Current Status and Future Aspects of Gadolinium Oxide Nanoparticles as Positive Magnetic Resonance Imaging Contrast Agents
Abstract
1. Introduction
2. Synthesis of Surface-Modified Gd2O3 NPs
2.1. Polyol Method
2.2. DMSO Method
2.3. Thermal Decomposition
2.4. Hydrothermal Method
3. Various Characterizations
3.1. Particle Size and Morphology
3.2. Crystal Structure
3.3. Hydrodynamic Diameter
3.4. Surface-Coating Analysis
3.5. Zeta Potentials
3.6. Magnetic Properties
3.7. Water Proton Spin Relaxivities (r1 and r2 Values)
3.8. Toxicity of Surface-Modified Gd2O3 NPs
3.8.1. In Vitro Cellular Toxicity
3.8.2. In Vivo Toxicity
Histology
Body Weight Change
Biodistribution
Clearance
Immunotoxicity
4. Factors Affecting r1 and r2 Values
4.1. Particle Diameter
4.2. Surface-Coating Ligands
4.3. Solution pH
4.4. Temperature
4.5. Applied Magnetic Field Strength (H)
5. In Vivo MRI Applications
5.1. Imaging in Normal Mice
5.2. Imaging in Cancer Model Mice
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Shu, J. Multimodal Molecular Imaging: Current Status and Future Directions. Contrast Media Mol. Imaging 2018, 2018, 1382183. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Wang, Y.-X.; Lin, Y.; Zhang, J.-S.; Yang, F.; Zhou, Q.-L.; Liao, Y.-Y. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy. BioMed Res. Int. 2014, 2014, 819324. [Google Scholar] [CrossRef]
- Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.-Y. In Vivo Molecular Imaging in Preclinical Research. Lab. Anim. Res. 2022, 38, 31. [Google Scholar] [CrossRef]
- Ni, D.; Bu, W.; Ehlerding, E.B.; Cai, W.; Shi, J. Engineering of Inorganic Nanoparticles as Magnetic Resonance Imaging Contrast Agents. Chem. Soc. Rev. 2017, 46, 7438–7468. [Google Scholar] [CrossRef]
- Chouliaras, L.; O’Brien, J.T. The Use of Neuroimaging Techniques in the Early and Differential Diagnosis of Dementia. Mol. Psychiatry 2023, 28, 4084–4097. [Google Scholar] [CrossRef]
- McCarthy, J.; Collins, D.L.; Ducharme, S. Morphometric MRI as a Diagnostic Biomarker of Frontotemporal Dementia: A Systematic Review to Determine Clinical Applicability. NeuroImage Clin. 2018, 20, 685–696. [Google Scholar] [CrossRef]
- Iyad, N.; Ahmad, M.S.; Alkhatib, S.G.; Hjouj, M. Gadolinium contrast agents- challenges and opportunities of a multidisciplinary approach: Literature review. Eur. J. Radiol. Open 2023, 11, 100503. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lu, Z.-R. Gadolinium-Based Contrast Agents for MR Cancer Imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Palagi, L.; Longo, D.L.; Toth, E.; Quattrocchi, C.C.; van der Molen, A.J.; Aime, S.; Gianolio, E. Molecular and supramolecular routes to enhance Gadolinium-based contrast agents relaxivity: How far are we from the theoretical optimal value? Eur. J. Med. Chem. 2025, 292, 117668. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Wu, L.; Chen, X.; Zhang, Y.; Jiang, L. Research progress on manganese complexes as contrast agents for magnetic resonance imaging. Polyhedron 2023, 242, 116489. [Google Scholar] [CrossRef]
- Zhao, D.; Baek, A.; Tegafaw, T.; Liu, T.; Liu, T.; Yue, H.; Mulugeta, E.; Yang, J.; Park, J.A.; Lee, H.; et al. Poly(acrylic acid)-Grafted BixGd2–xO3 Nanoparticles as Multimodal T1/T2 MRI and X-ray CT Contrast Agents. ACS Appl. Nano Mater. 2025, 8, 13663–13675. [Google Scholar] [CrossRef]
- Marasini, S.; Yue, H.; Ho, S.-L.; Park, J.-A.; Kim, S.; Yang, J.-U.; Cha, H.; Liu, S.; Tegafaw, T.; Ahmad, M.Y.; et al. In vivo positive magnetic resonance imaging of brain cancer (U87MG) using folic acid-conjugated polyacrylic acid-coated ultrasmall manganese oxide nanoparticles. Appl. Sci. 2021, 11, 2596. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, D.; Tegafaw, T.; Ahmad, M.Y.; Saidi, A.K.A.A.; Ying, L.; Lee, S.; Cha, H.; Yang, B.W.; Chae, K.S.; et al. Core-Shell Fe3O4@C Nanoparticles as Highly Effective T2 Magnetic Resonance Imaging Contrast Agents: In Vitro and In Vivo Studies. Nanomaterials 2024, 14, 177. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, S.L.; Tegafaw, T.; Zhao, D.; Ahmad, M.Y.; Saidi, A.K.A.A.; Cha, H.; Lee, S.; Lee, H.; Kim, S.; et al. Clustered ultra-small iron oxide nanoparticles as potential T1/T2 dual–modal magnetic resonance imaging contrast agents and application to tumor model. Nanotechnology 2024, 35, 505101. [Google Scholar] [CrossRef]
- Geraldes, C.F.G.C. Rational Design of Magnetic Nanoparticles as T1–T2 Dual-Mode MRI Contrast Agents. Molecules 2024, 29, 1352. [Google Scholar] [CrossRef]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef]
- Li, L.; Jiang, W.; Luo, K.; Song, H.; Lan, F.; Wu, Y.; Gu, Z. Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking. Theranostics 2013, 3, 595–615. [Google Scholar] [CrossRef]
- Scarciglia, A.; Papi, C.; Romiti, C.; Leone, A.; Di Gregorio, E.; Ferrauto, G. Gadolinium-Based Contrast Agents (GBCAs) for MRI: A Benefit–Risk Balance Analysis from a Chemical, Biomedical, and Environmental Point of View. Glob. Chall. 2025, 9, 2400269. [Google Scholar] [CrossRef] [PubMed]
