Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Leaf Extract
2.2. Biogenesis of ZrO2-NPs
2.3. Synthesis of MgO NPs
2.4. Characterization of Phytofabricated ZrO2-NPs
2.5. Antioxidant Activity
2.5.1. DPPH Radical Scavenging Assay
2.5.2. FRAP Assay
2.6. Antidiabetic Studies
2.6.1. α-Glucosidase Inhibition Activity
2.6.2. α-Amylase Inhibition Activity
2.7. Molecular Docking Methods
2.7.1. Ligand and Protein Preparation
2.7.2. Docking Assessment
3. Results and Discussion
3.1. UV–Visible Analysis
3.2. FT-IR Studies
3.3. SEM, EDX, and TEM Analysis
3.4. XRD Analysis
3.5. Antioxidant Assessment
3.5.1. DPPH Radical Scavenging Assay
3.5.2. FRAP Antioxidant Assay
3.6. Antidiabetic Activity
3.6.1. α-Glucosidase Inhibition Action
3.6.2. α-Amylase Inhibitory Action
4. Docking Studies
4.1. Antidiabetic
4.1.1. α-Glucosidase Inhibition
4.1.2. α-Amylase Inhibition
4.2. Antioxidant
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gothai, S.; Ganesan, P.; Park, S.-Y.; Fakurazi, S.; Choi, D.-K.; Arulselvan, P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016, 8, 461. [Google Scholar] [CrossRef]
- Dewanjee, S.; Chakraborty, P.; Mukherjee, B.; De Feo, V. Plant-Based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int. J. Mol. Sci. 2020, 21, 2217. [Google Scholar] [CrossRef]
- Alexiadou, K.; Doupis, J. Management of diabetic foot ulcers. Diabetes Ther. 2012, 3, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Shanak, S.; Bashar, S.; Zaid, H. Metabolic and epigenetic action mechanisms of antidiabetic medicinal plants. Evid.-Based Complement. Altern. Med. 2019, 2019, 3583067. [Google Scholar] [CrossRef]
- Revathi, G.; Elavarasi, S.; Saravanan, K.; Ashokkumar, M.; Egbuna, C. Greater efficiency of polyherbal drug encapsulated biosynthesized chitosan nano-biopolymer on diabetes and its complications. Int. J. Biol. Macromol. 2023, 240, 124445. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef]
- Haggag, M.; Hassan, A.; Elmasry, S. Experimental study on reduced heat gain through green facades in a high heat load climate. Energy Build. 2014, 82, 668–674. [Google Scholar] [CrossRef]
- Das, S.; Mitra, S.; Khurana, S.P.; Debnath, N. Nanomaterials for biomedical applications. Front. Life Sci. 2013, 7, 90–98. [Google Scholar] [CrossRef]
- Karuppannan, P.; Saravanan, K.; Ashokkumar, M.; Egbuna, C. Preparation of Bio-Synthesized Ag Nanoparticles and Assessment of Their Antidiabetic and Antioxidant Potential against STZ-Induced Diabetic Albino Rats. J. Biomater. Sci. Polym. Ed. 2024, 35, 535–558. [Google Scholar] [CrossRef]
- Fathima, J.B.; Pugazhendhi, A.; Venis, R. Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb. Pathog. 2017, 110, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Veeramani, S.; Narayanan, A.P.; Yuvaraj, K.; Sivaramakrishnan, R.; Pugazhendhi, A.; Rishivarathan, I.; Jose, S.P.; Ilangovan, R. Nigella sativa flavonoids surface coated gold NPs (Au-NPs) enhancing antioxidant and anti-diabetic activity. Process Biochem. 2021, 114, 193–202. [Google Scholar] [CrossRef]
- Devatha, C.P.; Thalla, A.K. Green synthesis of nanomaterials. In Synthesis of Inorganic Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–184. [Google Scholar]
- Jalill, R.; Jawad, M.; Abd, A.N. Plants extracts as green synthesis of zirconium oxide nanoparticles. J. Genet. Environ. Res. Conserv. 2017, 5, 6–23. [Google Scholar]
- Manimegalai, S.; Rajeswari, V.D.; Parameswari, R.; Nicoletti, M.; Alarifi, S.; Govindarajan, M. Green synthesis, characterization and biological activity of Solanum trilobatum mediated silver nanoparticles. Saudi J. Biol. Sci. 2022, 29, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Antibacterial Activity of Tannins from the Leaves of Solanum trilobatum Linn. Available online: https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2009/Issue-2/Article8.pdf (accessed on 28 February 2009).
