Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Tayari, F.; Teixeira, S.S.; Graca, M.P.F.; Nassar, K.I. Progress and Developments in the Fabrication and Characterization of Metal Halide Perovskites for Photovoltaic Applications. Nanomaterials 2025, 15, 613. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency (accessed on 21 July 2025).
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, F.; Kim, H.-B.; Choi, I.-W.; Wang, C.; Cho, E.; Konefal, R.; Puttisong, Y.; Terado, K.; Kobera, L.; et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 2022, 377, 495–501. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, B.; Wu, X.; Sheppard, S.A.; Zhang, S.; Gao, D.; Long, N.J.; Zhu, Z. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-W.; Lee, S.; Yeom, K.M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J.H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, R.; Zhuang, R.; Wu, T.; Xie, L.; Hua, Y. Slowing the hot-carrier cooling by an organic small molecule in perovskite solar cells. EcoMat 2023, 5, e12313. [Google Scholar] [CrossRef]
- Tayari, F.; Teixeira, S.S.; Graca, M.P.F.; Nassar, K.I. A Comprehensive Review of Recent Advances in Perovskite Materials: Electrical, Dielectric, and Magnetic Properties. Inorganics 2025, 13, 67. [Google Scholar] [CrossRef]
- Yin, Z.; Geng, H.; Yang, P.; Shi, B.; Fan, C.; Peng, Q.; Wu, H.; Jiang, Z. Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets. Int. J. Hydrogen Energy 2021, 46, 26550–26559. [Google Scholar] [CrossRef]
- Huang, S.; Huang, P.; Wang, L.; Han, J.; Chen, Y.; Zhong, H. Halogenated-methylammonium based 3D halide perovskites. Adv. Mater. 2019, 31, 1903830. [Google Scholar] [CrossRef]
- Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581–4610. [Google Scholar] [CrossRef]
- Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C.K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415. [Google Scholar] [CrossRef]
- Yang, L.; Feng, J.; Liu, Z.; Duan, Y.; Zhan, S.; Yang, S.; He, K.; Li, Y.; Zhou, Y.; Yuan, N.; et al. Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation. Adv. Mater. 2022, 34, 2201681. [Google Scholar] [CrossRef] [PubMed]
- Degani, M.; An, Q.; Albaladejo-Siguan, M.; Hofstetter, Y.J.; Cho, C.; Paulus, F.; Grancini, G.; Vaynzof, Y. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 2021, 7, eabj7930. [Google Scholar] [CrossRef] [PubMed]
- Tayari, F.; Nassar, K.I.; Carvalho, J.P.; Teixeira, S.S.; Hammami, I.; Gavinho, S.R.; Graça, M.P.F.; Valente, M.A. Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite. Gels 2025, 11, 450. [Google Scholar] [CrossRef]
- Chang, X.; Fang, J.; Fan, Y.; Luo, T.; Su, H.; Zhang, Y.; Lu, J.; Tsetseris, L.; Anthopoulos, T.D.; Liu, S.; et al. Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy. Adv. Mater. 2020, 32, 2001243. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Y.; Eickemeyer, F.T.; Pan, L.; Ren, D.; Ruiz-Preciado, M.A.; Carlsen, B.; Yang, B.; Dong, X.; Wang, Z. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 2020, 32, 1907757. [Google Scholar] [CrossRef]
- Wang, L.; Chang, B.; Li, H.; Wu, Y.; Liu, Z.; Pan, L.; Yin, L. [PbX6]4− modulation and organic spacer construction for stable perovskite solar cells. Energy Environ. Sci. 2022, 15, 4470–4510. [Google Scholar] [CrossRef]
- Huang, S.; Jiao, M.; Wang, X.; He, X. A first-principles study on the structural and carrier transport properties of inorganic perovskite CsPbI3 under pressure. Crystals 2022, 12, 648. [Google Scholar] [CrossRef]
- Hassan, A.; Wang, Z.; Ahn, Y.H.; Azam, M.; Khan, A.A.; Farooq, U.; Zubair, M.; Cao, Y. Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy 2022, 101, 107579. [Google Scholar] [CrossRef]
