; Yang, E.; Li, G. Two-Step Grain-Growth Kinetics of Sub-7 nm SnO2 Nanocrystals under Hydrothermal Conditions. J. Phys. Chem. C 2015, 119, 19505–19512. [Google Scholar] [CrossRef]
- Haridas, D.; Chowdhuri, A.; Sreenivas, K.; Gupta, V. Effect of Thickness of Platinum Catalyst Clusters on Response of SnO2 Thin Film Sensor for LPG. Sens. Actuators B Chem. 2011, 153, 89–95. [Google Scholar] [CrossRef]
- Juliasih, N.; Buchari; Noviandri, I. Application of SnO2 Nanoparticle as Sulfide Gas Sensor Using UV/VIS/NIR Spectrophotometer. IOP Conf. Ser. Mater. Sci. Eng. 2017, 188, 012025. [Google Scholar] [CrossRef]
- Hollins, P. The Influence of Surface Defects on the Infrared Spectra of Adsorbed Species. Surf. Sci. Rep. 1992, 16, 51–94. [Google Scholar] [CrossRef]
- Genzel, L.; Martin, T.P. Infrared Absorption by Surface Phonons and Surface Plasmons in Small Crystals. Surf. Sci. 1973, 34, 33–49. [Google Scholar] [CrossRef]
- Xiong, C.; Xiong, Y.; Zhu, H.; Zhang, Y.; Liu, Y. Investigation of Raman Spectrum for Nano-SnO2. Sci. China A 1997, 40, 1222–1227. [Google Scholar] [CrossRef]
- Kumar, V.; Ayoub, I.; Sharma, V.; Swart, H.C. (Eds.) Optical Properties of Metal Oxide Nanostructures; Springer: Singapore, 2023; ISBN 9789819956425. [Google Scholar]
- Chu, D.; Mo, J.; Peng, Q.; Zhang, Y.; Wei, Y.; Zhuang, Z.; Li, Y. Enhanced Photocatalytic Properties of SnO2 Nanocrystals with Decreased Size for ppb-Level Acetaldehyde Decomposition. ChemCatChem 2011, 3, 371–377. [Google Scholar] [CrossRef]
- Sato, K.; Yokoyama, Y.; Valmalette, J.C.; Kuruma, K.; Abe, H.; Takarada, T. Hydrothermal Growth of Tailored SnO2 Nanocrystals. Cryst. Growth Des. 2013, 13, 1685–1693. [Google Scholar] [CrossRef]
- Sangeetha, P.; Sasirekha, V.; Ramakrishnan, V. Micro-Raman Investigation of Tin Dioxide Nanostructured Material Based on Annealing Effect. J. Raman Spectrosc. 2011, 42, 1634–1639. [Google Scholar] [CrossRef]
- Tameh, M.S.; Gladfelter, W.L.; Goodpaster, J.D. Unraveling Surface Chemistry of SnO2 Through Formation of Charged Oxygen Species and Oxygen Vacancies. Int. J. Quantum Chem. 2025, 125, e70017. [Google Scholar] [CrossRef]
- Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Anandan, K.; Rajendran, V. Size Controlled Synthesis of SnO2 Nanoparticles: Facile Solvothermal Process. J. Non-Oxide Glas. 2010, 2, 83–89. [Google Scholar]
- Mayandi, J.; Marikkannan, M.; Ragavendran, V.; Jayabal, P. Hydrothermally Synthesized Sb- and Zn-Doped SnO2 Nanoparticles. J. Nanosci. Nanotechnol. 2014, 2, 707–710. [Google Scholar]
- Godlaveeti, S.K.; Somala, A.R.; Sana, S.S.; Ouladsmane, M.; Ghfar, A.A.; Nagireddy, R. Evaluation of pH Effect of Tin Oxide (SnO2) Nanoparticles on Photocatalytic Degradation, Dielectric and Supercapacitor Applications. J. Clust. Sci. 2022, 33, 1635–1644. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Pei, J.; Yu, X.; Tian, Z.; Xu, H. Au–SnO2 Resonator for SERS Detection of Ciprofloxacin. Microchem. J. 2024, 203, 110830. [Google Scholar] [CrossRef]
- Fernández-Vidal, J.; Gómez-Marín, A.M.; Jones, L.A.H.; Yen, C.-H.; Veal, T.D.; Dhanak, V.R.; Hu, C.-C.; Hardwick, L.J. Long-Life and pH-Stable SnO2-Coated Au Nanoparticles for SHINERS. J. Phys. Chem. C 2022, 126, 12074–12112. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gu, Q.; Qiu, T.; He, X.; Chen, J.; Qi, R.; Huang, R.; Zheng, T.; Tian, Y. Ultrasensitive Sensing of Volatile Organic Compounds Using a Cu-Doped SnO2–NiO p–n Heterostructure That Shows Significant Raman Enhancement. Angew. Chem. Int. Ed. 2021, 60, 26260–26267. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Zhang, W.; Lv, H.M.; Zhang, D.; Gong, X. Novel Ag-Decorated Biomorphic SnO2 Inspired by Natural 3D Nanostructures as SERS Substrates. Mater. Lett. 2012, 74, 43–45. [Google Scholar] [CrossRef]