- Mohan, V.R.; Tresina, P.S.; Doss, A. The Phytochemical and Pharmacological Aspects of Ethnomedicinal Plants; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Pant, G.; Nayak, N.; Prasuna, R.G. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf. Appl. Nanosci. 2013, 3, 431–439. [Google Scholar] [CrossRef]
- Citarasu, T.; Venkatramalingam, K.; Babu, M.M.; Sekar, R.R.J.; Petermarian, M. Influence of the antibacterial herbs, Solanum trilobatum, andrographis paniculata and psoralea corylifolia on the survival, growth and bacterial load of penaeus monodon post larvae. Aquac. Int. 2003, 11, 581–595. [Google Scholar] [CrossRef]
- Jahan, M.; Vani, G.; Shyamalade, C. Anti carcinogenic effect of Solarium trilobatum in diethylnitrosamine induced and phenobarbital promoted hepatocarcinogenesis in rats. Asian J. Biochem. 2011, 6, 74–81. [Google Scholar] [CrossRef]
- Shahjahan, M.; Sabitha, K.E.; Jainu, M.; Devi, C.S.S. Effect of Solanum trilobatum against carbon tetrachloride induced hepatic damage in albino rats. Indian J. Med. Res. 2004, 120, 194–198. [Google Scholar]
- Kanchana, A.; Devarajan, S.; Ayyappan, S.R. Green synthesis and characterization of palladium nanoparticles and its conjugates from Solanum trilobatum leaf extract. Nano-Micro Lett. 2010, 2, 169–176. [Google Scholar] [CrossRef]
- Nassar, A.-R.A.; Eid, A.M.; Atta, H.M.; El Naghy, W.S.; Fouda, A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci. Rep. 2023, 13, 9054. [Google Scholar] [CrossRef]
- Pavithra, S.; Mohana, B.; Mani, M.; Saranya, P.E.; Jayavel, R.; Prabu, D.; Kumaresan, S. Bioengineered 2D ultrathin sharp-edged MgO nanosheets using Achyranthes aspera Leaf extract for antimicrobial applications. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1120–1133. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Nilavukkarasi, M.; Praseetha, P.K. Synthesis of MgO nanoparticles through green method and evaluation of its antimicrobial activities. Vegetos 2021, 34, 719–724. [Google Scholar] [CrossRef]
- Alfaro, A.; León, A.; Guajardo-Correa, E.; Reúquen, P.; Torres, F.; Mery, M.; Segura, R.; Zapata, P.A.; Orihuela, P.A.; Mishra, Y.K. MgO nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol anticancer drug. PLoS ONE 2019, 14, e0214900. [Google Scholar] [CrossRef]
- Veronese, N.; Dominguez, L.J.; Pizzol, D.; Demurtas, J.; Smith, L.; Barbagallo, M. Oral magnesium supplementation for treating glucose metabolism parameters in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Nutrients 2021, 13, 4074. [Google Scholar] [CrossRef]
- Zhao, B.; Zeng, L.; Zhao, J.; Wu, Q.; Dong, Y.; Zou, F.; Gan, L.; Wei, Y.; Zhang, W. Association of magnesium intake with type 2 diabetes and total stroke: An updated systematic review and meta-analysis. BMJ Open 2020, 10, e032240. [Google Scholar] [CrossRef]
- Turkoglu, A.; Duru, M.E.; Mercan, N.; Kivrak, I.; Gezer, K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem. 2007, 101, 267–273. [Google Scholar] [CrossRef]