- Antwi-Baah, R.; Wang, Y.; Chen, X.; Yu, K. Metal-Based Nanoparticle Magnetic Resonance Imaging Contrast Agents: Classifications, Issues, and Countermeasures toward Their Clinical Translation. Adv. Mater. Interfaces 2022, 9, 2101710. [Google Scholar] [CrossRef]
- Tegafaw, T.; Liu, S.; Ahmad, M.Y.; Saidi, A.K.A.A.; Zhao, D.; Liu, Y.; Nam, S.-W.; Chang, Y.; Lee, G.H. Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents. Pharmaceutics 2023, 15, 1745. [Google Scholar] [CrossRef]
- Caspani, S.; Magalhães, R.; Araújo, J.P.; Sousa, C.T. Magnetic Nanomaterials as Contrast Agents for MRI. Materials 2020, 13, 2586. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, B.H.; Na, H.B.; Hyeon, T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 196–209. [Google Scholar] [CrossRef]
- Hu, F.; Zhao, Y.S. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale 2012, 4, 6235–6243. [Google Scholar] [CrossRef] [PubMed]
- Pellico, J.; Ellis, C.M.; Davis, J.J. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. Contrast Media Mol. Imaging 2019, 2019, 1845637. [Google Scholar] [CrossRef] [PubMed]
- Panich, A.M.; Shames, A.I.; Goren, S.D.; Yudina, E.B.; Aleksenskii, A.E.; Vul, A.Y. Examining relaxivities in suspensions of nanodiamonds grafted by magnetic entities: Comparison of two approaches. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Panich, A.M.; Salti, M.; Aleksenskii, A.E.; Kulvelis, Y.V.; Chizhikova, A.; Vul, A.Y.; Shames, A.I. Suspensions of manganese-grafted nanodiamonds: Preparation, NMR, and MRI study. Diam. Relat. Mater. 2023, 131, 109591. [Google Scholar] [CrossRef]
- Panich, A.M.; Salti, M.; Prager, O.; Swissa, E.; Kulvelis, Y.V.; Yudina, E.B.; Aleksenskii, A.E.; Goren, S.D.; Vul, A.Y.; Shames, A.I. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magn. Reson. Med. 2021, 86, 935–942. [Google Scholar] [CrossRef]
- Jeon, M.; Halbert, M.V.; Stephen, Z.R.; Zhang, M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv. Mater. 2021, 33, 1906539. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Spincemaille, P.; de Rochefort, L.; Wong, R.; Prince, M.; Wang, Y. Unambiguous Identification of Superparamagnetic Iron Oxide Particles through Quantitative Susceptibility Mapping of the Nonlinear Response to Magnetic Fields. Magn. Reson. Imaging 2010, 28, 1383–1389. [Google Scholar] [CrossRef]
- van den Bos, E.J.; Baks, T.; Moelker, A.D.; Kerver, W.; van Geuns, R.-J.; van der Giessen, W.J.; Duncker, D.J.; Wielopolski, P.A. Magnetic Resonance Imaging of Haemorrhage within Reperfused Myocardial Infarcts: Possible Interference with Iron Oxide-Labelled Cell Tracking? Eur. Heart J. 2006, 27, 1620–1626. [Google Scholar] [CrossRef]
- Girard, O.M.; Du, J.; Agemy, L.; Sugahara, K.N.; Kotamraju, V.R.; Ruoslahti, E.; Bydder, G.M.; Mattrey, R.F. Optimization of Iron Oxide Nanoparticle Detection Using Ultrashort Echo Time Pulse Sequences: Comparison of T1, T2*, and Synergistic T1−T2* Contrast Mechanisms. Magn. Reson. Med. 2011, 65, 1649–1660. [Google Scholar] [CrossRef]
- Eibofner, F.; Steidle, G.; Kehlbach, R.; Bantleon, R.; Schick, F. Positive Contrast Imaging of Iron Oxide Nanoparticles with Susceptibility-Weighted Imaging. Magn. Reson. Med. 2010, 64, 1027–1038. [Google Scholar] [CrossRef]
- Hedlund, A.; Ahrén, M.; Gustafsson, H.; Abrikossova, N.; Warntjes, M.; Jönsson, J.I.; Uvdal, K.; Engström, M. Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement. Int. J. Nanomed. 2011, 6, 3233–3240. [Google Scholar] [CrossRef]
- Blomqvist, L.; Nordberg, G.F.; Nurchi, V.M.; Aaseth, J.O. Gadolinium in Medical Imaging—Usefulness, Toxic Reactions and Possible Countermeasures—A Review. Biomolecules 2022, 12, 742. [Google Scholar] [CrossRef]
- Pichler, V.; Martinho, R.P.; Temming, L.; Segers, T.; Wurm, F.R.; Koshkina, O. The Environmental Impact of Medical Imaging Agents and the Roadmap to Sustainable Medical Imaging. Adv. Sci. 2025, 12, 2404411. [Google Scholar] [CrossRef] [PubMed]
- Idée, J.-M.; Port, M.; Robic, C.; Medina, C.; Sabatou, M.; Corot, C. Role of Thermodynamic and Kinetic Parameters in Gadolinium Chelate Stability. J. Magn. Reson. Imaging 2009, 30, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Hedgire, S.S.; Li, W.; Ganguli, S.; Prabhakar, A.M. Blood pool contrast agents for venous magnetic resonance imaging. Cardiovasc. Diagn. Ther. 2016, 6, 508–518. [Google Scholar] [CrossRef]
- Thomsen, H.S.; Morcos, S.K.; Almén, T.; Bellin, M.-F.; Bertolotto, M.; Bongartz, G.; Clement, O.; Leander, P.; Heinz-Peer, G.; Reimer, P.; et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: Updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2013, 23, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, H.S. Nephrogenic Systemic Fibrosis: History and Epidemiology. Radiol. Clin. N. Am. 2009, 47, 827–831. [Google Scholar] [CrossRef]
- Bernstein, E.J.; Schmidt-Lauber, C.; Kay, J. Nephrogenic Systemic Fibrosis: A Systemic Fibrosing Disease Resulting from Gadolinium Exposure. Best Pract. Res. Clin. Rheumatol. 2012, 26, 489–503. [Google Scholar] [CrossRef]
- Murata, N.; Murata, K.; Gonzalez-Cuyar, L.F.; Maravilla, K.R. Gadolinium tissue deposition in brain and bone. Magn. Reson. Imaging 2016, 34, 1359–1365. [Google Scholar] [CrossRef]
