Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of V2O5@Wood
2.3. Preparation of VOx@Wood
3. Results and Discussion
3.1. Microstructural Characterization of VOx@Wood at Different Temperatures
3.2. Performance Testing of VOx@Wood at Different Temperatures
3.3. Electrochemical Performance Testing of VOx@Wood at 800 °C
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, W.; Liu, X.; Song, H.; Xie, Y.; Shi, X.; Dargusch, M.; Chen, Z.-G.; Tang, Z.; Lu, S. Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today 2021, 40, 101273. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Yang, Y.; Wang, C.; Zhao, D.; Ji, X.; Liu, Y.; Yang, G.; Chen, J.; Ni, Y.; et al. Ternary systems engineered conductive hydrogel with extraordinary strength and environmental adaptability for flexible power supply devices. Energy Storage Mater. 2024, 70, 103483. [Google Scholar] [CrossRef]
- Guo, Z.; Han, X.; Zhang, C.; He, S.; Liu, K.; Hu, J.; Yang, W.; Jian, S.; Jiang, S.; Duan, G. Activation of biomass-derived porous carbon for supercapacitors: A review. Chin. Chem. Lett. 2024, 35, 109007. [Google Scholar] [CrossRef]
- Sohtun, P.; Deb, D.; Bora, N.; Goswami, R.; Choudhury, P.K.; Boddula, R.; Sarangi, P.K.; Kataki, R.; Kurniawan, T.A. Agriculture biomass-derived carbon materials for their application in sustainable energy storage. Carbon Lett. 2025, 35, 481–513. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Zhu, S.; Ma, H.; Yue, Y.; Wu, Q.; Xiao, H.; Han, J. Biomimetic and electrostatic self-assembled nanocellulose/MXene films constructed with sequential bridging strategy for flexible supercapacitor. Chem. Eng. J. 2024, 495, 153552. [Google Scholar] [CrossRef]
- Yu, Y.; Li, M.; Sun, M.; Yang, Z.; Liu, Y.; Hu, S.; Zhou, J.; Li, Y.; Yang, H.; Wang, C. Bone-inspired MXene nano aerogels toward self-electricity generation and capacitive energy storage. Nano Today 2024, 59, 102538. [Google Scholar] [CrossRef]
- Panda, P.K.; Sung, P.-Y.; Dash, P.; Hsieh, C.-T.; Chang, J.-K.; Liu, W.-R. Exploiting high ionic conductivity of solid-state electrolytes by doping metal ions into NASICON-type ceramics for solid-state lithium batteries. Ceram. Int. 2025, 51, 34203–34212. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, H.; Zhang, W.; Lu, Y. Bioanode boosts efficacy of chlorobenzenes-powered microbial fuel cell. Bioresour. Technol. 2024, 405, 130936. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Si, Y.; Zhao, C.; Chen, T.; Li, C.; Zhang, C.; Wang, K. Biomass-derived carbon applications in the field of supercapacitors: Progress and prospects. Chem. Eng. J. 2024, 495, 153311. [Google Scholar] [CrossRef]
- Yu, Y.; Li, M.; Zhou, J.; Sun, M.; Sun, X.; Jiang, Z.; Li, Y.; Wang, C. Structural designs of wood-based thick electrodes for eco-supercapacitors. Nano Today 2024, 55, 102154. [Google Scholar] [CrossRef]
- Zhou, R.; Li, X.; Pang, H. VOx/VSx@ Graphene nanocomposites for electrochemical energy storage. Chem. Eng. J. 2021, 404, 126310. [Google Scholar] [CrossRef]
- Wang, S.; Chen, D.; Hong, Q.; Gui, Y.; Cao, Y.; Ren, G.; Liang, Z. Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications—A review. J. Mol. Liq. 2023, 389, 122821. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Seyedkanani, A.; Najafi, G.; Sasmito, A.P.; Akbarzadeh, A. Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Mater. 2023, 59, 102768. [Google Scholar] [CrossRef]
- Saini, S.; Chand, P.; Joshi, A. Biomass derived carbon for supercapacitor applications. J. Energy Storage 2021, 39, 102646. [Google Scholar] [CrossRef]
- Jeidi, H.; Ahmed, W.; Najeh, I.; Chouiref, L.; Montes-Morán, M.; Gomes, H.; Mir, L.E. Production and characterization of carbon-vanadium nanocomposites. J. Mater. Sci. Mater. Electron. 2022, 33, 22957–22970. [Google Scholar] [CrossRef]
- Swaminathan, S.; Mayandi, J. Phase-Selective Synthesis of Monoclinic VO2 (B) Nanosheets and Its Self-Assembled Nanoflower Binary Hybrids for Energy Storage. J. Electrochem. Soc. 2025, 172, 020512. [Google Scholar] [CrossRef]
- Sarr, S.; Sylla, N.F.; Bakhoum, D.T.; Ndiaye, N.M.; Tarimo, D.J.; Maphiri, V.M.; Ngom, B.D.; Manyala, N. Vanadium dioxide sulphur-doped reduced graphene oxide composite as novel electrode material for electrochemical capacitor. J. Energy Storage 2022, 55, 105666. [Google Scholar] [CrossRef]
