Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cellulose-Activated Carbon Gels
2.2. Determination of Activated Carbon Content
2.3. Characterization
2.4. Adsorption and Reusability Study
3. Results and Discussion
3.1. Preparation of Cellulose-Activated Carbon Gels
3.2. Surface Area, Pore Size Distribution, Porosity, Bulk Density, and Morphology
3.3. Structural, Thermal, and Mechanical Analysis
3.4. Adsorption Study
3.5. Reusability
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAC | cellulose-activated carbon gel |
CG | cellulose gel |
AC | activated carbon |
TGA | thermogravimetric analysis |
DTG | derivative thermogravimetric curve |
BET | Brunauer–Emmett–Teller |
SBET | specific surface area |
BJH | Barrett–Joyner–Halenda |
FE-SEM | Field Emission Scanning Electron Microscope |
XRD | X-ray diffractometry |
pHpzc | pH of point of zero charge |
pKa | Acid dissociation constant |
MB | Methylene blue |
References
- Chatterjee, S.; Lee, M.W.; Woo, S.H. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 2022, 101, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Ma’amor, A.; Khaligh, N.G.; Julkapli, N.M. Recent advancements in the applications of activated carbon for the heavy metals and dyes removal. Chem. Eng. Res. Des. 2022, 186, 276–299. [Google Scholar] [CrossRef]
- Sherugar, P.; Padaki, M.; Naik, N.S.; George, S.D.; Murthy, D.H.K. Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: Mechanism and kinetics. Chemosphere 2022, 287, 132085. [Google Scholar] [CrossRef]
- Yuan, Y.; An, Z.; Zhang, R.; Wei, X.; Lai, B. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. J. Clean. Prod. 2021, 293, 126215. [Google Scholar] [CrossRef]
- Shi, Y.; Chang, Q.; Zhang, T.; Song, G.; Sun, Y.; Ding, G. A review on selective dye adsorption by different mechanisms. J. Environ. Chem. Eng. 2022, 10, 108639. [Google Scholar] [CrossRef]
- Yadav, S.; Yadav, A.; Bagotia, N.; Sharma, A.K.; Kumar, S. Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater—A review. J. Water Process Eng. 2021, 42, 102148. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Ani, J.U.; Akpomie, K.G.; Okoro, U.C.; Aneke, L.E.; Onukwuli, O.D.; Ujam, O.T. Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl. Water Sci. 2020, 10, 69. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Nur Alam, S.M. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Raninga, M.; Mudgal, A.; Patel, V.K.; Patel, J.; Sinha, M. K Modification of activated carbon-based adsorbent for removal of industrial dyes and heavy metals: A review. Mater. Today. Proc. 2023, 77, 286–294. [Google Scholar] [CrossRef]
- Purkait, M.K.; Maiti, A.; DasGupta, S.; De, S. Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 2007, 145, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Naushad, M.; Alqadami, A.A.; AlOthman, Z.A.; Alsohaimi, I.H.; Algamdi, M.S.; Aldawsari, A.M. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J. Mol. Liq. 2019, 293, 111442. [Google Scholar] [CrossRef]
- Ji, F.; Li, C.; Tang, B.; Xu, J.; Lu, G.; Liu, P. Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem. Eng. J. 2012, 209, 325–333. [Google Scholar] [CrossRef]
- Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L. Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydr. Polym. 2022, 286, 119192. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Elemike, E.E.; Onwudiwe, D.C.; Onyango, M.S. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int. J. Biol. Macromol. 2020, 164, 2477–2496. [Google Scholar] [CrossRef]
- Tu, K.; Ding, Y.; Keplinger, T. Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr. Polym. 2022, 291, 119539. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Liu, W.; Zheng, C.; Xu, T.; Du, H.; Yuan, Z.; Si, C. Bacterial cellulose/chitosan composite materials for biomedical applications. Chem. Eng. J. 2024, 494, 153014. [Google Scholar] [CrossRef]
- Makarov, I.; Vinogradov, M.; Golubev, Y.; Palchikova, E.; Kulanchikov, Y.; Grishin, T. Development of cellulose microfibers from mixed solutions of PAN-cellulose in N-Methylmorpholine-N-Oxide. Polymers 2024, 16, 1869. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Shen, J.; Li, B.; Fu, S. Cellulose-based thermo-enhanced fluorescence micelles. Int. J. Biol. Macromol. 2021, 178, 527–535. [Google Scholar] [CrossRef]
- Chen, Z.J.; Shi, H.H.; Zheng, L.; Zhang, H.; Cha, Y.Y.; Ruan, H.X.; Zhang, Y.; Zhang, X.C. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int. J. Biol. Macromol. 2021, 182, 286–297. [Google Scholar] [CrossRef]
- Azimi, B.; Maleki, H.; Gigante, V.; Bagherzadeh, R.; Mezzetta, A.; Milazzo, M.; Guazzelli, L.; Cinelli, P.; Lazzeri, A.; Danti, S. Cellulose based fiber spinning processes using ionic liquids. Cellulose 2022, 29, 3079–3129. [Google Scholar] [CrossRef]
