An Easy and Single-Step Biosynthesis of WO3 with High Photocatalytic Degradation Activity for Dye Degradation
Abstract
1. Introduction
2. Experiments
2.1. Material Required
2.2. Preparation of Kigelia Pinnata Leaf Extract
2.3. Biosynthesis of WO3 NPs
2.4. Preparation of Stock Solution of Dye
2.5. Characterization of WO3
2.6. Photocatalytic Degradation of Dye
2.7. Spectroscopic Analysis and Degradation Efficiency
2.8. Kinetic Study
2.9. Regeneration of Photocatalyst
2.10. Free Radical Scavenging Experiments
3. Results and Discussion
3.1. Results of Characterization Analysis
3.1.1. Crystal Phase and Size Determination
3.1.2. Morphology and Elemental Analysis
3.1.3. Functional Group Analysis
3.1.4. Band Gap Calculation
3.2. Results of Photocatalytic Degradation
3.2.1. Effect of Temperature
3.2.2. Effect of pH
3.2.3. Results of Kinetics
3.2.4. Results of Interfering Ions
3.2.5. Results of Regeneration Experiment
3.2.6. Result of Free Radical Scavenging
3.2.7. Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dutta, S.; Adhikary, S.; Bhattacharya, S.; Roy, D.; Chatterjee, S.; Chakraborty, A.; Banerjee, D.; Ganguly, A.; Nanda, S.; Rajak, P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. J. Environ. Manag. 2024, 353, 120103. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, M.F.; Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability 2024, 16, 495. [Google Scholar] [CrossRef]
- Chowdhary, P.; Bharagava, R.N.; Mishra, S.; Khan, N. Role of industries in water scarcity and its adverse effects on environment and human health. ECAWERE 2020, 1, 235–256. [Google Scholar]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Allehyani, E.S.; Al-Harbi, S.A.; Hasan, Z.; Abomuti, M.A.; Rajor, H.K.; Oh, S. Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes 2023, 11, 807. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Res. Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Abdulla, N.K.; Alzahrani, E.A.; Dwivedi, P.; Goel, S.; Hafeez, S.; Khulbe, M.; Siddiqui, S.I.; Oh, S. MnO2 decoration onto the guava leaves: A sustainable and cost-effective material for methylene blue dye removal. Heliyon 2024, 10, e34267. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, E.A.; Dwivedi, P.; Fatima, B.; Hafeez, S.; Siddiqui, S.I.; Oh, S. Cu-Zn coupled heterojunction photocatalyst for dye degradation: Performance evaluation based on the quantum yield and figure of merit. J. Saudi Chem. Soc. 2024, 28, 101858. [Google Scholar] [CrossRef]
- Dutta, K.; Mukhopadhyay, S.; Bhattacharjee, S.; Chaudhuri, B. Chemical oxidation of methylene blue using a Fenton-like reaction. J. Hazard. Mater. 2001, 84, 57–71. [Google Scholar] [CrossRef]
- Ihaddaden, S.; Aberkane, D.; Boukerroui, A.; Robert, D. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process Eng. 2022, 49, 102952. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Ma, X.; Du, Q.; Sui, K.; Wang, D.; Wang, C.; Li, H.; Xia, Y. Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chem. Eng. J. 2017, 316, 623–630. [Google Scholar] [CrossRef]
- Cevallos-Mendoza, J.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Montenegro, M.D.C.B. Removal of contaminants from water by membrane filtration: A review. Membranes 2022, 12, 570. [Google Scholar] [CrossRef]
- Nasri, M.S.I.; Samsudin, M.F.R.; Tahir, A.A.; Sufian, S. Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies 2022, 15, 955. [Google Scholar] [CrossRef]