- Gopalan, J.; Buthiyappan, A.; Raman, A.A.A. Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: A review. J. Ind. Eng. Chem. 2022, 113, 72–95. [Google Scholar] [CrossRef]
- Skoda, D.; Kazda, T.; Hanulikova, B.; Cech, O.; Vykoukal, V.; Michalicka, J.; Cudek, P.; Kuritka, I. Vanadium metal-organic frameworks derived VOx/Carbon nano-sheets and paperclip-like VOx/nitrogen-doped carbon nanocomposites for sodium-ion battery electrodes. Mater. Chem. Phys. 2022, 278, 125584. [Google Scholar] [CrossRef]
- Juggernauth, K.A.; Kim, M.; Kim, K.; Li, J.; McLane, A.A.; Lee, J.; Hart, A.J.; Ok, J.G. Carbon nanotube-mediated three-dimensional vanadium oxide nanoarchitectures with tunable morphology and translatable functionality. Ceram. Int. 2021, 47, 32342–32348. [Google Scholar] [CrossRef]
- Zuo, Y.; Feng, J.; Soyol-Erdene, T.-O.; Wei, Z.; Hu, T.; Zhang, Y.; Tang, W. Recent advances in wood-derived monolithic carbon materials: Synthesis approaches, modification methods and environmental applications. Chem. Eng. J. 2023, 463, 142332. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Purushothaman, K.K.; Muralidharan, G. V2O5/nitrogen enriched mesoporous carbon spheres nanocomposite as supercapacitor electrode. Microporous Mesoporous Mater. 2018, 258, 83–94. [Google Scholar] [CrossRef]
- Daniel, C.; Hartl, H. Neutral and Cationic VIV/VV Mixed-Valence Alkoxo-polyoxovanadium Clusters [V6O7 (OR) 12] n+(R=− CH3,− C2H5): Structural, Cyclovoltammetric and IR-Spectroscopic Investigations on Mixed Valency in a Hexanuclear Core. J. Am. Chem. Soc. 2005, 127, 13978–13987. [Google Scholar] [CrossRef]
- Hei, J.; Cheng, L.; Fu, Y.; Du, W.; Qian, Y.; Li, J.; Yin, Y.; Wang, N.; Su, L.; Wang, L. Uniformly confined V2O3 quantum dots embedded in biomass derived mesoporous carbon toward fast and stable energy storage. Ceram. Int. 2023, 49, 16002–16010. [Google Scholar] [CrossRef]
- He, W.; Qiang, H.; Liang, S.; Guo, F.; Wang, R.; Cao, J.; Guo, Z.; Pang, Q.; Wei, B.; Sun, J. Hierarchically porous wood aerogel/polypyrrole (PPy) composite thick electrode for supercapacitor. Chem. Eng. J. 2022, 446, 137331. [Google Scholar] [CrossRef]
- Ma, D.; Han, C.; Liu, B.; Chen, J.; Wu, M.; Guan, D. Vanadium Oxide-Based Electrode Materials for Advanced Supercapacitors: A Review. Energy Fuels 2024, 38, 10494–10516. [Google Scholar] [CrossRef]
- Zhou, T.; Bai, Q.; Chen, Y. Heterostructure of Ta5+-substituted Na3V2 (PO4) 3–TaN promoting the activation of V4+/V5+ redox couple for high performance sodium-ion batteries. J. Power Sources 2024, 604, 234472. [Google Scholar] [CrossRef]
- Melke, J.; Martin, J.; Bruns, M.; Hügenell, P.; Schökel, A.; Montoya Isaza, S.; Fink, F.; Elsässer, P.; Fischer, A. Investigating the effect of microstructure and surface functionalization of mesoporous N-doped carbons on V4+/V5+ kinetics. ACS Appl. Energy Mater. 2020, 3, 11627–11640. [Google Scholar] [CrossRef]
- Xu, J.; Lei, J.; Ming, N.; Zhang, C.; Huo, K. Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 2022, 32, 2204426. [Google Scholar] [CrossRef]
- Kim, A.; Kalita, G.; Kim, J.H.; Patel, R. Recent development in vanadium pentoxide and carbon hybrid active materials for energy storage devices. Nanomaterials 2021, 11, 3213. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, W.-H.; Wang, X.; Sun, X.; Jiang, Z.; Li, M.; Fu, X.; Yang, H.; Li, M.; Wang, C. Self-assembled MXene supported on carbonization-free wood for a symmetrical all-wood eco-supercapacitor. ACS Appl. Mater. Interfaces 2024, 16, 36322–36332. [Google Scholar] [CrossRef]
- Narayanan, A.P.; Unni, K.N.N.; Surendran, K.P. Aerogels of V2O5 Nanowires Reinforced by Polyaniline for Electromagnetic Interference Shielding. Chem. Eng. J. 2021, 408, 127239. [Google Scholar] [CrossRef]
- Ying, Z. In-Situ Transmission Electron Microscopy Study of Thermal Stability and Structural Transformation of Metal Nanocatalysts. Ph.D. Thesis, Hong Kong University of Science and Technology, Hong Kong, China, 2021. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:119385528 (accessed on 10 October 2023).
