Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study
Abstract
1. Introduction
2. Computational Details
2.1. Ab Initio Calculations
2.2. Direct AIMD Calculations
3. Results
3.1. Structures at Stationary Points for the Hydrogen Abstraction Reaction
3.2. Energy Diagram for the Hydrogen Abstraction Reaction
3.3. Intrinsic Reaction Coordinate
3.4. Reaction Dynamics
3.5. Hydrogen Addition Reactions to GR Surface
3.6. Effects of DFT-Functional and Basis Sets on the Energetics
4. Discussion and Conclusions
4.1. Theoretical Design of H2 Storage/Release Device
4.2. Scope and Limitation of the Present Study
4.3. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Firlej, L.; Kuchta, B.; Walczak, K.; Journet, C. Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective. Nanomaterials 2021, 11, 2173. [Google Scholar] [CrossRef] [PubMed]
- Firlej, L.; Kuchta, B.; Wexler, C.; Pfeifer, P. Boron substituted graphene: Energy landscape for hydrogen adsorption. Adsorption 2009, 15, 312–317. [Google Scholar] [CrossRef]
- Altuntepe, A.; Çelik, S.; Zan, R. Optimizing Hydrogen Storage and Fuel Cell Performance Using Carbon-Based Materials: Insights into Pressure and Surface Area Effects. Hydrogen 2025, 6, 22. [Google Scholar] [CrossRef]
- Ioannatos, G.E.; Verykios, X.E. H2 Storage on Single- and Multi-Walled Carbon Nanotubes. Int. J. Hydrogen Energy 2010, 35, 622–628. [Google Scholar] [CrossRef]
- Namitha, R.; Radhika, D.; Krishnamurthy, G. Manufacturing and Processing of Carbon Nanotubes for H2 Storage. Phys. Chem. Solid State 2021, 22, 209–216. [Google Scholar] [CrossRef]
- Itas, Y.S.; Khandaker, M.U.; Suleiman, A.B.; Ndikilar, C.E.; Lawal, A.; Razali, R.; Idowu, I.I.; Danmadami, A.M.; Yamusa, A.S.; Osman, H.; et al. Studies of H2 storage efficiency of metal-doped carbon nanotubes by optical adsorption spectra analysis. Diam. Relat. Mater. 2023, 136, 109964. [Google Scholar] [CrossRef]
- Chavhan, M.P.; Marzouki, M.; Jaouadi, M.; Ghodbane, O.; Zelenková, G.; Almasi, M.; Maříková, M.; Bezdicka, P.; Tolasz, J.; Murafa, N. Pore Engineering in Carbon Monoliths Through Soft Templating, In Situ Grown Graphene, and Post-Activation for CO2 Capture, H2 Storage, and Electrochemical Capacitor. Nanomaterials 2025, 15, 900. [Google Scholar] [CrossRef]
- Kostoglou, N.; Liao, C.-W.; Wang, C.-Y.; Kondo, J.N.; Tampaxis, C.; Steriotis, T.; Giannakopoulos, K.; Kontos, A.G.; Hinder, S.; Baker, M.; et al. Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene. Carbon 2021, 171, 294–305. [Google Scholar] [CrossRef]
- Jain, V.; Kandasubramanian, B. Functionalized Graphene Materials for Hydrogen Storage. J. Mater. Sci. 2020, 55, 1865–1903. [Google Scholar] [CrossRef]
- Ganji, M.D.; Hosseini-Khah, S.M.; Amini-Tabar, Z. Theoretical insight into hydrogen adsorption onto graphene: A first-principles B3LYP-D3 study. Phys. Chem. Chem. Phys. 2015, 17, 2504–2511. [Google Scholar] [CrossRef]
- Cabria, I.; López, M.J.; Alonso, J.A. Searching for DFT-based methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene. J. Chem. Phys. 2017, 146, 214104. [Google Scholar] [CrossRef]
- Tachikawa, H.; Iyama, T. Mechanism of Hydrogen Storage in the Graphene Nanoflake–Lithium–H2 System. J. Phys. Chem. C 2019, 123, 8709. [Google Scholar] [CrossRef]
- Tachikawa, H.; Iyama, T. Reactions of Graphene Nano-Flakes in Materials Chemistry and Astrophysics. PhysChem 2022, 2, 145–162. [Google Scholar] [CrossRef]
- Tachikawa, H.; Izumi, Y.; Iyama, T.; Azumi, K. Molecular Design of a Reversible Hydrogen Storage Device Composed of the Graphene Nanoflake–Magnesium–H2 System. ACS Omega 2021, 6, 7778–7785. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, H.; Yi, H.; Iyama, T.; Yamasaki, S.; Azumi, K. Hydrogen storage mechanism in sodium-based graphene nanoflakes: A density functional theory study. Hydrogen 2022, 3, 43–52. [Google Scholar] [CrossRef]
- Tachikawa, H.; Izumi, Y.; Iyama, T.; Abe, S.; Watanabe, I. Aluminum-Doping Effects on the Electronic States of Graphene Nanoflake: Diffusion and Hydrogen Storage Mechanism. Nanomaterials 2023, 13, 2046. [Google Scholar] [CrossRef]
