Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts
Abstract
1. Introduction
2. Materials and Methods
2.1. β-Ga2O3 Thin Films/Nanorod Growth
2.2. Characterisation Method
3. Results and Discussions
3.1. X-Ray Diffraction Analysis
3.2. Effect of Temperature on the Growth of Ga2O3 by FE-SEM Analysis
3.3. Effect of Gallium Concentration on the Growth of Ga2O3 by FE-SEM
3.4. Effect of Catalyst Selection and Concentration on the Growth of Ga2O3 by FE-SEM Analysis
3.5. Elemental Composition of Ga2O3 by EDS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Ampere |
Ag | Silver |
Al2O3 | Alumina |
Au | Gold |
Cu | Copper |
EDX | Energy Dispersive X-ray |
eV | Electron volt |
FE-SEM | Field Emission Scanning Electron Microscope |
FWHM | Full width at half maximum |
Ga | Gallium |
Ga2O3 | Gallium oxide |
Hz | Hertz |
JCPDS | Joint Committee on Powder Diffraction Standards |
LEDs | Light emitting diodes |
NPs | Nanoparticles |
O | Oxygen |
Sccm | Standard cubic centimeters per minute |
W | Watts |
XRD | X-ray diffraction |
λ | Lambda |
References
- Jamwal, N.S.; Kiani, A. Gallium Oxide Nanostructures: A Review of Synthesis, Properties and Applications. Nanomaterials 2022, 12, 2061. [Google Scholar] [CrossRef]
- Chi, Z.; Asher, J.J.; Jennings, M.R.; Chikoidze, E.; Pérez-Tomás, A. Ga2O3 and Related Ultra-Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation. Materials 2022, 15, 1164. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Luo, Z.; Xu, W.; Gong, H.; You, T.; Ou, X.; Ye, J.; Hao, Y.; Han, G. Gallium oxide (Ga2O3) heterogeneous and heterojunction power devices. Fundam. Res. 2023, 5, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wang, Q.; Zhang, D.; Wang, Q.; Li, S.; Wang, W.; Fan, Q.; Zhang, J. Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation. J. Lumin. 2019, 206, 53–58. [Google Scholar] [CrossRef]
- Hu, J.; Yu, B.; Zhou, J. New Generation Beta-Gallium Oxide Nanomaterials: Growth and Performances in Electronic Devices. Adv. Eng. Mater. 2023, 25, 2300688. [Google Scholar] [CrossRef]
- Alhalaili, B.; Al-Duweesh, A.; Popescu, I.N.; Vidu, R.; Vladareanu, L.; Islam, M.S. Improvement of Schottky Contacts of Gallium Oxide (Ga2O3) Nanowires for UV Applications. Sensors 2022, 22, 2048. [Google Scholar] [CrossRef]
- Alhalaili, B.; Vidu, R.; Popescu, I.N.; Samyamanthula, D.R.; Islam, M.S. Novel Approach to Synthesize Nanostructured Gallium Oxide for Devices Operating in Harsh Environmental Conditions. Sustainability 2021, 13, 10197. [Google Scholar] [CrossRef]
- Alhalaili, B.; Bunk, R.; Vidu, R.; Islam, M.S. Dynamics Contributions to the Growth Mechanism of Ga2O3 Thin Film and NWs Enabled by Ag Catalyst. Nanomaterials 2019, 9, 1272. [Google Scholar] [CrossRef]
- Alhalaili, B.; Bunk, R.J.; Mao, H.; Cansizoglu, H.; Vidu, R.; Woodall, J.; Islam, M.S. Gallium oxide nanowires for UV detection with enhanced growth and material properties. Sci. Rep. 2020, 10, 21434. [Google Scholar] [CrossRef]
- Keerthana, C.S.; Nair, A.S.; George, P.; Unnikrishnan, N.V.; Ulahannan, J.P.; Saritha, A.C. Hydrothermally synthesized Ag decorated β-Ga2O3 heterostructures as low cost, reusable SERS substrates for the nanomolar detection of rhodamine 6G. J. Phys. Chem. Solids 2023, 179, 111407. [Google Scholar]
- Woo, K.Y.; Lee, J.H.; Kim, K.H.; Kim, S.J.; Kim, T.G. Highly transparent conductive Ag/Ga2O3 electrode for near-ultraviolet light-emitting diodes. Phys. Status Solidi A 2014, 211, 1760–1763. [Google Scholar] [CrossRef]
- Zhou, Z.-Y.; Ma, Y.; Han, Q.-F.; Liu, Y.-L. Solubility, permeation, and capturing of impurity oxygen in Au/Ag: A comparative investigation from first-principles. Comput. Mater. Sci. 2016, 114, 79–85. [Google Scholar] [CrossRef]