- Das, S.K.; Bharatiya, D.; Parhi, B.; Swain, S.K. Influential factors modulating the dielectric behaviour of transition metal oxide nanocomposites for energy storage applications: A-state-of-the-art review. J. Energy Storage 2023, 73, 108930. [Google Scholar] [CrossRef]
- Derkaoui, I.; Khenfouch, M.; Boukhoubza, I.; Achehboune, M.; Hatel, R.; Mothudi, B.; Zorkani, I.; Jorio, A.; Maaza, M. Microwave assisted growth of highly oriented vanadium oxides nanostructures: Structural, vibrational and electrical properties. Appl. Phys. A 2021, 127, 934. [Google Scholar] [CrossRef]
- Arenas-Esteban, D.; Urones-Garrote, E.; Carretero-Gonzalez, J.; Birss, V.; Otero-Díaz, L.C.; Avila-Brande, D. Organometallic-Derived Carbon (ODC)–Metal Nano-Oxide Composites as Improved Electrode Materials for Supercapacitors. Inorg. Chem. 2019, 58, 9175–9180. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Xiao, Z.; Dong, G.; Cheng, Y.; Fei, F.; Hu, X.; Xu, L.; Mai, L. Nanowires for Solid-State Lithium Batteries. Adv. Funct. Mater. 2025, 35, 2412548. [Google Scholar] [CrossRef]
- Zheng, K.; Zeng, Y.; Liu, S.; Zeng, C.; Tong, Y.; Zheng, Z.; Zhu, T.; Lu, X. Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors. Energy Storage Mater. 2019, 22, 410–417. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, Y. Dual redox reaction of V3+/V4+ and V4+/V5+ with in-situ carbonization of chitosan quaternary ammonium promoting sodium storage property and safety of Na3V2 (PO4) 3. Chem. Eng. J. 2024, 490, 151731. [Google Scholar] [CrossRef]
- Zabilska, A.; Clark, A.H.; Moskowitz, B.M.; Wachs, I.E.; Kakiuchi, Y.; Copéret, C.; Nachtegaal, M.; Krocher, O.; Safonova, O.V. Redox dynamics of active VO x sites promoted by TiO x during oxidative dehydrogenation of ethanol detected by operando quick XAS. JACS Au 2022, 2, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, I.; Kumar, E.R.; Suriyanarayanan, N.; Mohanraj, K.; Srinivas, C.; Mehar, M. Effect of Al doping concentration on the structural, optical, morphological and electrical properties of V2O5 nanostructures. New J. Chem. 2018, 42, 4278–4288. [Google Scholar] [CrossRef]
- Zubair, M.; Hassan, M.M.U.; Mehran, M.T.; Baig, M.M.; Hussain, S.; Shahzad, F. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A review. Int. J. Hydrogen Energy 2022, 47, 2794–2818. [Google Scholar] [CrossRef]
- Hu, P.; Hu, P.; Vu, T.D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium oxide: Phase diagrams, structures, synthesis, and applications. Chem. Rev. 2023, 123, 4353–4415. [Google Scholar] [CrossRef]
- Guo, P.; Biegler, Z.; Back, T.; Sarangan, A. Vanadium dioxide phase change thin films produced by thermal oxidation of metallic vanadium. Thin Solid Film. 2020, 707, 138117. [Google Scholar] [CrossRef]
- Berenguer, R.; Guerrero-Pérez, M.O.; Guzman, I.; Rodriguez-Mirasol, J.; Cordero, T. Synthesis of vanadium oxide nanofibers with variable crystallinity and V5+/V4+ ratios. ACS Omega 2017, 2, 7739–7745. [Google Scholar] [CrossRef]
- Pan, Y.; Sanati, S.; Abazari, R.; Jankowska, A.; Goscianska, J.; Srivastava, V.; Lassi, U.; Gao, J. Vanadium-and manganese-based metal-organic frameworks for potential environmental and catalysis applications. Coord. Chem. Rev. 2025, 522, 216231. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Q.; Zhao, Y.; Chen, T.; Wang, J.; Gui, L.; Lu, C. Recent progress and future directions of biomass-derived hierarchical porous carbon: Designing, preparation, and supercapacitor applications. Energy Fuels 2023, 37, 3523–3554. [Google Scholar] [CrossRef]