- Qian, L.; Chen, H.; Zhang, S.; Yang, Y.; Zhang, L.; Yang, M.; Song, W.; Nica, V. All biomass cellulose/casein adsorbent fabricated via the “green solvent system” of ionic liquid for the efficient removal of Cu(II), Cd(II) and Pb(II). Cellulose 2023, 30, 10257–10272. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, S.; Wang, T.; Yu, S.; Guo, S.; Du, K. High-strength and low-swelling chitosan/cellulose microspheres as a high-efficiency adsorbent for dye removal. Cellulose 2021, 28, 9323–9333. [Google Scholar] [CrossRef]
- Kayan, G.Ö.; Kayan, A. Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. J. Polym. Environ. 2021, 29, 3477–3496. [Google Scholar] [CrossRef]
- Yang, Y.J.; Shin, J.M.; Kang, T.H.; Kimura, S.; Wada, M.; Kim, U.J. Cellulose dissolution in aqueous lithium bromide solution. Cellulose 2014, 21, 1175–1181. [Google Scholar] [CrossRef]
- Isobe, N.; Komamiya, T.; Kimura, S.; Kim, U.J.; Wada, M. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold. Int. J. Biol. Macromol. 2018, 117, 625–631. [Google Scholar] [CrossRef]
- Kim, U.J.; Kimura, S.; Wada, M. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam. Carbohydr. Polym. 2019, 214, 294–302. [Google Scholar] [CrossRef]
- Kim, U.J.; Kimura, S.; Wada, M. Facile preparation of cellulose-SiO2 composite aerogels with high SiO2 contents using a LiBr aqueous solution. Carbohydr. Polym. 2019, 222, 114975. [Google Scholar] [CrossRef]
- Kim, U.J.; Kim, D.; You, J.; Choi, J.W.; Kimura, S.; Wada, M. Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red. Cellulose 2018, 25, 2615–2628. [Google Scholar] [CrossRef]
- Kim, U.J.; Lee, Y.R.; Kang, T.H.; Choi, J.W.; Kimura, S.; Wada, M. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents. Carbohydr. Polym. 2017, 163, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Gutierrez, C.F.; Arias-Niquepac, R.; Prías-Barragán, J.J.; Rodriguez-Garcia, M.E. Study and identification of contaminant phases in commercial activated carbons. J. Environ. Chem. Eng. 2020, 8, 103636. [Google Scholar] [CrossRef]
- Ghaedi, M.; Nasab, A.G.; Khodadoust, S.; Rajabi, M.; Azizian, S. Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study. J. Ind. Eng. Chem. 2014, 20, 2317–2324. [Google Scholar] [CrossRef]
- Cai, X.; Shi, T.; Yu, C.; Liao, R.; Ren, J. Sorption Characteristics of methylene blue on Medulla tetrapanacis biochar and its activation technology. Water Air Soil Pollut. 2023, 234, 223. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Rahmanian, O.; Fazlzadeh, M.; Heidari, M. Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound. J. Mol. Liq. 2018, 264, 591–599. [Google Scholar] [CrossRef]
- Zhang, Z.; Moghaddam, L.; O’Hara, I.M.; Doherty, W.O.S. Congo Red adsorption by ball-milled sugarcane bagasse. Chem. Eng. J. 2011, 178, 122–128. [Google Scholar] [CrossRef]
- El Qada, E.N.; Allen, S.J.; Walker, G.M. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chem. Eng. J. 2006, 124, 103–110. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Pan, Y.; Xie, H.; Liu, H.; Cai, P.; Xiao, H. Novel cellulose/montmorillonite mesoporous composite beads for dye removal in single and binary systems. Bioresour. Technol. 2019, 286, 121366. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Pan, Y.; Li, Y.; Huang, Z.; Li, M.; Xiao, H. Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. Int. J. Biol. Macromol. 2020, 163, 309–316. [Google Scholar] [CrossRef]
Sample | Experimental qmax (mg/g) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (×103) | R2 | n | KF | R2 | ||
CG | 72.8 | 86.1 | 1.365 | 0.9974 | 1.73 | 0.757 | 0.9783 |
CAC70 | 414.6 | 411.3 | 23.64 | 0.9980 | 4.91 | 88.04 | 0.9824 |
Sample | qe exp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|---|
qe (mg/g) | k1 × 10−2 (min−1) | R2 | qe (mg/g) | k2 × 10−4 (g mg−1 min−1) | R2 | h (mg g−1 min−1) | ||
CAC30 | 126.3 | 89.1 | 3.33 | 0.9913 | 131.3 | 10.61 | 0.9974 | 18.30 |
CAC50 | 185.4 | 129.7 | 3.45 | 0.9844 | 191.8 | 7.85 | 0.9963 | 28.87 |
CAC70 | 231.5 | 168.2 | 4.05 | 0.9931 | 241.6 | 6.43 | 0.9972 | 37.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, U.-J. Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue. Nanomaterials 2025, 15, 799. https://doi.org/10.3390/nano15110799
Kim U-J. Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue. Nanomaterials. 2025; 15(11):799. https://doi.org/10.3390/nano15110799
Chicago/Turabian StyleKim, Ung-Jin. 2025. "Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue" Nanomaterials 15, no. 11: 799. https://doi.org/10.3390/nano15110799
APA StyleKim, U.-J. (2025). Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue. Nanomaterials, 15(11), 799. https://doi.org/10.3390/nano15110799