- Khairinisa, M.A.; Ariyani, W.; Tsushima, Y.; Koibuchi, N. Effects of Gadolinium Deposits in the Cerebellum: Reviewing the Literature from In Vitro Laboratory Studies to In Vivo Human Investigations. Int. J. Environ. Res. Public Health 2021, 18, 7214. [Google Scholar] [CrossRef] [PubMed]
- Roux, S.; Faure, A.-C.; Mandon, C.; Dufort, S.; Rivière, C.; Bridot, J.-L.; Mutelet, B.; Marquette, C.A.; Josserand, V.; Le Duc, G.; et al. Multifunctional Gadolinium Oxide Nanoparticles: Towards Image-Guided Therapy. Imaging Med. 2010, 2, 211–223. [Google Scholar] [CrossRef]
- Wu, C.; Cai, R.; Zhao, T.; Wu, L.; Zhang, L.; Jin, J.; Xu, L.; Li, P.; Li, T.; Zhang, M.; et al. Hyaluronic Acid-Functionalized Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging-Guided Radiotherapy of Tumors. Nanoscale Res. Lett. 2020, 15, 94. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Xu, W.; Kim, S.J.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Park, J.A.; Kim, T.J.; Lee, G.H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci. Rep. 2015, 5, 8549. [Google Scholar] [CrossRef]
- Ho, S.L.; Yue, H.; Tegafaw, T.; Ahmad, M.Y.; Liu, S.; Nam, S.-W.; Chang, Y.; Lee, G.H. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS Omega 2022, 7, 2533–2553. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, N.; Zhou, H.; Zhu, Y. Surface engineered multifunctional nano-systems for localised drug delivery against thyroid cancer: A review of current practices. Biomed. Pharmacother. 2024, 176, 116840. [Google Scholar] [CrossRef] [PubMed]
- Al-Thani, A.N.; Jan, A.G.; Abbas, M.; Geetha, M.; Sadasivuni, K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024, 352, 122899. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Ho, S.L.; Tegafaw, T.; Cha, H.; Chang, Y.; Oh, I.T.; Yaseen, A.M.; Marasini, S.; Ghazanfari, A.; Yue, H.; et al. Stable and Non-Toxic Ultrasmall Gadolinium Oxide Nanoparticle Colloids (Coating Material = Polyacrylic Acid) as High-Performance T1 Magnetic Resonance Imaging Contrast Agents. RSC Adv. 2018, 8, 3189–3197. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yue, H.; Ho, S.L.; Kim, S.; Park, J.A.; Tegafaw, T.; Ahmad, M.Y.; Kim, S.; Saidi, A.K.A.A.; Zhao, D.; et al. Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging. Int. J. Mol. Sci. 2022, 23, 1792. [Google Scholar] [CrossRef]
- Ahrén, M.; Selegård, L.; Söderlind, F.; Linares, M.; Kauczor, J.; Norman, P.; Käll, P.-O.; Uvdal, K. A Simple Polyol-Free Synthesis Route to Gd2O3 Nanoparticles for MRI Applications: An Experimental and Theoretical Study. J. Nanopart. Res. 2012, 14, 1006. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Ho, S.L.; Tegafaw, T.; Saidi, A.K.A.A.; Lee, H.; Ahn, D.; Nam, H.; Park, J.A.; Yang, J.-U.; et al. Multi-functional GdEuxTb1−xO3 (x = 0 to 1) nanoparticles: Colour tuning optical properties, water proton spin relaxivities, and X-ray attenuation properties. Nanoscale 2024, 16, 16998–17008. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, Y.; Wang, J.; Wang, Z.; Tian, Y.; Liu, H.; Pan, H.; Fu, L.; Chen, W.; Wu, C.; et al. Engineering the Surface of Gd2O3 Nanoplates for Improved T1-Weighted Magnetic Resonance Imaging. Chem. Eng. J. 2020, 380, 122473. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Liu, Y.; Peng, J.; Wu, Y.; Zhang, Y.; Feng, W.; Li, F. Long-term in vivo biodistribution and toxicity of Gd(OH)3 nanorods. Biomaterials 2013, 34, 508–515. [Google Scholar] [CrossRef]
- Tegafaw, T.; Liu, Y.; Ho, S.L.; Liu, S.; Ahmad, M.Y.; Saidi, A.K.A.A.; Zhao, D.; Ahn, D.; Nam, H.; Chae, W.-S.; et al. High-Quantum-Yield Ultrasmall Ln2O3 (Ln = Eu, Tb, or Dy) Nanoparticle Colloids in Aqueous Media Obtained via Photosensitization. Langmuir 2023, 39, 15338–15342. [Google Scholar] [CrossRef]
- Ahmad, M.Y.; Ahmad, M.W.; Yue, H.; Ho, S.L.; Park, J.A.; Jung, K.-H.; Cha, H.; Marasini, S.; Ghazanfari, A.; Liu, S.; et al. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(Methyl Vinyl Ether-Alt-Maleic Acid)-Coated Ultra-Small Paramagnetic Gadolinium Oxide Nanoparticles. Molecules 2020, 25, 1159. [Google Scholar] [CrossRef]
- Saidi, A.K.A.A.; Baek, A.; Liu, S.; Mengesha, T.T.; Ahmad, M.Y.; Zhao, D.; Liu, Y.; Yang, J.U.; Park, J.A.; Hwang, D.W.; et al. Lead Oxide Nanoparticles as X-Ray Contrast Agents for In Vitro and In Vivo Imaging. ACS Appl. Nano Mater. 2023, 6, 20129–20138. [Google Scholar] [CrossRef]
- Saidi, A.K.A.A.; Ghazanfari, A.; Liu, S.; Tegafaw, T.; Ahmad, M.Y.; Zhao, D.; Liu, Y.; Yang, S.H.; Hwang, D.W.; Yang, J.-U.; et al. Facile Synthesis and X-ray Attenuation Properties of Ultrasmall Platinum Nanoparticles Grafted with Three Types of Hydrophilic Polymers. Nanomaterials 2023, 13, 806. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-J.; Liu, S.; Yue, H.; Park, J.A.; Cha, H.; Ho, S.L.; Marasini, S.; Ghazanfari, A.; Ahmad, M.Y.; Miao, X.; et al. Hydrophilic Biocompatible Poly(Acrylic Acid-Co-Maleic Acid) Polymer as a Surface-Coating Ligand of Ultrasmall Gd2O3 Nanoparticles to Obtain a High r1 Value and T1 MR Images. Diagnostics 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Saidi, A.K.A.A.; Ghazanfari, A.; Baek, A.; Tegafaw, T.; Ahmad, M.Y.; Zhao, D.; Liu, Y.; Yang, J.-u.; Park, J.A.; Yang, B.W.; et al. Ultrasmall Cerium Oxide Nanoparticles as Highly Sensitive X-Ray Contrast Agents and Their Antioxidant Effect. RSC Adv. 2024, 14, 3647–3658. [Google Scholar] [CrossRef]
