Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study
Abstract
1. Introduction
2. Computational Model and Methods
3. Results
3.1. Stability and Electronic Structure of Pristine and Te-Vacancy-Modified Fe3GeTe2 (001) Surfaces
3.2. Effect of Te Vacancy Sites on OER Performance of Fe3GeTe2 (001) Surface
3.3. Effect of Te Vacancy Concentration on OER Performance of Fe3GeTe2 (001) Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials. Adv. Energy Mater. 2020, 10, 1903120. [Google Scholar] [CrossRef]
- Turner, J.A. A Realizable Renewable Energy Future. Science 1999, 285, 687–689. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Ifkovits, Z.P.; Evans, J.M.; Meier, M.C.; Papadantonakis, K.M.; Lewis, N.S. Decoupled electrochemical water-splitting systems: A review and perspective. Energy Environ. Sci. 2021, 14, 4740–4759. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T.J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800–3821. [Google Scholar] [CrossRef]
- Zhang, X.; Bieberle-Hutter, A. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. ChemSusChem 2016, 9, 1223–1242. [Google Scholar] [CrossRef]
- Wang, G.; Tsai, D.-S.; Huang, Y.-S.; Korotcov, A.; Yeh, W.-C.; Susanti, D. Selective growth of IrO2 nanorods using metalorganic chemical vapor deposition. J. Mater. Chem. 2006, 16, 780–786. [Google Scholar] [CrossRef]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. [Google Scholar] [CrossRef]
- Lim, J.; Park, D.; Jeon, S.S.; Roh, C.W.; Choi, J.; Yoon, D.; Park, M.; Jung, H.; Lee, H. Ultrathin IrO2 Nanoneedles for Electrochemical Water Oxidation. Adv. Funct. Mater. 2017, 28, 1704796. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, X.; Ma, Z.; Dong, K.; Miao, L.; Du, S. Highly Efficient and Stable Mn-Co(1.29)Ni(1.71)O(4) Electrocatalysts for Alkaline Water Electrolysis: Atomic Doping Strategy for Enhanced OER and HER Performance. Molecules 2025, 30, 1162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.R.; Gao, D.; Ding, J.; Chao, D.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 2018, 47, 4332–4356. [Google Scholar] [CrossRef]
- Liu, H.J.; Luan, R.N.; Li, L.Y.; Lv, R.Q.; Chai, Y.M.; Dong, B. Sulphur-dopant induced breaking of the scaling relation on low-valence Ni sites in nickel ferrite nanocones for water oxidation with industrial-level current density. Chem. Eng. J. 2013, 461, 141714. [Google Scholar] [CrossRef]
- Fan, R.Y.; Xie, J.Y.; Liu, H.J.; Wang, H.Y.; Li, M.X.; Yu, N.; Luan, R.N.; Chai, Y.M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 2022, 134040. [Google Scholar] [CrossRef]
- Shih, Y.-J.; Su, C.-C.; Huang, Y.-H.; Lu, M.-C. SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution. Energy 2013, 54, 263–270. [Google Scholar] [CrossRef]
- Papavasileiou, A.V.; Menelaou, M.; Sarkar, K.J.; Sofer, Z.; Polavarapu, L.; Mourdikoudis, S. Ferromagnetic Elements in Two-Dimensional Materials: 2D Magnets and Beyond. Adv. Funct. Mater. 2023, 34, 2309046. [Google Scholar] [CrossRef]
- Ke, J.; Zhu, W.; Ji, Y.; Chen, J.; Li, C.; Wang, Y.; Wang, Q.; Huang, W.H.; Hu, Z.; Li, Y.; et al. Optimizing Acidic Oxygen Evolution Reaction via Modulation Doping in Van der Waals Layered Iridium Oxide. Angew. Chem. Int. Ed. Engl. 2025, 137, e202422740. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R.K. Fe3GeTe2 and Ni3GeTe2—Two New Layered Transition-Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties. Eur. J. Inorg. Chem. 2006, 2006, 1561–1567. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe(3)GeTe(2). Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Tan, C.; Lee, J.; Jung, S.G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M.R.; McCulloch, D.G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe(3)GeTe(2). Nat. Commun. 2018, 9, 1554. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, J.; Chen, Z. Oxygen Evolution Reaction on 2D Ferromagnetic Fe3GeTe2: Boosting the Reactivity by the Self-Reduction of Surface Hydroxyl. Adv. Funct. Mater. 2019, 29, 1904782. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Jiang, S.; Xiong, H.; Fu, X.; Shang, S.; Xu, J.; He, G.; Chen, P.C. Plasma-activated 2D CuMnO2 nanosheet catalysts with rich oxygen vacancies for efficient CO2 electroreduction. Appl. Catal. B Environ. Energy 2025, 371, 125255. [Google Scholar] [CrossRef]