- Lakshmi, G.C.; Ananda, S.; Gowda, N.M.M. Gowda, Synthesis, characterization, and antioxidant activity evaluation of pyridoxine and its transition metal complexes. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011, 41, 413–424. [Google Scholar] [CrossRef]
- Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complement. Altern. Med. 2019, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Shai, L.; Masoko, P.; Mokgotho, M.; Magano, S.; Mogale, A.; Boaduo, N.; Eloff, J. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa. S. Afr. J. Bot. 2010, 76, 465–470. [Google Scholar] [CrossRef]
- Saravanan, K.; Elavarasi, S.; Revathi, G.; Karuppannan, P.; Ashokkumar, M.; Muthusamy, C.; Kumar, A.R. Targeting SARS-CoV2 spike glycoprotein: Molecular insights into phytocompounds binding interactions—In-silico molecular docking. J. Biomater. Sci. Polym. Ed. 2024, 36, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Higashino, M.; Murai, S.; Lo, T.-Y.; Tomita, S.; Tanaka, K. Photoluminescence coupled to electric and magnetic surface lattice resonance in periodic arrays of zirconia nanoparticles. J. Mater. Chem. C 2022, 10, 9730–9739. [Google Scholar] [CrossRef]
- Shinde, H.M.; Bhosale, T.T.; Gavade, N.L.; Babar, S.B.; Kamble, R.J.; Shirke, B.S.; Garadkar, K.M. Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. J. Mater. Sci. Mater. Electron. 2018, 29, 14055–14064. [Google Scholar] [CrossRef]
- Majedi, A.; Abbasi, A.; Davar, F. Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. J. Sol-Gel Sci. Technol. 2016, 77, 542–552. [Google Scholar] [CrossRef]
- Rotti, R.B.; Sunitha, D.V.; Manjunath, R.; Roy, A.; Mayegowda, S.B.; Gnanaprakash, A.P.; Alghamdi, S.; Almehmadi, M.; Abdulaziz, O.; Allahyani, M.; et al. Green synthesis of MgO nanoparticles and its antibacterial properties. Front. Chem. 2023, 11, 1143614. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Ashokkumar, M. Comparative assessment of transition metals doping effects on structural, optical, optical conductivity, and photocatalytic features of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2024, 35, 1614. [Google Scholar] [CrossRef]
- Hirata, T.; Asari, E.; Kitajima, M. Infrared and Raman spectroscopic studies of ZrO2 polymorphs doped with Y2O3 or CeO2. J. Solid. State Chem. 1994, 110, 201–207. [Google Scholar] [CrossRef]
- Saqib, S.; Faryad, S.; Afridi, M.I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; et al. Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Contents. Coatings 2022, 12, 1505. [Google Scholar] [CrossRef]
- Randi, P.A.S.; Bettega, M.H.F.; Jones, N.C.; Hoffmann, S.V.; Śmiałek, M.A.; Limão-Vieira, P. Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods. Molecules 2025, 30, 3137. [Google Scholar] [CrossRef] [PubMed]