- Petrovičová, B.; Dahrouch, Z.; Triolo, C.; Pantò, F.; Malara, A.; Patanè, S.; Allegrini, M.; Santangelo, S. Photocatalytic Degradation of Methylene Blue Dye by Electrospun Binary and Ternary Zinc and Titanium Oxide Nanofibers. Appl. Sci. 2021, 11, 9720. [Google Scholar] [CrossRef]
- Dalto, F.; Kuźniarska-Biernacka, I.; Pereira, C.; Mesquita, E.; Soares, O.S.G.P.; Pereira, M.F.R.; Rosa, M.J.; Mestre, A.S.; Carvalho, A.P.; Freire, C. Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomater 2021, 11, 3016. [Google Scholar] [CrossRef]
- Klubnuan, S.; Suwanboon, S.; Amornpitoksuk, P. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Opt. Mater. 2016, 53, 134–141. [Google Scholar] [CrossRef]
- Marcelino, R.B.; Amorim, C.C. Towards visible-light photocatalysis for environmental applications: Band-gap engineering versus photons absorption—A review. Environ. Sci. Poll. Res. 2019, 26, 4155–4170. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite oxide-based materials for energy and environment-oriented photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Sultana, M.; Mondal, A.; Islam, S.; Khatun, A.; Rahaman, M.H.; Chakraborty, A.K.; Rahman, M.S.; Rahman, M.M.; Nur, A.S.M. Strategic development of metal doped TiO2 photocatalysts for enhanced dye degradation activity under UV–Vis irradiation: A review. Curr. Res. Green Sustain. Chem. 2023, 7, 100383. [Google Scholar] [CrossRef]
- Mahdi, M.A.; Farhan, M.A.; Mahmoud, Z.H.; Rheima, A.M.; Abbas, Z.S.; Kadhim, M.M.; Al-Bayati, A.D.J.; Jaber, A.S.; Hachim, S.; Ismail, A.H. Direct sunlight photodegradation of congo red in aqueous solution by TiO2/rGO binary system: Experimental and DFT study. Arab. J. Chem. 2023, 16, 104992. [Google Scholar] [CrossRef]
- Navia-Mendoza, J.M.; Filho, O.A.E.; Zambrano-Intriago, L.A.; Maddela, N.R.; Duarte, M.M.M.B.; Quiroz-Fernández, L.S.; Baquerizo-Crespo, R.J.; Rodríguez-Díaz, J.M. Advances in the Application of Nanocatalysts in Photocatalytic Processes for the Treatment of Food Dyes: A Review. Sustainability 2021, 13, 11676. [Google Scholar] [CrossRef]
- Khan, K.A.; Shah, A.; Nisar, J.; Haleem, A.; Shah, I. Photocatalytic Degradation of Food and Juices Dyes via Photocatalytic Nanomaterials Synthesized through Green Synthetic Route: A Systematic Review. Molecules 2023, 28, 4600. [Google Scholar] [CrossRef] [PubMed]
- Karimi, F.; Zare, N.; Jahanshahi, R.; Arabpoor, Z.; Ayati, A.; Krivoshapkin, P.; Darabi, R.; Dragoi, E.N.; Raja, G.G.; Fakhari, F.; et al. Natural waste-derived nano photocatalysts for azo dye degradation. Environ. Res. 2023, 238, 117202. [Google Scholar] [CrossRef] [PubMed]
- Okoye, P.C.; Azi, S.O.; Qahtan, T.F.; Owolabi, T.O.; Saleh, T.A. Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials. Mater. Today Chem. 2023, 30, 101513. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.; Ahmed, R.; Chaudhry, S.A. Preparation of functionalized CuO nanoparticles using Brassica rapa leave extract for water purification. Desalin. Water Treat. 2019, 164, 192–205. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmoudb, S.A.; Mohamed, A.A. Interfacially engineered metal oxide nanocomposites for enhanced photocatalytic degradation of pollutants and energy applications. RSC Adv. 2025, 15, 15561–15603. [Google Scholar] [CrossRef]