- Shao, G.; Xu, J.; Gao, S.; Zhang, Z.; Liu, S.; Zhang, X.; Zhou, Z. Unsaturated bi-heterometal clusters in metal-vacancy sites of 2D MoS2 for efficient hydrogen evolution. Carbon Energy 2023, 6, e417. [Google Scholar] [CrossRef]
- Ma, Z.; Xiao, C.; Cui, Z.; Du, W.; Li, Q.; Sa, R.; Sun, C. Defective Fe3GeTe2 monolayer as a promising electrocatalyst for spontaneous nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6945–6954. [Google Scholar] [CrossRef]
- Cho, S.; Kang, S.H.; Yu, H.S.; Kim, H.W.; Ko, W.; Hwang, S.W.; Han, W.H.; Choe, D.-H.; Jung, Y.H.; Chang, K.J.; et al. Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride. 2D Mater. 2017, 4, 021030. [Google Scholar] [CrossRef]
- Hou, F.; Yao, Q.; Zhou, C.S.; Ma, X.M.; Han, M.; Hao, Y.J.; Wu, X.; Zhang, Y.; Sun, H.; Liu, C.; et al. Te-Vacancy-Induced Surface Collapse and Reconstruction in Antiferromagnetic Topological Insulator MnBi(2)Te(4). ACS Nano 2020, 14, 11262–11272. [Google Scholar] [CrossRef]
- Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750. [Google Scholar] [CrossRef]
- Himmetoglu, B.; Floris, A.; de Gironcoli, S.; Cococcioni, M. Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems. Int. J. Quantum Chem. 2014, 114, 14–49. [Google Scholar] [CrossRef]
- Li, Q.; Yang, M.; Gong, C.; Chopdekar, R.V.; N’Diaye, A.T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E.; et al. Patterning-Induced Ferromagnetism of Fe(3)GeTe(2) van der Waals Materials beyond Room Temperature. Nano Lett. 2018, 18, 5974–5980. [Google Scholar] [CrossRef] [PubMed]
- Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van de Walle, C.G. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014, 86, 253–305. [Google Scholar] [CrossRef]
- Bo, G.; Li, P.; Fan, Y.; Zheng, X.; Zhao, M.; Zhu, Q.; Fu, Y.; Li, Y.; Pang, W.K.; Lai, W.H.; et al. 2D Ferromagnetic M(3)GeTe(2) (M = Ni/Fe) for Boosting Intermediates Adsorption toward Faster Water Oxidation. Adv. Sci. 2024, 11, e2310115. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Qu, Z.W.; Zhu, H.; Kroes, G.J.; Nørskov, J.K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Man, I.C.; Su, H.Y.; Calle-Vallejo, F.; Hansen, H.A.; Martínez, J.I.; Inoglu, N.G.; Kitchin, J.; Jaramillo, T.F.; Nørskov, J.K.; Rossmeisl, J. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem 2011, 3, 1159–1165. [Google Scholar] [CrossRef]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Liang, Q.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 2021, 3, 026001. [Google Scholar] [CrossRef]
- Dong, G.; Liu, J.; Xu, X.; Pan, J.; Hu, J. A controllable cobalt-doping improve electrocatalytic activity of ZnO basal plane for oxygen evolution reaction: A first-principles calculation study. J. Electroanal. Chem. 2023, 932, 117191. [Google Scholar] [CrossRef]
- Liang, Q.; Brocks, G.; Sinha, V.; Bieberle-Hutter, A. Tailoring the Performance of ZnO for Oxygen Evolution by Effective Transition Metal Doping. ChemSusChem 2021, 14, 3064–3073. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Su, W.; Qiu, Y.; Shan, D.; Pan, J. Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study. Nanomaterials 2025, 15, 1272. https://doi.org/10.3390/nano15161272
Gao Y, Su W, Qiu Y, Shan D, Pan J. Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study. Nanomaterials. 2025; 15(16):1272. https://doi.org/10.3390/nano15161272
Chicago/Turabian StyleGao, Yunjie, Wei Su, Yuan Qiu, Dan Shan, and Jing Pan. 2025. "Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study" Nanomaterials 15, no. 16: 1272. https://doi.org/10.3390/nano15161272
APA StyleGao, Y., Su, W., Qiu, Y., Shan, D., & Pan, J. (2025). Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study. Nanomaterials, 15(16), 1272. https://doi.org/10.3390/nano15161272