- Chen, J.; He, D.; Park, N.-G. Methodologies for >30% efficient perovskite solar cells via enhancement of voltage and fill factor. Sol. RRL 2022, 6, 2100767. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Miyasaka, T. Halide perovskites for indoor photovoltaics: The next possibility. ACS Energy Lett. 2022, 8, 90–95. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, J.; Ji, D.; Sun, Y.; Li, C. Improve the quality of HC(NH2)2PbIxBr3−x through iodine vacancy filling for stable mixed perovskite solar cells. Chem. Eng. J. 2020, 384, 123273. [Google Scholar] [CrossRef]
- Hu, P.; Huang, S.; Guo, M.; Li, Y.; Wei, M. Ionic Liquid-Assisted Crystallization and Defect Passivation for Efficient Perovskite Solar Cells with Enhanced Open-Circuit Voltage. ChemSusChem 2022, 15, e202200819. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, X.; Liu, Z.; Guo, M.; Zhang, Y.; Li, Y.; Li, J.; Wei, M. UV-robust and efficient perovskite solar cells enabled by interfacial photocatalysis suppression and defect passivation. J. Mater. Chem. A 2023, 11, 14959–14970. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Wang, K.-L.; Wang, Z.-K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef]
- Li, M.; Yue, Z.; Ye, Z.; Li, H.; Luo, H.; Yang, Q.D.; Zhou, Y.; Huo, Y.; Cheng, Y. Improving the efficiency and stability of MAPbI3 perovskite solar cells by dipeptide molecules. Small 2024, 20, 2311400. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.-H.; Fan, J.-T.; Li, Z.; Fan, X.-H.; Xue, D.-J.; Hu, J.-S. Regioselective multisite atomic-chlorine passivation enables efficient and stable perovskite solar cells. J. Am. Chem. Soc. 2023, 145, 5872–5879. [Google Scholar] [CrossRef]
- Ma, X.; Yang, X.; Wang, M.; Qin, R.; Xu, D.; Lan, C.; Zhao, K.; Liu, Z.; Yu, B.; Gou, J. Comprehensive passivation on different charged ions and defects for high efficiency and stable perovskite solar cells. Adv. Energy Mater. 2025, 15, 2402814. [Google Scholar] [CrossRef]
- Liu, C.; He, B.; Bao, F.; Cheng, Q.; Yang, Z.; Wei, M.; Ma, Z.; Chen, H.; Duan, J.; Tang, Q. Influence of p-π conjugation in π-π stacking molecules on passivating defects for efficient and stable perovskite solar cells. J. Energy Chem. 2025, 102, 282–289. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Z.; Zhang, Y.; Chen, M.; Liu, T.; Xiao, C.; Gao, D.; Patel, J.B.; Kuciauskas, D.; Magomedov, A. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 2023, 8, 462–472. [Google Scholar] [CrossRef]
- Zhang, J.; She, Y.; Zhu, Y.; Su, H.; Zheng, X.; Yao, Y.; Li, D.; Liu, S. Enhancing Performance and Stability of Perovskite Solar Cells with a Novel Formamidine Group Additive. Small 2024, 20, 2402557. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xiang, W.; Yang, J.; Kubicki, D.J.; Tress, W.; Chen, T.; Fang, Z.; Liu, Y.; Liu, S. Interface Modification for Efficient and Stable Inverted Inorganic Perovskite Solar Cells. Adv. Mater. 2023, 35, 2303346. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, R.; Li, G.; Zhang, Z.; Pascual, J.; Wu, H.; Aldamasy, M.H.; Wang, L.; Su, Z.; Turren-Cruz, S.-H.; et al. Inhibiting Interfacial Nonradiative Recombination in Inverted Perovskite Solar Cells with a Multifunctional Molecule. Adv. Mater. 2024, 36, 2407433. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, T.; Hua, Y.; Wang, Y. Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chin. Chem. Lett. 2025, 36, 109587. [Google Scholar] [CrossRef]