- Pal, S.; Maiti, S.; Maiti, U.N.; Chattopadhyay, K.K. Low temperature solution processed ZnO/CuO heterojunction photocatalyst for visible light induced photo-degradation of organic pollutants. Cryst. Eng. Comm. 2015, 17, 1464–1476. [Google Scholar] [CrossRef]
- Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.J.P.B.C.M. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue. Phys. B. Conden. Mat. 2018, 534, 56–62. [Google Scholar] [CrossRef]
- El-Katori, E.E.; Ahmed, M.A.; El-Bindary, A.A.; Oraby, A.M. Impact of CdS/SnO2 heterostructured nanoparticle as visible light active photocatalyst for the removal methylene blue dye. J. Photochem. Photobiol. A Chem. 2020, 392, 112403. [Google Scholar] [CrossRef]
- Yahia, B.; Faouzi, S.; Mohamed, T. Methylene blue Photo-degradation on the Hetero-junction system α-Fe2O3/BaTiO3 under sunlight. J. Photochem. Photobiol. A Chem. 2023, 439, 114634. [Google Scholar] [CrossRef]
- Waheed, I.F.; Hamad, M.A.; Jasim, K.A.; Gesquiere, A.J. Degradation of methylene blue using a novel magnetic CuNiFe2O4/g-C3N4 nanocomposite as heterojunction photocatalyst. Diam. Relat. Mater. 2023, 133, 109716. [Google Scholar] [CrossRef]
- Malik, M.; Ibrahim, S.M.; Nazir, M.A.; Tahir, A.A.; Tufail, M.K.; Shah, S.S.A.; Anum, A.; Wattoo, M.A.; Rehman, A.U. Engineering of a hybrid g-C3N4/ZnO-W/Cox heterojunction photocatalyst for the removal of methylene blue dye. Catalysts 2023, 13, 813. [Google Scholar] [CrossRef]
- Akiyama, M.; Tamaki, J.; Miura, N.; Yamazoe, N. Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem. Lett. 1991, 20, 1611–1614. [Google Scholar] [CrossRef]
- Bamwenda, G.R.; Arakawa, H. The visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A Gen. 2001, 210, 181–191. [Google Scholar] [CrossRef]
- Sun, M.; Xu, N.; Cao, Y.W.; Yao, J.N.; Wang, E.G. Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res. 2000, 15, 927–933. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262. [Google Scholar] [CrossRef]
- Mohamedkhair, A.K.; Drmosh, Q.A.; Qamar, M.; Yamani, Z.H. Tuning Structural Properties of WO3 Thin Films for Photoelectrocatalytic Water Oxidation. Catalysts 2021, 11, 381. [Google Scholar] [CrossRef]
- Supothina, S.; Seeharaj, P.; Yoriya, S.; Sriyudthsak, M. Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 2007, 33, 931–936. [Google Scholar] [CrossRef]
- Ahmadi, M.; Younesi, R.; Guinel, M.J. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. J. Mater. Res. 2014, 29, 1424–1430. [Google Scholar] [CrossRef]
- Kumar, S.P.; Kamal, S.S.K.; Premkumar, M.; Kumar, T.J.; Sreedhar, B.; Singh, A.K.; Srivastava, S.K.; Sekhar, K.C. Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refract. Met. Hard Mater. 2009, 27, 784–791. [Google Scholar]
- Lai, W.H.; Su, Y.H.; Teoh, L.G.; Tsai, Y.T.; Hon, M.H. Synthesis of tungsten oxide particles by chemical deposition method. Mater. Trans. 2007, 48, 1575–1577. [Google Scholar] [CrossRef]
- Thanakkasaranee, S.; Kasi, G.; Kadhiravan, S.; Arumugam, A.; Al-Ghanim, K.A.; Riaz, M.N.; Govindarajan, M. Synthesis of tungsten oxide nanoflakes and their antibacterial and photocatalytic properties. Fermentation 2023, 9, 54. [Google Scholar] [CrossRef]
- Habtemariam, A.B.; Alemu, Y. Synthesis of WO3 nanoparticles using Rhamnus prinoides leaf extract and evaluation of its antibacterial activities. Biointer. Res. Appl. Chem. 2021, 12, 529–536. [Google Scholar]