- Jia, C.; Jeon, D.-W.; Xu, J.; Yi, X.; Park, J.-H.; Zhang, Y. Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition. Nanomaterials 2020, 10, 1031. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, L.; Qu, G.; Zhang, X.; Jia, C.; Wu, S.; Ma, Y.; Lee, Y.J.; Wang, G.; Park, J.-H.; et al. Single β-Ga2O3 nanowire based lateral FinFET on Si. Appl. Phys. Lett. 2022, 120, 153501. [Google Scholar] [CrossRef]
- Tang, M.; Ma, C.; Liu, L.; Tan, X.; Li, Y.; Lee, Y.J.; Wang, G.; Jeon, D.-W.; Park, J.-H.; Zhang, Y.; et al. β-Ga2O3 Air-Channel Field-Emission Nanodiode with Ultrahigh Current Density and Low Turn-On Voltage. Nano Lett. 2024, 24, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Ramanarayanan, T.A.; Rapp, R.A. The diffusivity and solubility of oxygen in liquid tin and solid silver and the diffusivity. Metall. Trans. 1972, 3, 3239–3246. [Google Scholar] [CrossRef]
- Vogl, L.M.; Schweizer, P.; Richter, G.; Spiecker, E. Effect of size and shape on the elastic modulus of metal nanowires. MRS Adv. 2021, 6, 665–673. [Google Scholar] [CrossRef]
- Zhuo, Y.; Chen, Z.; Tu, W.; Ma, X.; Pei, Y.; Wang, G. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition. Appl. Surf. Sci. 2017, 420, 802–807. [Google Scholar] [CrossRef]
- Nakagomi, S.; Kokubun, Y. Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J. Cryst. Growth 2012, 349, 12–18. [Google Scholar] [CrossRef]
- Afzal, A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies. J. Mater. 2019, 5, 542–557. [Google Scholar] [CrossRef]
- Mroziński, J.; Bieńko, A.; Kopel, P.; Langer, V. Structure and magnetic properties of a trinuclear nickel(II) complex with benzenetricarboxylate bridge. Inorganica Chim. Acta 2008, 361, 3723–3729. [Google Scholar] [CrossRef]
- Fabbro, M.R.a.P. The Difficulty of Working with Silver Alloys with a High Oxygen Content; Legor Group SpA: Bressanvido, Italy, 2004. [Google Scholar]
- Holmes, L.H. The solubility of gases in liquids. J. Chem. Educ. 1996, 73, 143. [Google Scholar] [CrossRef]
- White, J.L.; Orr, R.L.; Hultgren, R. The thermodynamic properties of silver-gold alloys. Acta Metall. 1957, 5, 747–760. [Google Scholar] [CrossRef]
- Lindberg, C.; Whiticar, A.; Dick, K.A.; Sköld, N.; Nygård, J.; Bolinsson, J. Silver as Seed-Particle Material for GaAs Nanowires—Dictating Crystal Phase and Growth Direction by Substrate Orientation. Nano Lett. 2016, 16, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Kim, E.T.; Dao, K.A. Ag nanoparticle catalyst based on Ga2O3/GaAs semiconductor nanowire growth by VLS method. J. Mater. Sci.-Mater. Electron. 2015, 26, 8747–8752. [Google Scholar] [CrossRef]
- Assal, J.; Hallstedt, B.; Gauckler, L.J. Thermodynamic assessment of the silver-oxygen system. J. Am. Ceram. Soc. 1997, 80, 3054–3060. [Google Scholar] [CrossRef]
- Zinkevich, M.; Aldinger, F. Thermodynamic assessment of the gallium-oxygen system. J. Am. Ceram. Soc. 2004, 87, 683–691. [Google Scholar] [CrossRef]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.R.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, Y.; Mema, R.; Zhou, G. Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 2011, 59, 2491–2500. [Google Scholar] [CrossRef]
- Askeland, D.R.; Fulay, P.P.; Wright, W.J. The Science and Engineering of Materials, SI Edition; CL-Engineering: Muang Chonburi, Thailand, 2011; p. 944. [Google Scholar]
- Muller, C.M.; Spolenak, R. Microstructure evolution during dewetting in thin Au films. Acta Mater. 2010, 58, 6035–6045. [Google Scholar] [CrossRef]