- Jiang, L.; Yin, P.; You, T.; Wang, H.; Lang, X.; Guo, L.; Yang, S. Highly Reproducible Surface-Enhanced Raman Spectra on Semiconductor SnO2 Octahedral Nanoparticles. ChemPhysChem 2012, 13, 3932–3936. [Google Scholar] [CrossRef]
- Hou, J.L.; Jia, F.X.; Xue, X.X.; Chen, L.; Song, W.; Xu, W.Q.; Zhao, B. Surface-Enhanced Raman Scattering of Molecules Adsorbed on SnO2 Nanoparticles. Chem. J. Chin. Univ. 2012, 33, 139. [Google Scholar] [CrossRef]
- Podstawka, E.; Kudelski, A.; Proniewicz, L.M. Adsorption Mechanism of Physiologically Active L-Phenylalanine Phosphonodipeptide Analogues: Comparison of Colloidal Silver and Macroscopic Silver Substrates. Surf. Sci. 2007, 601, 4971–4983. [Google Scholar] [CrossRef]
- Podstawka, E.; Ozaki, Y.; Proniewicz, L.M. Part I: Surface-Enhanced Raman Spectroscopy Investigation of Amino Acids and Their Homodipeptides Adsorbed on Colloidal Silver. Appl. Spectrosc. 2004, 58, 570–580. [Google Scholar] [CrossRef]
- Podstawka, E.; Borszowska, R.; Grabowska, M.; Drąg, M.; Kafarski, P.; Proniewicz, L.M. Investigation of Molecular Structure and Adsorption Mechanism of Phosphonodipeptides by Infrared, Raman, and Surface-Enhanced Raman Spectroscopy. Surf. Sci. 2005, 599, 207–220. [Google Scholar] [CrossRef]
- Proniewicz, E.; Tąta, A.; Starowicz, M.; Wójcik, A.; Pacek, J.; Molenda, M. Is the Electrochemical or the Green Chemistry Method the Optimal Method for the Synthesis of ZnO Nanoparticles for Applications to Biological Material? Characterization and SERS on ZnO. Colloids Surf. A 2021, 609, 125771. [Google Scholar] [CrossRef]
- Proniewicz, E.; Vijayan, A.M.; Surma, O.; Szkudlarek, A.; Molenda, M. Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties. Int. J. Mol. Sci. 2024, 25, 4242. [Google Scholar] [CrossRef]
- Proniewicz, E.; Tąta, A.; Szkudlarek, A.; Świder, J.; Molenda, M.; Starowicz, M.; Ozaki, Y. Electrochemically Synthesized γ-Fe2O3 Nanoparticles as Peptide Carriers and Sensitive and Reproducible SERS Biosensors: Comparison of Adsorption on γ-Fe2O3 versus Fe. Appl. Surf. Sci. 2019, 495, 143578. [Google Scholar] [CrossRef]
- Podstawka, E.; Ozaki, Y.; Proniewicz, L.M. Part III: Surface-Enhanced Raman Scattering of Amino Acids and Their Homodipeptide Monolayers Deposited onto Colloidal Gold Surface. Appl. Spectrosc. 2005, 59, 1516–1526. [Google Scholar] [CrossRef]
- Tąta, A.; Szkudlarek, A.; Pacek, J.; Molenda, M.; Proniewicz, E. Peptides of Human Body Fluids as Sensors of Corrosion of Titanium to Titanium Dioxide: SERS Application. Appl. Surf. Sci. 2019, 473, 107–120. [Google Scholar] [CrossRef]
- Tąta, A.; Szkudlarek, A.; Kim, Y.; Proniewicz, E. Interaction of bombesin and its fragments with gold nanoparticles analyzed using surface-enhanced Raman spectroscopy. Spectrochim. Acta A 2017, 173, 251–256. [Google Scholar] [CrossRef]













| SnO2NPs | XRD | DLS Average Particle Size in Suspension [nm] | EDS | UV-Vis | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Planes (hkl) | 2ϴ [°] | Crystallite Size [nm] | [keV] | Atomic Content [%] | λabs [nm] | Eg [eV] | Catalytic Efficiency [%] | |||
| SnO2NPs-A’ (wet chemistry, 400 °C) | 110 | 26.6274 | 42.78 | 1652 | 0.51 | O Kα | O: 48.22 | 291 | 4.26 | 33.4 |
| 101 | 33.9275 | 32.04 | 3.44 3.68 3.91 | Sn Lα Sn Lβ Sn Lβ | Sn: 30.46 | |||||