- Anggraini, F.; Fatimah, I.; Ramanda, G.D.; Nurlaela, N.; Wijayanti, H.K.; Sagadevan, S.; Oh, W.C.; Doong, R.A. Unveiling the green synthesis of WO3 nanoparticles by using beetroot (Beta vulgaris) extract for photocatalytic oxidation of rhodamine B. Chemosphere 2025, 370, 143890. [Google Scholar] [CrossRef]
- Tijani, J.O.; Ugochukwu, O.; Fadipe, L.A.; Bankole, M.T.; Abdulkareem, A.S.; Roos, W.D. One-step green synthesis of WO3 nanoparticles using Spondias mombin aqueous extract: Effect of solution pH and calcination temperature. Appl. Phys. A 2019, 125, 1–12. [Google Scholar] [CrossRef]
- Jackson, S.; Beckett, K. Sausage tree Kigelia pinnata: An ethnobotanical and scientific review. Herbal Gram. 2012, 9, 48–59. [Google Scholar]
- Irbati, R.D.F.; Apriandanu, D.O.B.; Rahayu, M.; Ananda, V.R.; Yusuf, M.R.; Chandren SYulizar, Y. Green fabrication of novel LaCeO3 decorated with CuO using Kigelia africana (lamb) benth leaf extract for photocatalytic degradation of malachite green. Nano-Str. Nano-Obj. 2025, 42, 101474. [Google Scholar]
- Fatima, B.; Siddiqui, S.I.; Ahmad, R.; Linh NTTThai, V.N. CuO-ZnO-CdWO4: A sustainable and environmentally benign photocatalytic system for water cleansing. Environ. Sci. Poll. Res. 2021, 28, 53793–53803. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Rajor, H.K.; Malik, M.A.; Narasimharao, K.; Ahmad, R.; Vikrant, K.; Kim, T.; Kim, K.H. Photocatalytic removal of organic dye using green synthesized zinc oxide coupled cadmium tungstate nanocomposite under natural solar light irradiation. Environ. Res. 2023, 216, 114534. [Google Scholar] [CrossRef]
- Aisien, F.A.; Amenaghawon, N.A.; Ekpenisi, E.F. Photocatalytic decolourisation of industrial wastewater from a soft drink compan. UNIZIK J. Eng. Appl. Sci. 2013, 9, 11–16. [Google Scholar]
- Selvakumar, S.; Manivasagan, R.; Chinnappan, K. Biodegradation and decolourization of textile dye wastewater using Ganoderma Lucidum. Biotech 2013, 3, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Jawhari, A.H.; Malik, M.A.; Hasan, N.; Fatima, B. MgO-CdWO4: A visible-light-active heterojunction photocatalyst for Bismark brown dye degradation. J. Mol. Struct. 2024, 1305, 137594. [Google Scholar] [CrossRef]
- Trenczek-Zajac, A.; Synowiec, M.; Zakrzewska, K.; Zazakowny, K.; Kowalski, K.; Dziedzic, A.; Radecka, M. Scavenger-supported photocatalytic evidence of an extended type I electronic structure of the TiO2@ Fe2O3 interface. ACS Appl. Mater. Interfaces 2022, 14, 38255–38269. [Google Scholar] [CrossRef]
- Minh Vuong, N.; Kim, D.; Kim, H. Porous Au-embedded WO3 Nanowire Structure for Efficient Detection of CH4 and H2S. Sci. Rep. 2015, 5, 11040. [Google Scholar] [CrossRef]
- Boruah, P.J.; Khanikar RRBailung, H. Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3−x) nanoparticles by plasma discharge in liquid and its photocatalytic activity. Plasma Chem. Plasma Process. 2020, 40, 1019–1036. [Google Scholar] [CrossRef]
- Baishya, K.; Ray, J.; Dutta, P.; Das, P.; Das, S. Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation. Appl. Phys. A 2018, 124, 1–6. [Google Scholar] [CrossRef]