- AMuthuvel, A.; Jothibas, M.; Manoharan, C.; Jayakumar, S.J. Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res. Chem. Intermed. 2020, 46, 2705–2729. [Google Scholar] [CrossRef]
- Mazhar, M.; Rahman, S.U.; Aziz, T.; Alharbi, M.; Alasmari, A.; Albekairi, T. Synthesis and characterization of biogenic magnesium oxide nanoparticles as antidiabetic agents. Appl. Ecol. Environ. Res. 2024, 22, 5033–5044. [Google Scholar] [CrossRef]
- Negi, A.; Tamta, G.; Pandey, M.; Khan, A.; Yassin, M.T.; Al –Otibi, F.O.; Mehra, N. Exploring antidiabetic & antibacterial potential of Ag/MgO-NCs mediated via Ficus auriculata: Experimental and computational analysis. Inorg. Chem. Commun. 2025, 171, 113550. [Google Scholar] [CrossRef]
- Al-Harbi, L.M.; Ezzeldien, M.; Elhenawy, A.A.; Said, A.H. Assessment of the bioactivity of bioinspired magnesium oxide nanoparticles from the Azadirachta indica extract. Front. Bioeng. Biotechnol. 2024, 12, 1480694. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Ejaz, A.; Javed, M.; Mansoor, S.; Iqbal, S.; Elkaeed, E.B.; Alzhrani, R.M.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.; et al. The anti-inflammatory and free radical scavenging activities of bio-inspired nano magnesium oxide. Front. Mater. 2022, 9, 875163. [Google Scholar] [CrossRef]
- Bannunah, A.M. Biomedical applications of zirconia-based nanomaterials: Challenges and future perspectives. Molecules 2023, 28, 5428. [Google Scholar] [CrossRef] [PubMed]
- Kathirvel, A.; Srinivasan, R.; Harini, S.; Ranjith, N.; Kumar, G.S.; Lalithambigai, K.; Atchudan, R.; Habila, M.A.; Aljuwayid, A.M.; Yun, H.K. Eco-Friendly Synthesis of Zirconium Dioxide Nanoparticles from Toddalia asiatica: Applications in Dye Degradation, Antioxidant and Antibacterial Activity. Nanomaterials 2025, 15, 84. [Google Scholar] [CrossRef]
- Siddique, M.H.; Hayat, S.; Muzammil, S.; Ashraf, A.; Khan, A.M.; Ijaz, M.U.; Khurshid, M.; Afzal, M. Ecofriendly phytosynthesized zirconium oxide nanoparticles as antibiofilm and quorum quenching agents against Acinetobacter baumannii. Drug Dev. Ind. Pharm. 2022, 48, 502–509. [Google Scholar] [CrossRef] [PubMed]
Compound | Scavenging Activity (%) | IC50 (μM) | |||
---|---|---|---|---|---|
1000 (μM) | 500 (μM) | 250 (μM) | 125 (μM) | ||
Plant extract | 161.7 ± 2.8 | 66.2 ± 1.4 | 42.4 ± 0.9 | 21.8 ± 1.3 | 323.49 |
ZrO2 NPs | 325.0 ± 1.6 | 121.7 ± 2.3 | 83.4 ± 1.4 | 32.4 ± 2.9 | 191.96 |
MgO NPs | 327.0 ± 1.7 | 123.8 ± 2.3 | 85.6 ± 1.6 | 34.6 ± 2.4 | 185.23 |
Ascorbic acid | 312.1 ± 0.5 | 118.4 ± 0.2 | 63.4 ± 0.9 | 42.7 ± 1.4 | 201.75 |
Compound | Scavenging Activity (%) | IC50 (μM) | |||
---|---|---|---|---|---|
1000 (μM) | 500 (μM) | 250 (μM) | 125 (μM) | ||
Plant extract | 85.3 ± 1.5 | 47.4 ± 2.6 | 25.7 ± 1.3 | 11.3 ± 2.4 | 560.08 |
ZrO2 NPs | 191.5 ± 1.7 | 121.6 ± 2.3 | 71.7 ± 1.8 | 31.3 ± 1.6 | 161.86 |
MgO NPs | 194.8 ± 2.4 | 124.9 ± 1.3 | 75.0 ± 2.7 | 34.6 ± 1.2 | 143.12 |