| SnO2NPs-A (wet chemistry, 600 °C) | 110 | 26.6371 | 42.91 | 1859 | 0.52 | O Kα | O: 42.99 | 301 | 4.12 | 60.5 |
| 101 | 33.9374 | 44.30 | 3.44 3.67 3.91 | Sn Lα Sn Lβ Sn Lβ | Sn: 36.84 | |||||
| SnO2NPs-B (rooibos, 700 °C) | 110 | 26.6368 | 76.35 | 383 | 0.51 | O Kα | O: 57.33 | 325 | 3.81 | 68.6 |
| 101 | 33.963 | 65.90 | 3.45 3.67 3.91 | Sn Lα Sn Lβ Sn Lβ | Sn: 22.52 | |||||
| SnO2NPs-C (pomegranate, 600 °C) | 110 | 26.6816 | 26.99 | 497 | 0.52 | O Kα | O: 54.75 | 283 | 4.38 | 63.5 |
| 101 | 34.0018 | 28.92 | 3.45 3.69 3.91 | Sn Lα Sn Lβ Sn Lβ | Sn: 28.01 | |||||
| SnO2NPs-D (kiwifruit, 500 °C) | 110 | 26.6515 | 17.13 | 263 | 0.51 | O Kα | O: 42.81 | 270 | 4.59 | 52.1 |
| 101 | 33.9552 | 19.30 | 3.44 3.68 3.90 | Sn Lα Sn Lβ Sn Lβ | Sn: 39.87 | |||||
| SnO2NPs-A’ (Wet Chemistry, 400 °C) | SnO2NPs-A (Wet Chemistry, 600 °C) | SnO2NPs-B (Rooibos, 700 °C) | SnO2NPs-C (Pomegranate, 600 °C) | SnO2NPs-D (Kiwifruit, 500 °C) | |||||
|---|---|---|---|---|---|---|---|---|---|
| R [pix] | d [Å] | R [pix] | d [Å] | R [pix] | d [Å] | R [pix] | d [Å] | R [pix] | d [Å] |
| 250 | 3.342 | 252 | 3.348 | 252 | 3.363 | 253 | 3.329 | 252 | 3.362 |
| 317 | 2.633 | 318 | 2.654 | 319 | 2.658 | 321 | 2.623 | 319 | 2.656 |
| 353 | 2.365 | 354 | 2.385 | 355 | 2.385 | 360 | 2.342 | 357 | 2.376 |
| 363 | 2.302 | 365 | 2.313 | 366 | 2.314 | 369 | 2.284 | 367 | 2.314 |
| 395 | 2.115 | 397 | 2.127 | 398 | 2.127 | 397 | 2.122 | 400 | 2.12 |
| 475 | 1.757 | 478 | 1.767 | 749 | 1.77 | 479 | 1.762 | 479 | 1.77 |
| 500 | 1.67 | 504 | 1.675 | 504 | 1.681 | 504 | 1.672 | 503 | 1.687 |
| 526 | 1.589 | 529 | 1.597 | 530 | 1.598 | 532 | 1.586 | 530 | 1.6 |
| 560 | 1.492 | 562 | 1.502 | 564 | 1.502 | 567 | 1.489 | 566 | 1.5 |
| 593 | 1.41 | 594 | 1.423 | 597 | 1.42 | 596 | 1.416 | 595 | 1.425 |
| 637 | 1.312 | 638 | 1.324 | 638 | 1.328 | 700 | 1.205 | 639 | 1.328 |
| 690 | 1.211 | 695 | 1.215 | 696 | 1.217 | 733 | 1.15 | 698 | 1.215 |
| 706 | 1.183 | 733 | 1.153 | 732 | 1.157 | 779 | 1.083 | 734 | 1.155 |
| 727 | 1.149 | 781 | 1.082 | 782 | 1.084 | 892 | 0.946 | 756 | 1.122 |
| 750 | 1.113 | 928 | 0.909 | 779 | 1.089 | ||||
| 775 | 1.078 | 818 | 1.037 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proniewicz, E.; Surma, O.; Gajewska, M.; Molenda, M. SnO2 Nanoparticles for Sensing and Bone Regeneration Application: Wet-Chemical and Plant-Based Green Synthesis, Spectroscopic Characterization, Photocatalytic, and SERS Activities. Nanomaterials 2025, 15, 1839. https://doi.org/10.3390/nano15241839
Proniewicz E, Surma O, Gajewska M, Molenda M. SnO2 Nanoparticles for Sensing and Bone Regeneration Application: Wet-Chemical and Plant-Based Green Synthesis, Spectroscopic Characterization, Photocatalytic, and SERS Activities. Nanomaterials. 2025; 15(24):1839. https://doi.org/10.3390/nano15241839
Chicago/Turabian StyleProniewicz, Edyta, Olga Surma, Marta Gajewska, and Marcin Molenda. 2025. "SnO2 Nanoparticles for Sensing and Bone Regeneration Application: Wet-Chemical and Plant-Based Green Synthesis, Spectroscopic Characterization, Photocatalytic, and SERS Activities" Nanomaterials 15, no. 24: 1839. https://doi.org/10.3390/nano15241839
APA StyleProniewicz, E., Surma, O., Gajewska, M., & Molenda, M. (2025). SnO2 Nanoparticles for Sensing and Bone Regeneration Application: Wet-Chemical and Plant-Based Green Synthesis, Spectroscopic Characterization, Photocatalytic, and SERS Activities. Nanomaterials, 15(24), 1839. https://doi.org/10.3390/nano15241839