- Liu, S.; Guan, X.; Xiao, W.; Chen, R.; Zhou, J.; Ren, F.; Wang, J.; Chen, W.; Li, S.; Qiu, L.; et al. Effective Passivation with Size-Matched Alkyldiammonium Iodide for High-Performance Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2205009. [Google Scholar] [CrossRef]
- Wu, B.; Ning, W.; Xu, Q.; Manjappa, M.; Feng, M.; Ye, S.; Fu, J.; Lie, S.; Yin, T.; Wang, F.; et al. Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Sci. Adv. 2021, 7, eabd3160. [Google Scholar] [CrossRef]
- Christians, J.A.; Miranda Herrera, P.A.; Kamat, P.V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 1530–1538. [Google Scholar] [CrossRef]
- Zheng, G.; Zhu, C.; Ma, J.; Zhang, X.; Tang, G.; Li, R.; Chen, Y.; Li, L.; Hu, J.; Hong, J.; et al. Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 2018, 9, 2793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, Q.; Lyu, Y.; Liu, J.; Shen, F.; Liu, H.; Kong, H.; Han, H.; Krishna, A.; Xu, J.; et al. Regulating the Crystallization of FAPbI3-Based Perovskite with a Furan Substituted Ethylammonium Additive for Achieving Highly Efficient Solar Cells. Adv. Funct. Mater. 2024, 34, 2404099. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, X.; Cui, Q.; Yao, Y.; Su, H.; She, Y.; Zhu, Y.; Li, D.; Liu, S. Manipulating the Crystallization of Perovskite via Metal-Free DABCO-NH4Cl3 Addition for High Efficiency Solar Cells. Adv. Funct. Mater. 2024, 34, 2404816. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, R.; Tang, Y.; Su, Z.; Hu, S.; Zhang, X.; Zhang, J.; Zhao, J.; Xue, Y.; Gao, X.; et al. Anchoring Charge Selective Self-Assembled Monolayers for Tin–Lead Perovskite Solar Cells. Adv. Mater. 2024, 36, 2312264. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, K.; Yang, L.; Feng, W.; Zheng, L.; Shen, L.; Jin, Y.; Fang, Z.; Song, P.; Tian, W.; et al. Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells. Nat. Commun. 2023, 14, 3738. [Google Scholar] [CrossRef]
- Liu, S.; Chen, R.; Tian, X.; Yang, Z.; Zhou, J.; Ren, F.; Zhang, S.; Zhang, Y.; Guo, M.; Shen, Y.; et al. Boost the efficiency of nickel oxide-based formamidinium-cesium perovskite solar cells to 21% by using coumarin 343 dye as defect passivator. Nano Energy 2022, 94, 106935. [Google Scholar] [CrossRef]
- Bertoluzzi, L.; Boyd, C.C.; Rolston, N.; Xu, J.; Prasanna, R.; O’Regan, B.C.; McGehee, M.D. Mobile Ion Concentration Measurement and Open-Access Band Diagram Simulation Platform for Halide Perovskite Solar Cells. Joule 2020, 4, 109–127. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- McMeekin, D.P.; Holzhey, P.; Fürer, S.O.; Harvey, S.P.; Schelhas, L.T.; Ball, J.M.; Mahesh, S.; Seo, S.; Hawkins, N.; Lu, J.; et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 2023, 22, 73–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Li, M.; Chen, J.; Ahmad, W.; Zhang, G.; Qin, C.; Xiao, L.; Jia, S. Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid. Nanomaterials 2025, 15, 1229. https://doi.org/10.3390/nano15161229
Yang Z, Li M, Chen J, Ahmad W, Zhang G, Qin C, Xiao L, Jia S. Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid. Nanomaterials. 2025; 15(16):1229. https://doi.org/10.3390/nano15161229
Chicago/Turabian StyleYang, Zhichun, Mengyu Li, Jinyan Chen, Waqar Ahmad, Guofeng Zhang, Chengbing Qin, Liantuan Xiao, and Suotang Jia. 2025. "Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid" Nanomaterials 15, no. 16: 1229. https://doi.org/10.3390/nano15161229
APA StyleYang, Z., Li, M., Chen, J., Ahmad, W., Zhang, G., Qin, C., Xiao, L., & Jia, S. (2025). Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid. Nanomaterials, 15(16), 1229. https://doi.org/10.3390/nano15161229