- Marasini, S.; Yue, H.; Ghazanfari, A.; Ho, S.L.; Park, J.A.; Kim, S.; Cha, H.; Liu, S.; Tegafaw, T.; Ahmad, M.Y.; et al. Polyaspartic Acid-Coated Paramagnetic Gadolinium Oxide Nanoparticles as a Dual-Modal T1 and T2 Magnetic Resonance Imaging Contrast Agent. Appl. Sci. 2021, 11, 8222. [Google Scholar] [CrossRef]
- Park, J.Y.; Baek, M.J.; Choi, E.S.; Woo, S.; Kim, J.H.; Kim, T.J.; Jung, J.C.; Chae, K.S.; Chang, Y.; Lee, G.H. Paramagnetic Ultrasmall Gadolinium Oxide Nanoparticles as Advanced T1 MRI Contrast Agent: Account for Large Longitudinal Relaxivity, Optimal Particle Diameter, and In Vivo T1 MR Images. ACS Nano 2009, 3, 3663–3669. [Google Scholar] [CrossRef]
- Liu, S.; Tegafaw, T.; Ho, S.L.; Yue, H.; Zhao, D.; Liu, Y.; Mulugeta, E.; Chen, X.; Lee, H.; Ahn, D.; et al. Magnetic Resonance Imaging and X-Ray Imaging Properties of Ultrasmall Lanthanide Oxide (Ln = Eu, Gd, and Tb) Nanoparticles Synthesized via Thermal Decomposition. Molecules 2025, 30, 2519. [Google Scholar] [CrossRef]
- Xu, W.; Miao, X.; Oh, I.; Chae, K.S.; Cha, H.; Chang, Y.; Lee, G.H. Dextran-Coated Ultrasmall Gd2O3 Nanoparticles as Potential T1 MRI Contrast Agent. ChemistrySelect 2016, 1, 6086–6091. [Google Scholar] [CrossRef]
- Ahab, A.; Rohman, F.; Iskandar, F.; Haryanto, F.; Arif, I. A simple straightforward thermal decomposition synthesis of PEG-covered Gd2O3 (Gd2O3@PEG) nanoparticles. Adv. Powder Technol. 2016, 27, 1800–1805. [Google Scholar] [CrossRef]
- Vahdatkhah, P.; Madaah Hosseini, H.R.; Khodaei, A.; Montazerabadi, A.R.; Irajirad, R.; Oghabian, M.A.; Delavari, H.H. Rapid Microwave-Assisted Synthesis of PVP-Coated Ultrasmall Gadolinium Oxide Nanoparticles for Magnetic Resonance Imaging. Chem. Phys. 2015, 453–454, 35–41. [Google Scholar] [CrossRef]
- Yue, H.; Marasini, S.; Ahmad, M.Y.; Ho, S.L.; Cha, H.; Liu, S.; Jang, Y.J.; Tegafaw, T.; Ghazanfari, A.; Miao, X.; et al. Carbon-coated ultrasmall gadolinium oxide (Gd2O3@C) nanoparticles: Application to magnetic resonance imaging and fluorescence properties. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124261. [Google Scholar] [CrossRef]
- Guleria, A.; Pranjali, P.; Meher, M.K.; Chaturvedi, A.; Chakraborti, S.; Raj, R.; Poluri, K.M.; Kumar, D. Effect of Polyol Chain Length on Proton Relaxivity of Gadolinium Oxide Nanoparticles for Enhanced Magnetic Resonance Imaging Contrast. J. Phys. Chem. C 2019, 123, 18061–18070. [Google Scholar] [CrossRef]
- Tegafaw, T.; Xu, W.; Lee, S.H.; Chae, K.S.; Cha, H.; Chang, Y.; Lee, G.H. Ligand-size and ligand-chain hydrophilicity effects on the relaxometric properties of ultrasmall Gd2O3 nanoparticles. AIP Adv. 2016, 6, 065114. [Google Scholar] [CrossRef]
- Fortin, M.A.; Petoral, R.M.; Söderlind, F.; Klasson, A.; Engström, M.; Veres, T.; Käll, P.O.; Uvdal, K. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 2007, 18, 395501. [Google Scholar] [CrossRef]
- Faucher, L.; Tremblay, M.; Lagueux, J.; Gossuin, Y.; Fortin, M.-A. Rapid Synthesis of PEGylated Ultrasmall Gadolinium Oxide Nanoparticles for Cell Labeling and Tracking with MRI. ACS Appl. Mater. Interfaces 2012, 4, 4506–4515. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.T.M.A.; Vasilev, K.; Majewski, P. Ultra small Gd2O3 nanoparticles: Absorption and emission properties. J. Colloid. Interface Sci. 2011, 354, 592–596. [Google Scholar] [CrossRef]
- Miao, X.; Xu, W.; Cha, H.; Chang, Y.; Oh, I.T.; Chae, K.S.; Tegafaw, T.; Ho, S.L.; Kim, S.J.; Lee, G.H. Ultrasmall Gd2O3 nano-particles surface-coated by polyacrylic acid (PAA) and their PAA-size dependent relaxometric properties. Appl. Surf. Sci. 2019, 477, 111–115. [Google Scholar] [CrossRef]
- Hu, Z.; Ahrén, M.; Selegård, L.; Skoglund, C.; Söderlind, F.; Engström, M.; Zhang, X.; Uvdal, K. Highly Water-Dispersible Surface-Modified Gd2O3 Nanoparticles for Potential Dual-Modal Bioimaging. Chem. Eur. J. 2013, 19, 12658–12667. [Google Scholar] [CrossRef]
- Cui, D.; Lu, X.; Yan, C.; Liu, X.; Hou, M.; Xia, Q.; Xu, Y.; Liu, R. Gastrin-releasing peptide receptor-targeted gadolinium oxide-based multifunctional nanoparticles for dual magnetic resonance/fluorescent molecular imaging of prostate cancer. Int. J. Nanomed. 2017, 12, 6787–6797. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Chandrasekharan, P.; Liu, X.-L.; Yang, Y.; Lv, Y.-B.; Yang, C.-T.; Ding, J. Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T1-weighted MR imaging. Biomaterials 2014, 35, 1636–1642. [Google Scholar] [CrossRef]
- Gu, W.; Song, G.; Li, S.; Shao, C.; Yan, C.; Ye, L. Chlorotoxin-conjugated, PEGylated Gd2O3 nanoparticles as a glioma-specific magnetic resonance imaging contrast agent. RSC Adv. 2014, 4, 50254–50260. [Google Scholar] [CrossRef]
- Cho, M.; Sethi, R.; Narayanan, J.S.A.; Lee, S.S.; Benoit, D.N.; Taheri, N.; Decuzzi, P.; Colvin, V.L. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging. Nanoscale 2014, 6, 13637–13645. [Google Scholar] [CrossRef]