- Manasa, P.; Sambasivam, S.; Ran, F. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review. J. Energy Storage 2022, 54, 105290. [Google Scholar] [CrossRef]
- Mehek, R.; Iqbal, N.; Noor, T.; Ghazi, Z.A.; Umair, M. Metal–organic framework derived vanadium oxide supported nanoporous carbon structure as a bifunctional electrocatalyst for potential application in metal air batteries. RSC Adv. 2023, 13, 652–664. [Google Scholar] [CrossRef]
- Liang, F.; Zheng, R.; Zou, Z.; Long, F.; Zhang, S.; Zhong, S.; Jia, S.; Nong, J.; Wang, Y.; Song, L. Vanadium oxide-based battery materials. Ionics 2024, 30, 6729–6755. [Google Scholar] [CrossRef]
- Narayanan, A.P.; Surendran, K.P. Hydrothermal carbonization of V2O5 nanowires into aerogels for excellent green electromagnetic interference shielding. ACS Appl. Nano Mater. 2023, 6, 16065–16075. [Google Scholar] [CrossRef]
- Wenhui, T.; Penggang, R.; Xin, H.; Zhengzheng, G.; Runzhuo, X.; Zhengyan, C.; Yanling, J. Biomass derived N/O self-doped porous carbon for advanced supercapacitor electrodes. Ind. Crops Prod. 2023, 202, 117032. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Wang, K.; Xia, H. Coal slime waste: A promising precursor to develop highly porous activated carbon for supercapacitors. Carbon Lett. 2020, 30, 657–665. [Google Scholar] [CrossRef]
- Xiaodong, H.; Kelei, Z.; Dong, S.; Quanzhou, D.; Li, S.; Yujuan, C.; Guangyue, B.; Jianji, W. Nitrogen-doped agar-derived porous carbon with long cycle life for high-performance ionic liquid-based supercapacitors. Diam. Relat. Mater. 2023, 139, 110332. [Google Scholar] [CrossRef]
- Erman, T.; Apriwandi, A.; Sielvya, C.; Rika, T. Integrated pyrolysis approach of self-O-doped hierarchical porous carbon from yellow mangosteen fruit for excellent solid-state supercapacitor volumetric performance. Diam. Relat. Mater. 2023, 135, 109866. [Google Scholar] [CrossRef]
- Kim, J.-I.; Park, S.-J. A study of ion charge transfer on electrochemical behaviors of poly(vinylidene fluoride)-derived carbon electrodes. J. Anal. Appl. Pyrolysis 2012, 98, 22–28. [Google Scholar] [CrossRef]
Electrode Material | Gravimetric Capacitance | References |
---|---|---|
VOW-800 | 317.8 F g−1 | |
Monoclinic VO2(B) nanosheets | 232.56 F g−1 | [16] |
Vanadium dioxide sulfur-doped reduced graphene oxide | 204 F g−1 | [17] |
Coal slime-based activated carbon | 220 F g−1 | [53] |
Nitrogen-doped agar-derived porous carbon(NAGC) electrode material | 183 F g−1 | [54] |
Self-O-doped hierarchical porous carbon from yellow mangosteen fruit | 217 F g−1 | [55] |
Poly(vinylidene fluoride)-derived carbon electrodes | 249 F g−1 | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, Y.; Hu, Z.; Qiao, L.; Peng, H.; Xie, J.; Yang, H.; Wang, C. Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage. Nanomaterials 2025, 15, 1249. https://doi.org/10.3390/nano15161249
Wang Y, Yu Y, Hu Z, Qiao L, Peng H, Xie J, Yang H, Wang C. Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage. Nanomaterials. 2025; 15(16):1249. https://doi.org/10.3390/nano15161249
Chicago/Turabian StyleWang, Yu, Yuan Yu, Zhenle Hu, Lei Qiao, Huaiyuan Peng, Jingwen Xie, Haiyue Yang, and Chengyu Wang. 2025. "Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage" Nanomaterials 15, no. 16: 1249. https://doi.org/10.3390/nano15161249
APA StyleWang, Y., Yu, Y., Hu, Z., Qiao, L., Peng, H., Xie, J., Yang, H., & Wang, C. (2025). Hierarchical VOx@Wood Aerogel Electrodes with Tunable Valence States for Enhanced Energy Storage. Nanomaterials, 15(16), 1249. https://doi.org/10.3390/nano15161249