- Tachikawa, H. Hydrogen Storages Based on Graphene Nano-Flakes: Density Functional Theory Approach. C 2022, 8, 36. [Google Scholar] [CrossRef]
- Struijk, J.; d’Angremond, M.; Regt, W.J.M.L.; Scholten, J.J.F. Partial Liquid Phase Hydrogenation of Benzene to Cyclohexene over Ruthenium Catalysts in the Presence of an Aqueous Salt Solution: I. Preparation, Characterization of the Catalyst and Study of a Number of Process Variables. Appl. Catal. A 1992, 83, 263–295. [Google Scholar] [CrossRef]
- Foppa, L.; Dupont, J. Benzene Partial Hydrogenation: Advances and Perspectives. Chem. Soc. Rev. 2015, 44, 1886–1897. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H.; Peng, Z.; Gao, J.; Li, B.; Liu, Z.; Liu, S. Selective Hydrogenation of Benzene: Progress of Understanding for the Ru-Based Catalytic System Design. Ind. Eng. Chem. Res. 2019, 58, 13794–13803. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; He, Z.-Z.; Chen, L.; Shang, C.; Liu, Z.-P. In Situ Selective Site-Blocking Dictates Benzene Partial Hydrogenation to Cyclohexene on Zn-Promoted Ru-Based Catalysts. ACS Catal. 2025, 15, 7015–7027. [Google Scholar] [CrossRef]
- Tachikawa, H. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study. Appl. Surf. Sci. 2017, 396, 1335. [Google Scholar] [CrossRef]
- Tachikawa, H. Methyl radical addition to the surface of graphene nanoflakes: A density functional theory study. Surf. Sci. 2019, 679, 196–201. [Google Scholar] [CrossRef]
- Kawabata, H.; Tachikawa, H. A density functional theory study on the carbon defect in a graphene nano-flake surface promoting hydrogenation. Jpn. J. Appl. Phys. 2020, 59, 025508. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Low Atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Foster, J.P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Tachikawa, H.; Kawabata, H.; Abe, S.; Watanabe, I. Mechanism of Carrier Formation in P3HT-C60-PCBM Solar Cells. Nanomaterials 2024, 14, 1400. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, H.; Lund, A. Structures and electronic states of trimer radical cations of coronene: DFT-ESR simulation study. Phys. Chem. Chem. Phys. 2022, 24, 10318–10324. [Google Scholar] [CrossRef]
- Tachikawa, H. Intracluster reaction dynamics of NO+(H2O)n. J. Chem. Phys. 2024, 161, 09430. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, H. Mechanism of ionic dissociation of HCl in the smallest water clusters. Phys. Chem. Chem. Phys. 2024, 26, 3623–3631. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, H. C–C Bond Formation Reaction Catalyzed by a Lithium Atom: Benzene-to-Biphenyl Coupling. ACS Omega 2023, 8, 10600–10606. [Google Scholar] [CrossRef]
- Tachikawa, H. Reaction Dynamics of NO+ with Water Clusters. J. Phys. Chem. A 2022, 126, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.T.; Saidi, W.A. The Bell-Evans-Polanyi relation for hydrogen evolution reaction from first-principles. Npj Comput. Mater. 2024, 10, 98. [Google Scholar] [CrossRef]
n | CAM-B3LYP | APFD | wB97XD |
---|---|---|---|
4 | 6.8 (14.7) | 6.6 (15.0) | 8.8 (14.9) |
7 | 6.6 (16.5) | 5. 8 (16.4) | 8.6 (16.9) |
14 | 5.6 (22.4) | 5.2 (20.9) | 7.5 (23.6) |
19 | 6.2 (19.0) | 8.1 (19.8) | 8.1 (19.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tachikawa, H. Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study. Nanomaterials 2025, 15, 1498. https://doi.org/10.3390/nano15191498
Tachikawa H. Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study. Nanomaterials. 2025; 15(19):1498. https://doi.org/10.3390/nano15191498
Chicago/Turabian StyleTachikawa, Hiroto. 2025. "Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study" Nanomaterials 15, no. 19: 1498. https://doi.org/10.3390/nano15191498
APA StyleTachikawa, H. (2025). Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study. Nanomaterials, 15(19), 1498. https://doi.org/10.3390/nano15191498