- Khue, N.T.T.; Tam, L.T.T.; Dung, N.T.; Tam, L.T.; Chung, N.X.; Linh, N.T.N.; Vinh, N.D.; Quy, B.M.; Lu, L. Water-dispersible Gadolinium Oxide Nanoplates as an Effective Positive Magnetic Resonance Imaging Contrast Agent. ChemistrySelect 2022, 7, e202202062. [Google Scholar] [CrossRef]
- Cao, Y.C. Synthesis of Square Gadolinium-Oxide Nanoplates. J. Am. Chem. Soc. 2004, 126, 7456–7457. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Yuan, Q.; Dong, K.; Jiang, L.; Li, Z.; Ren, J.; Qu, X. Hybrid mesoporous gadolinium oxide nanorods: A platform for multimodal Imaging and Enhanced Insoluble Anticancer Drug Delivery with Low Systemic toxicity. J. Mater. Chem. 2012, 22, 14982–14990. [Google Scholar] [CrossRef]
- Jegadeesan, P.; Sen, S.; Padmaprabu, C.; Srivastava, S.K.; Das, A.; Amirthapandian, S. Morphological and optical investigations on Gd2O3 nanostructures. Inorg. Chem. Commun. 2023, 150, 110493. [Google Scholar] [CrossRef]
- Wyantuti, S.; Fadhilatunnisa, B.; Fauzia, R.P.; Jia, Q.; Rahmani, A.A.; Irkham; Bahti, H.H. Response surface methodology box-behnken design to optimise the hydrothermal synthesis of gadolinium nanoparticles. Chin. J. Anal. Chem. 2023, 51, 100316. [Google Scholar] [CrossRef]
- Kang, J.-G.; Min, B.-K.; Sohn, Y. Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram. Int. 2015, 41, 1243–1248. [Google Scholar] [CrossRef]
- Mulugeta, E.; Tegafaw, T.; Liu, Y.; Zhao, D.; Baek, A.; Kim, J.; Chang, Y.; Lee, G.H. Synthesis, Characterization, Magnetic Properties, and Applications of Carbon Dots as Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents: A Review. Nanomaterials 2025, 15, 542. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 2013, 85, 111–123. [Google Scholar] [CrossRef]
- Billinge, S.J.L. The rise of the X-ray atomic pair distribution function method: A series of fortunate events. Philos. Trans. R. Soc. A 2019, 377, 20180413. [Google Scholar] [CrossRef] [PubMed]
- Whba, F.; Mohamed, F.; Rosli, N.R.A.M.; Rahman, I.A.; Idris, M.I. The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique. Radiat. Phys. Chem. 2021, 179, 109212. [Google Scholar] [CrossRef]
- Mahajan, S.V.; Dickerson, J.H. Synthesis of monodisperse Sub-3 nm RE2O3 and Gd2O3:RE3+ nanocrystals. Nanotechnology 2007, 18, 325605. [Google Scholar] [CrossRef]
- Rahmani, A.A.; Jia, Q.; Bahti, H.H.; Fauzia, R.P.; Wyantuti, S. Recent advances in lanthanide-based nanoparticle contrast agents for magnetic resonance imaging: Synthesis, characterization, and applications. OpenNano 2025, 21, 100226. [Google Scholar] [CrossRef]
- Siribbal, M.S.; Jurewicz, A.; Hassan, M.; Iqbal, S.; Hu, Z.; Uvdal, K.; Hussain, M.S.; Mathur, S.; Ilyas, S. Biocompatible Hollow Gadolinium Oxide Nanocarriers for the Transport of Bioactive Molecules to Cells. ACS Appl. Nano Mater. 2024, 7, 12408–12419. [Google Scholar] [CrossRef]
- Ahmad, M.Y.; Yue, H.; Tegafaw, T.; Liu, S.W.; Ho, S.L.; Lee, G.H.; Nam, S.W.; Chang, Y.M. Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics 2021, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.L.; Choi, G.; Yue, H.; Kim, H.-K.; Jung, K.-H.; Park, J.A.; Kim, M.H.; Lee, Y.J.; Kim, J.Y.; Miao, X.; et al. In Vivo neutron capture therapy of cancer using ultrasmall gadolinium oxide nanoparticles with cancer-targeting ability. RSC Adv. 2020, 10, 865–874. [Google Scholar] [CrossRef]
- Kunc, F.; Gallerneault, M.; Kodra, O.; Brinkmann, A.; Lopinski, G.P.; Johnston, L.J. Surface chemistry of metal oxide nanoparticles: NMR and TGA quantification. Anal. Bioanal. Chem. 2022, 414, 4409–4425. [Google Scholar] [CrossRef]
- Kim, C.R.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Lee, G.H. Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field. Phys. Chem. Chem. Phys. 2014, 16, 19866–19873. [Google Scholar] [CrossRef]
- Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Jin, S.; Baeck, J.S.; Chang, Y.; et al. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials 2012, 33, 3254–3261. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, S.J.; Lee, G.H.; Jin, S.; Chang, Y.; Bae, J.E.; Chae, K.S. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image. J. Korean Phys. Soc. 2015, 66, 1295–1302. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef] [PubMed]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar]
- Sun, X.; Kou, B. Biocompatibility and potential anticancer activity of gadolinium oxide (Gd2O3) nanoparticles against nasal squamous cell carcinoma. BMC Biotechnol. 2024, 24, 53. [Google Scholar] [CrossRef]
- Frencken, A.L.; Blasiak, B.; Tomanek, B.; Kruk, D.; van Veggel, F.C.J.M. Utilizing T1- and T2-Specific Contrast Agents as “Two Colors” MRI Correlation. Materials 2025, 18, 2290. [Google Scholar] [CrossRef]
- Dash, A.; Blasiak, B.; Tomanek, B.; van Veggel, F.C.J.M. Validation of Inner, Second, and Outer Sphere Contributions to T1 and T2 Relaxation in Gd3+-Based Nanoparticles Using Eu3+ Lifetime Decay as a Probe. J. Phys. Chem. C 2018, 122, 11557–11569. [Google Scholar] [CrossRef]