Ascorbic acid | 211.7 ± 1.3 | 111.3 ± 2.5 | 55.4 ± 1.2 | 27.6 ± 2.5 | 223.51 |
Compound | Inhibition Rate (%) | IC50 (μM) | |||
---|---|---|---|---|---|
1000 (μM) | 500 (μM) | 250 (μM) | 125 (μM) | ||
Plant extract | 83.6 ± 1.6 | 53.7 ± 2.4 | 39.3 ± 1.2 | 21.5 ± 2.5 | 475.92 |
ZrO2 NPs | 207.5 ± 2.3 | 133.4 ± 1.7 | 69.3 ± 0.8 | 33.9 ± 1.6 | 155.76 |
MgO NPs | 210.8 ± 2.8 | 136.7 ± 1.4 | 72.6 ± 2.3 | 37.2 ± 1.2 | 138.84 |
Acarbose | 185.6 ± 0.4 | 87.3 ± 0.5 | 49.4 ± 2.3 | 29.6 ± 0.2 | 256.37 |
Compound | Inhibition Rate (%) | IC50 (μM) | |||
---|---|---|---|---|---|
1000 (μM) | 500 (μM) | 250 (μM) | 125 (μM) | ||
Plant extract | 121.5 ± 1.3 | 52.9 ± 2.5 | 43.7 ± 1.6 | 21.4 ± 0.5 | 378.78 |
ZrO2 NPs | 211.5 ± 2.6 | 141.7 ± 1.6 | 73.6 ± 0.5 | 31.5 ± 1.7 | 145.95 |
MgO NPs | 214.8 ± 1.2 | 145.0 ± 2.1 | 76.9 ± 1.6 | 34.8 ± 2.3 | 129.45 |
Acarbose | 211.3 ± 0.6 | 121.7 ± 0.3 | 47.8 ± 1.5 | 27.4 ± 2.6 | 225.65 |
Compounds | Glucoamylase (PDB ID: 2F6D) | ||
---|---|---|---|
Binding Affinity (kcal/mol) | No. of H-Bonds | H-Bonding Residues | |
ZrO2 NPs | −8.5 | - | - |
MgO NPs | −9.2 | - | - |
Acarbose | −6.6 | 8 | Tyr63, Asp70, Tyr135, Ala138, Glu211, Arg345 |
Compounds | Human Pancreatic α-Amylase (PDB ID: 2QV4) | ||
---|---|---|---|
Binding Affinity (kcal/mol) | No. of H-Bonds | H-Bonding Residues | |
ZrO2 NPs | −8.9 | 2 | Asn298 |
MgO | −9.5 | - | - |
Acarbose | −7.3 | 6 | Tyr62, Tyr151, Thr163, Glu233 |
Compounds | Human Antioxidant Enzyme (PDB: 3MNG) | ||
---|---|---|---|
Binding Affinity (kcal/mol) | No. of H-Bonds | H-Bonding Residues | |
ZrO2 NPs | −7.4 | - | - |
MgO NPs | −8.3 | 2 | Cys72, Ser74 |
Ascorbic acid | −4.3 | 4 | Thr44, Cys47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathika, K.; Doss, P.A.; Sheela, J.R.A.H.; Gurunathan, V.; Kumar, K.J.S.; Sathishkumar, C.; Thirumal, V.; Kim, J. Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies. Nanomaterials 2025, 15, 1372. https://doi.org/10.3390/nano15171372
Rathika K, Doss PA, Sheela JRAH, Gurunathan V, Kumar KJS, Sathishkumar C, Thirumal V, Kim J. Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies. Nanomaterials. 2025; 15(17):1372. https://doi.org/10.3390/nano15171372
Chicago/Turabian StyleRathika, Kumaresan, Periyanayagam Arockia Doss, John Rose Arul Hency Sheela, Velayutham Gurunathan, K. J. Senthil Kumar, Chidambaram Sathishkumar, Vediyappan Thirumal, and Jinho Kim. 2025. "Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies" Nanomaterials 15, no. 17: 1372. https://doi.org/10.3390/nano15171372
APA StyleRathika, K., Doss, P. A., Sheela, J. R. A. H., Gurunathan, V., Kumar, K. J. S., Sathishkumar, C., Thirumal, V., & Kim, J. (2025). Comparative Evaluation of Antioxidant and Antidiabetic Activities of ZrO2 and MgO Nanoparticles Biosynthesized from Unripe Solanum trilobatum Fruits: Insights from In Vitro and In Silico Studies. Nanomaterials, 15(17), 1372. https://doi.org/10.3390/nano15171372