- Strobel, S.; Kirkendall, C.; Chang, J.-B.; Berggren, K.K. Sub-10 nm structures on silicon by thermal dewetting of platinum. Nanotechnology 2010, 21, 505301. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Kim, S.R.N.; Youn, W.K.; Kim, C.S.; Kim, D.S.; Yi, K.W.; Hwang, N.M. Generation of Charged Nanoparticles During Thermal Evaporation of Silver at Atmospheric Pressure. J. Nanosci. Nanotechnol. 2015, 15, 8418–8423. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cai, Y.; Zhang, R.Q. Growth of nanowires. Mater. Sci. Eng. R Rep. 2008, 60, 1–51. [Google Scholar] [CrossRef]
- Lee, Y.T.; Park, J.; Choi, Y.S.; Ryu, H.; Lee, H.J. Temperature-Dependent Growth of Vertically Aligned Carbon Nanotubes in the Range 800−1100 °C. J. Phys. Chem. B 2002, 106, 7614–7618. [Google Scholar] [CrossRef]
- Chun, H.J.; Choi, Y.S.; Bae, S.Y.; Seo, H.W.; Hong, S.J.; Park, J.; Yang, H. Controlled Structure of Gallium Oxide Nanowires. J. Phys. Chem. B 2003, 107, 9042–9046. [Google Scholar] [CrossRef]
- Pallister, P.J.; Buttera, S.C.; Barry, S.T. Self-seeding gallium oxide nanowire growth by pulsed chemical vapor deposition. Phys. Status Solidi A 2015, 212, 1514–1518. [Google Scholar] [CrossRef]
- Chang, K.W.; Wu, J.J. Low-temperature catalytic growth of beta-Ga2O3 nanowires using single organometallic precursor. J. Phys. Chem. B 2004, 108, 1838–1843. [Google Scholar] [CrossRef]
- Song, P.Y.; Wu, Z.; Shen, X.; Kang, J.; Fang, Z.; Zhang, T.-Y. Self-consistent growth of single-crystalline ((2)over-bar01)beta-Ga2O3 nanowires using a flexible GaN seed nanocrystal. Crystengcomm 2017, 19, 625–631. [Google Scholar] [CrossRef]
- Kumar, S.; Sarau, G.; Tessarek, C.; Bashouti, M.Y.; Hähnel, A.; Christiansen, S.; Singh, R. Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques. J. Phys. D Appl. Phys. 2014, 47, 435101. [Google Scholar] [CrossRef]
Temperatures | 800 °C | 900 °C | |||||||
---|---|---|---|---|---|---|---|---|---|
(a) | |||||||||
Elemental compositions (at. %) | Ga | O | Ga | O | |||||
No catalyst | 32.9 | 67.1 | 36.6 | 63.4 | |||||
(b) | |||||||||
Elemental Composition (at. %) | Ga | O | Ag/Au | Ga | O | Ag/Au | |||
1.03 g Ga and 10 mg Au | 74.2 | 25.4 | 0.4 | 56.3 | 43.7 | 0.0 | |||
1.5 g Ga and 10 mg Ag u | 77.3 | 22.7 | 0.0 | 55.0 | 44.8 | 0.2 | |||
1.03 g Ga and 10 mg Au | 73.2 | 24.9 | 1.9 | 54.4 | 44.3 | 1.3 | |||
1.5 g Ga and 10 mg Ag | 78.1 | 21.7 | 0.2 | 65.8 | 33.0 | 1.1 |
Catalyst | Technique | Substrate | Average Nanostructures | ||
---|---|---|---|---|---|
Diameter | Length | ||||
Experimental Results (this work) | |||||
Au | Oxidation | Sapphire | 2–4 µm | 15–25 µm | |
Ag | 0.5–1.0 µm | >20 µm | |||
NPs | Ref. | Reported Results | |||
Free-Catalyst | [38] | CVD | Ga/Ga2O3 mixture and O2 | 40–70 nm | 10–20 µm |
[37] | Si/SiO2 & Al2O3 | 50-75 nm | >10 µm | ||
Ag NPs | [26] | Sol-gel and VLS | GaAs | 18 to 30 nm | several 10s of nm to a few 100 µm |
Au NPs | [39] | Thermal-VLS | Au pre-treated on Si | 34 nm | 20 to 60 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhalaili, B.; Joseph, A.; Al-Hajji, L.; Ali, N.M.; Dean, S.; Al-Duweesh, A.A. Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts. Nanomaterials 2025, 15, 1169. https://doi.org/10.3390/nano15151169
Alhalaili B, Joseph A, Al-Hajji L, Ali NM, Dean S, Al-Duweesh AA. Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts. Nanomaterials. 2025; 15(15):1169. https://doi.org/10.3390/nano15151169
Chicago/Turabian StyleAlhalaili, Badriyah, Antony Joseph, Latifa Al-Hajji, Naser M. Ali, Sowmya Dean, and Ahmad A. Al-Duweesh. 2025. "Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts" Nanomaterials 15, no. 15: 1169. https://doi.org/10.3390/nano15151169
APA StyleAlhalaili, B., Joseph, A., Al-Hajji, L., Ali, N. M., Dean, S., & Al-Duweesh, A. A. (2025). Growth and Characterization of Ga2O3 for Power Nanodevices Using Metal Nanoparticle Catalysts. Nanomaterials, 15(15), 1169. https://doi.org/10.3390/nano15151169