- Faucher, L.; Guay-Bégin, A.-A.; Lagueux, J.; Côté, M.-F.; Petitclerc, É.; Fortin, M.-A. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI. Contrast Media Mol. Imaging 2011, 6, 209–218. [Google Scholar] [CrossRef]
- Yin, J.; Wang, X.; Zheng, H.; Zhang, J.; Qu, H.; Tian, L.; Zhao, F.; Shao, Y. Silica Nanoparticles Decorated with Gadolinium Oxide Nanoparticles for Magnetic Resonance and Optical Imaging of Tumors. ACS Appl. Nano Mater. 2021, 4, 3767–3779. [Google Scholar] [CrossRef]
- Shen, Z.; Fan, W.; Yang, Z.; Liu, Y.; Bregadze, V.I.; Mandal, S.K.; Yung, B.C.; Lin, L.; Liu, T.; Tang, W.; et al. Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors. Small 2019, 15, 1903422. [Google Scholar] [CrossRef] [PubMed]
- Mekuria, S.L.; Debele, T.A.; Tsai, H.-C. Encapsulation of Gadolinium Oxide Nanoparticle (Gd2O3) Contrasting Agents in PAMAM Dendrimer Templates for Enhanced Magnetic Resonance Imaging in Vivo. ACS Appl. Mater. Interfaces 2017, 9, 6782–6795. [Google Scholar] [CrossRef] [PubMed]
- Bridot, J.-L.; Faure, A.-C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J.-L.; Vander Elst, L.; et al. Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging. J. Am. Chem. Soc. 2007, 129, 5076–5084. [Google Scholar] [CrossRef]
- Wang, F.; Peng, E.; Zheng, B.; Li, S.F.Y.; Xue, J.M. Synthesis of Water-Dispersible Gd2O3/GO Nanocomposites with Enhanced MRI T1 Relaxivity. J. Phys. Chem. C 2015, 119, 23735–23742. [Google Scholar] [CrossRef]
- Kryza, D.; Taleb, J.; Janier, M.; Marmuse, L.; Miladi, I.; Bonazza, P.; Louis, C.; Perriat, P.; Roux, S.; Tillement, O.; et al. Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent. Bioconjug. Chem. 2011, 22, 1145–1152. [Google Scholar] [CrossRef]
- Ahrén, M.; Selegård, L.; Klasson, A.; Söderlind, F.; Abrikossova, N.; Skoglund, C.; Bengtsson, T.; Engström, M.; Käll, P.-O.; Uvdal, K. Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement. Langmuir 2010, 26, 5753–5762. [Google Scholar] [CrossRef]
- Ramalho, J.; Ramalho, M.; Jay, M.; Burke, L.M.; Semelka, R.C. Gadolinium toxicity and treatment. Magn. Reson. Imaging 2016, 34, 1394–1398. [Google Scholar] [CrossRef]
- Grobner, T.; Prischl, F.C. Gadolinium and nephrogenic systemic fibrosis. Kidney Int. 2007, 72, 260–264. [Google Scholar] [CrossRef]
- Garcia, J.; Liu, S.Z.; Louie, A.Y. Biological effects of MRI contrast agents: Gadolinium retention, potential mechanisms and a role for phosphorus. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170180. [Google Scholar] [CrossRef] [PubMed]
- Kloc, M.; Halasa, M.; Wosik, J.; Ghobrial, R.M. Gadolinium-based MRI contrast agent effects on calcium signaling and actin-dependent cell functions. Magn. Med. 2025, 1, 100004. [Google Scholar] [CrossRef]
- Saadh, M.J.; Haddad, M.; Dababneh, M.F.; Bayan, M.F.; Al-Jaidi, B.A. A Guide for Estimating the Maximum Safe Starting Dose and Conversion it between Animals and Humans. Syst. Rev. Pharm. 2020, 11, 98–101. [Google Scholar]
- Cheong, B.Y.C.; Wilson, J.M.; Preventza, O.A.; Muthupillai, R. Gadolinium-Based Contrast Agents: Updates and Answers to Typical Questions Regarding Gadolinium Use. Tex. Heart Inst. J. 2022, 49, e217680. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.L.; Cha, H.; Oh, I.T.; Jung, K.-H.; Kim, M.H.; Lee, Y.J.; Miao, X.; Tegafaw, T.; Ahmad, M.Y.; Chae, K.S.; et al. Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Adv. 2018, 8, 12653–12665. [Google Scholar] [CrossRef]
- Stoddart, M.J. Mammalian Cell Viability: Methods and Protocols; Humana Press: New York, NY, USA, 2011. [Google Scholar]
- Kamiloglu, S.; Sari, G.; Ozdal, T.; Capanoglu, E. Guidelines for cell viability assays. Food Front. 2020, 1, 332–349. [Google Scholar] [CrossRef]
- Ahmad, M.Y.; Liu, S.; Tegafaw, T.; Saidi, A.K.A.A.; Zhao, D.; Liu, Y.; Lee, S.; Kim, S.; Yang, S.H.; Hwang, D.W.; et al. Biotin-Conjugated Poly(Acrylic Acid)-Grafted Ultrasmall Gadolinium Oxide Nanoparticles for Enhanced Tumor Imaging. Eur. J. Inorg. Chem. 2023, 26, e202300430. [Google Scholar] [CrossRef]
- Li, X.D.; Sun, Y.H.; Ma, L.N.; Liu, G.F.; Wang, Z.X. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020, 25, 5072. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, C.; Wang, S.; Li, Q.; Zhang, M.; Li, J.; Xu, K. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 547–555. [Google Scholar] [CrossRef]
- Ashouri, H.; Riyahi Alam, N.; Khoobi, M.; Haghgoo, S.; Rasouli, Z.; Gholami, M. NSF evaluation of gadolinium biodistribution in renally impaired rats: Using novel metabolic Gd2O3 nanoparticles coated with β-cyclodextrin (Gd2O3@PCD) in MR molecular Imaging. Magn. Reson. Imaging 2024, 107, 120–129. [Google Scholar] [CrossRef]
- Sarikhani, A.; Alamzadeh, Z.; Beik, J.; Irajirad, R.; Mirrahimi, M.; Mahabadi, V.P.; Kamrava, S.K.; Ghaznavi, H.; Khoei, S. Ultrasmall Fe3O4 and Gd2O3 hybrid nanoparticles for T1-weighted MR imaging of cancer. Cancer Nanotechnol. 2022, 13, 43. [Google Scholar] [CrossRef]
- Xie, M.; Xu, Y.; Huang, J.; Li, Y.; Wang, L.; Yang, L.; Mao, H. Going Even Smaller: Engineering Sub-5 nm Nanoparticles for Improved Delivery, Biocompatibility and Functionality. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1644. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lu, X.; Lu, Y.; Shi, M.; Guo, S.; Feng, J.; Yang, S.; Xiong, W.; Xu, Y.; Yan, C.; et al. Kilogram-Scale Synthesis of Extremely Small Gadolinium Oxide Nanoparticles as a T1-Weighted Contrast Agent for Magnetic Resonance Imaging. Small 2024, 20, 2308547. [Google Scholar] [CrossRef]
- Tian, X.; Yang, F.; Yang, C.; Peng, Y.; Chen, D.; Zhu, J.; He, F.; Li, L.; Chen, X. Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo. Int. J. Nanomed. 2014, 9, 4043–4053. [Google Scholar] [CrossRef]
- Longmire, M.; Choyke, P.L.; and Kobayashi, H. Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef]
- Zheng, C.; Tian, X.; Cai, J.; Huang, L.; Wang, S.; Yang, F.; Ma, Y.; Xie, F.; Li, L. In vivo immunotoxicity of Gd2O3: Eu3+ nanoparticles and the associated molecular mechanism. J. Biochem. Mol. Toxicol. 2020, 34, e22562. [Google Scholar] [CrossRef] [PubMed]
- Roch, A.; Gossuin, Y.; Muller, R.N.; Gillis, P. Superparamagnetic colloid suspensions: Water magnetic relaxation and clustering. J. Magn. Magn. Mater. 2005, 293, 532–539. [Google Scholar] [CrossRef]
- Roch, A.; Muller, R.N.; Gillis, P. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 1999, 110, 5403–5411. [Google Scholar] [CrossRef]
- Lauffer, R.B. Paramagnetic Metal Complexes as Water Proton Relaxation Agents for NMR Imaging: Theory and Design. Chem. Rev. 1987, 87, 901–927. [Google Scholar] [CrossRef]
- Carniato, F.; Thangavel, K.; Tei, L.; Botta, M. Structure and dynamics of the hydration shells of citrate-coated GdF3 nanoparticles. J. Mater. Chem. B 2013, 1, 2442–2446. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Choi, E.S.; Baek, M.J.; Lee, G.H.; Woo, S.; Chang, Y. Water-Soluble Ultra Small Paramagnetic or Superparamagnetic Metal Oxide Nanoparticles for Molecular MR Imaging. Eur. J. Inorg. Chem. 2009, 2009, 2477–2481. [Google Scholar] [CrossRef]
- Guay-Bégin, A.-A.; Chevallier, P.; Faucher, L.; Turgeon, S.; Fortin, M.-A. Surface Modification of Gadolinium Oxide Thin Films and Nanoparticles Using Poly(ethylene glycol)-Phosphate. Langmuir 2012, 28, 774–782. [Google Scholar] [CrossRef]
- Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Lee, J.J.; Jin, S.; Baeck, J.S.; et al. A Facile Synthesis, In Vitro and In Vivo MR Studies of d-Glucuronic Acid-Coated Ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) Nanoparticles as a New Potential MRI Contrast Agent. ACS Appl. Mater. Interfaces 2011, 3, 3325–3334. [Google Scholar] [CrossRef]
- Xu, W.; Park, J.Y.; Kattel, K.; Ahmad, M.W.; Bony, B.A.; Heo, W.C.; Jin, S.; Park, J.W.; Chang, Y.; Kim, T.J.; et al. Fluorescein-polyethyleneimine coated gadolinium oxide nanoparticles as T1 magnetic resonance imaging (MRI)–cell labeling (CL) dual agents. RSC Adv. 2012, 2, 10907–10915. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, Z.; Zhang, Z.; Zhou, Z.; Yang, L.; Wang, L.; Ai, H.; Gao, J. Geometrically Confined Ultrasmall Gadolinium Oxide Nanoparticles Boost the T1 Contrast Ability. Nanoscale 2016, 8, 3768–3774. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Ahmad, M.Y.; Ul-Islam, M.; Xu, W.; Tegafaw, T.; Wazwaz, A.A.; Ibrehem, A.S.; Khan, M.S.; Oh, I.-T.; Chae, K.S.; et al. Synthesis, MR Relaxivities, and In Vitro Cytotoxicity of 3,5-Diiodo-L-Tyrosine-Coated Gd2O3 Nanoparticles. Bionanoscience 2019, 9, 179–185. [Google Scholar] [CrossRef]
- Miao, X.; Yue, H.; Ho, S.L.; Cha, H.; Marasini, S.; Ghazanfari, A.; Ahmad, M.Y.; Liu, S.; Tegafaw, T.; Chae, K.-S.; et al. Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles. Bionanoscience 2021, 11, 380–389. [Google Scholar] [CrossRef]
- Rahman, A.T.M.A.; Majewski, P.; Vasilev, K. Gd2O3 nanoparticles: Size-dependent nuclear magnetic resonance. Contrast Media Mol. Imaging 2013, 8, 92–95. [Google Scholar] [CrossRef]
- Gossuin, Y.; Hocq, A.; Vuong, Q.L.; Disch, S.; Hermann, R.P.; Gillis, P. Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles. Nanotechnology 2008, 19, 475102. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, V.S.; Neumann, O.; Henderson, L.; Kaffes, C.C.; Zhang, H.; Zhang, R.; Bishnoi, S.; Ayala-Orozco, C.; Zucolotto, V.; Bankson, J.A.; et al. Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proc. Natl. Acad. Sci. USA 2017, 114, 6960–6965. [Google Scholar] [CrossRef] [PubMed]
- Rinck, P.A.; Muller, R.N. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur. Radiol. 1999, 9, 998–1004. [Google Scholar] [CrossRef]
- Wu, J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef]
- Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front. Pharmacol. 2018, 9, 790. [Google Scholar] [CrossRef]
- Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res. 2021, 12, 500–525. [Google Scholar] [CrossRef] [PubMed]
- Marasini, S.; Yue, H.; Ho, S.L.; Park, J.A.; Kim, S.; Jung, K.-H.; Cha, H.; Liu, S.; Tegafaw, T.; Ahmad, M.Y.; et al. Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles. Nanomaterials 2021, 11, 1355. [Google Scholar] [CrossRef]
Method | Solvent | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Polyol | Polyol such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol |
|
| [51,52] |
DMSO | DMSO |
|
| [53] |
Thermal decomposition | High boiling point organic solvent such as oleic acid, oleylamine |
|
| [55] |
Hydrothermal | Water |
|
| [56] |
Characterization Technique | Information |
---|---|
TEM | Particle size, morphology |
ICP-AES | Gd concentration in aqueous solution sample |
XRD | Crystal structure |
DLS | Hydrodynamic diameter |
FT-IR | Surface coating |
TGA | Surface-coating amount |
Zeta potential | Surface charge |
VSM, MPMS | Magnetic properties |
MRI | r1, r2 values |
MTT, CCK-8, WST-1 | in vitro cellular toxicity |
NP | Synthesis Method | Ligand | Size (nm) | r1 (s−1mM−1) | r2 (s−1mM−1) | H (tesla) | T (°C) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
TEM | DLS | ||||||||
Gd2O3 | polyol | Succinic acid | 1.3 | 4.11 | 12.5 | 15.4 | 1.5 | 22 | [71] |
Glutaric acid | 1.3 | 4.15 | 13 | 13.2 | |||||
Terephthalic acid | 1.3 | 4.19 | 11.6 | 14.4 | |||||
PEI-1300 | 1.3 | 12.71 | 8 | 9.1 | |||||
PEI-10,000 | 1.3 | 13.87 | 5.1 | 7.6 | |||||
D-glucuronic acid | 2.4 | 4.25 | 27.11 | ||||||
PAA-1200 | 2 | 10.3 | 5.6 | 36.6 | 1.5 | 22 | [75] | ||
PAA-5100 | 2 | 11.1 | 4.7 | 31 | |||||
PAA-15,000 | 2 | 11.3 | 4 | 29.2 | |||||
PEGD-600 | 0.9 | 14.18 | 19.15 | 1.5 | 22 | [136] | |||
D-glucuronic acid | 1 | 12.56 | 12.95 | ||||||
Lactobionic acid | 0.9 | 11.57 | 13.38 | ||||||
D-glucuronic acid | 1 | 4 | 9.9 | 10.5 | 1.5 | 22 | [64] | ||
DEG | 17 ± 2 | 2.1 | 2.8 | 1.5 | 25 | [137] | |||
PEG-phosphate (reaction in water) | 152 ± 20 | 10 | 14.2 | ||||||
PEG-phosphate (reaction in ethanol) | 68 ± 11 | 11.4 | 14.5 | ||||||
PEG-polysiloxane | 2.2 | 3.3 | 8.8 | 11.4 | 7 | 25 | [109] | ||
3.8 | 5.2 | 8.8 | 28.8 | ||||||
4.6 | 8.9 | 4.4 | 28.9 | ||||||
D-glucuronic acid | 2.4 | 4.25 | 27.11 | 1.5 | 22 | [138] | |||
Fluorescein-polyethyleneimine | 3.92 | 7.5 | 6.76 | 20.27 | 1.5 | 22 | [139] | ||
PEG | 1.3 | 9.1 | 16.2 | 17.7 | 0.47 | [73] | |||
14.2 | 17.2 | 1.41 | |||||||
10.9 | 15.9 | 7 | |||||||
10.4 | 17.2 | 11.7 | |||||||
MSN | 2.3 | 62.25 | 45.08 | 48.81 | 0.5 | [140] | |||
16.95 | 7 | ||||||||
D-Glucuronic acid | 1.3 | 6.2 | 24 ± 2 | 60 ± 5 | 1.5 | 22 | [97] | ||
PEGD-250 | 9.7 | 5 ± 1 | 55 ± 2 | ||||||
PEGD-600 | 12.1 | 0.1 ± 0.1 | 10 ± 1 | ||||||
3,5-Diiodo-L-tyrosine | 2 | 9.24 | 38.27 | 1.5 | [141] | ||||
Carbon | 3.1 | 18.9 | 16.26 | 24.12 | 1.5 | 22 | [69] | ||
PAA5100 | 2 | 6.3 | 31 | 37.4 | 1.5 | 22 | [51] | ||
Polyaspartic acid | 2 | 12.7 | 19.1 | 53.7 | 3 | 22 | [63] | ||
Apoferritin-D-Glucuronic acid | 1.9 | 29.1 | 8.7 | 15.7 | 1.5 | 22 | [142] | ||
PVP | 2.5 | 10.28 | 14.47 | 3 | [68] | ||||
DEG | 13 | 1.14 | 13.5 | 3 | [70] | ||||
TEG | 16 | 2.6 | 16.4 | ||||||
TeEG | 19 | 3.99 | 22.6 | ||||||
PEG | 21 | 5.75 | 28.7 | ||||||
Dextran | 1.5 | 12.4 | 12.2 | 29.3 | 1.5 | 22 | [66] | ||
Poly(acrylic acid-co-maleic acid) (PAAMA) | 1.8 | 9 | 40.6 | 63.4 | 3 | 22 | [61] | ||
Poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) | 1.9 | 19.8 | 36.2 | 74 | 3 | 22 | [58] | ||
PEG | <3 | 2.8 | 9.4 | 13.4 | 1.5 | 19.5 | [72] | ||
DEG | <3 | 6.4 | 15.2 | ||||||
PEG | <40 | 0.1 | 7.6 | ||||||
Gd2O3 | DMSO | 4.7 | 5–10 | 6.9 | 7.9 | 1.41 | [53] | ||
5(6)-carboxyfluorescein-polyethylene glycol-bombesin | 52.3 | 90.6 | 4.23 | 3 | [77] | ||||
TEG based carboxylate ligand | 4 | 13 | 6.4 | 9.1 | 1.41 | [76] | |||
Gd2O3 | Thermal decomposition | PVP | 2.9 | 15.7 | 12.123 | 33.184 | 7 | 36 | [78] |
N-Dodecyl-PEI-PEG | 9.1 | 95 | 14.13 | 9.4 | [55] | ||||
PAA-OA | 2 | 27.8 | 47.2 | 82.4 | 1.41 | [80] | |||
5 | 28.1 | 45.6 | 75.1 | ||||||
8 | 31.2 | 33.7 | 70.0 | ||||||
11 | 33.0 | 32.4 | 67.3 | ||||||
22 | 47.1 | 21.1 | 32.4 | ||||||
poly (maleic anhydride-alt-1-octadecene) polymer | 10 × 1.1 | 32 | 16.95 | 1.5 | [81] | ||||
CTX-PEG-TETT | 9.09 | 8.41 | 7 | [79] | |||||
Gd2O3 | Hydrothermal | Hyaluronic acid | 105 | 6 | 3 | [46] | |||
CA | 100 ± 20 | 233.7 ± 10 | 1.8 | 5.3 | 1.41 | 40 | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulugeta, E.; Tegafaw, T.; Liu, Y.; Zhao, D.; Chen, X.; Baek, A.; Kim, J.; Chang, Y.; Lee, G.H. Current Status and Future Aspects of Gadolinium Oxide Nanoparticles as Positive Magnetic Resonance Imaging Contrast Agents. Nanomaterials 2025, 15, 1340. https://doi.org/10.3390/nano15171340
Mulugeta E, Tegafaw T, Liu Y, Zhao D, Chen X, Baek A, Kim J, Chang Y, Lee GH. Current Status and Future Aspects of Gadolinium Oxide Nanoparticles as Positive Magnetic Resonance Imaging Contrast Agents. Nanomaterials. 2025; 15(17):1340. https://doi.org/10.3390/nano15171340
Chicago/Turabian StyleMulugeta, Endale, Tirusew Tegafaw, Ying Liu, Dejun Zhao, Xiaoran Chen, Ahrum Baek, Jihyun Kim, Yongmin Chang, and Gang Ho Lee. 2025. "Current Status and Future Aspects of Gadolinium Oxide Nanoparticles as Positive Magnetic Resonance Imaging Contrast Agents" Nanomaterials 15, no. 17: 1340. https://doi.org/10.3390/nano15171340
APA StyleMulugeta, E., Tegafaw, T., Liu, Y., Zhao, D., Chen, X., Baek, A., Kim, J., Chang, Y., & Lee, G. H. (2025). Current Status and Future Aspects of Gadolinium Oxide Nanoparticles as Positive Magnetic Resonance Imaging Contrast Agents. Nanomaterials, 15(17), 1340. https://doi.org/10.3390/nano15171340