- Yoshimizu, M.; Hotori, Y.; Irie, H. Ohmic Hetero-Junction of n-Type Silicon and Tungsten Trioxide for Visible-Light Sensitive Photocatalyst. J. Mater. Sci. Chem. Eng. 2017, 5, 33–43. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, Y.; Xie, W.; Wang, Y.; Hu, Z.; Zhang, W.; Zhao, H. Facile Strategy for Synthesizing Non-Stoichiometric Monoclinic Structured Tungsten Trioxide (WO3−x) with Plasma Resonance Absorption and Enhanced Photocatalytic Activity. Nanomater 2018, 8, 553. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Sadek, A.Z.; Yaacob, M.H.; Anderson, D.P.; Matthews, G.; Golovko, V.B.; Wlodarski, W. Optical characterisation of nanostructured Au/WO3 thin films for sensing hydrogen at low concentrations. Sensor Actuat. B Chem. 2013, 179, 125–130. [Google Scholar] [CrossRef]
- Ranjan, P.; Suematsu, H.; Sarathi, R. Single step synthesis of WO3 nanoparticles by wire explosion process and its photocatalytic behaviour. Nano Exp. 2021, 2, 020014. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Manzoor, O.; Mohsin, M.; Chaudhry, S.A. Nigella sativa seed based nanocomposite-MnO2/BC: An antibacterial material for photocatalytic degradation, and adsorptive removal of Methylene blue from water. Environ. Res. 2019, 171, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, D.; He, G.; Pan, S. Effects of pH on the Photocatalytic Activity and Degradation Mechanism of Rhodamine B over Fusiform Bi Photocatalysts under Visible Light. Water 2024, 16, 2389. [Google Scholar] [CrossRef]
- Chong, R.; Cheng, X.; Chang, Z.; Li, D.; Zhang, L. Effects of common metal cations on Ag3PO4-photocatalytic water decontamination. J. Environ. Chem. Eng. 2015, 3, 1215–1222. [Google Scholar] [CrossRef]
- Le, S.T.T.; Khanitchaidecha, W.; Nakaruk, A. Photocatalytic reactor for organic compound removal using photocatalytic mechanism. Bull. Mater. Sci. 2016, 39, 569–572. [Google Scholar] [CrossRef]
- Haleem, A.; Ullah, M.; Rehman, S.U.; Shah, A.; Farooq, M.; Saeed, T.; Ullah, I.; Li, H. In-Depth Photocatalytic Degradation Mechanism of the Extensively Used Dyes Malachite Green, Methylene Blue, Congo Red, and Rhodamine B via Covalent Organic Framework-Based Photocatalysts. Water 2024, 16, 1588. [Google Scholar] [CrossRef]
- Modi, S.; Fulekar, M.H. Synthesis and characterization of zinc oxide nanoparticles and zinc oxide/cellulose nanocrystals nanocomposite for photocatalytic degradation of Methylene blue dye under solar light irradiation. Nanotechnol. Environ. Eng. 2020, 5, 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghamdi, A.A.; Aldahiri, R.H.; Alzahrani, E.A.; Alsebaii, N.M.; Hafeez, S.; Haque, S.; Dwivedi, P.; Oh, S. An Easy and Single-Step Biosynthesis of WO3 with High Photocatalytic Degradation Activity for Dye Degradation. Nanomaterials 2025, 15, 1036. https://doi.org/10.3390/nano15131036
Al-Ghamdi AA, Aldahiri RH, Alzahrani EA, Alsebaii NM, Hafeez S, Haque S, Dwivedi P, Oh S. An Easy and Single-Step Biosynthesis of WO3 with High Photocatalytic Degradation Activity for Dye Degradation. Nanomaterials. 2025; 15(13):1036. https://doi.org/10.3390/nano15131036
Chicago/Turabian StyleAl-Ghamdi, Azza A., Reema H. Aldahiri, Elham A. Alzahrani, Naha Meslet Alsebaii, Sumbul Hafeez, Shafiul Haque, Poonam Dwivedi, and Seungdae Oh. 2025. "An Easy and Single-Step Biosynthesis of WO3 with High Photocatalytic Degradation Activity for Dye Degradation" Nanomaterials 15, no. 13: 1036. https://doi.org/10.3390/nano15131036
APA StyleAl-Ghamdi, A. A., Aldahiri, R. H., Alzahrani, E. A., Alsebaii, N. M., Hafeez, S., Haque, S., Dwivedi, P., & Oh, S. (2025). An Easy and Single-Step Biosynthesis of WO3 with High Photocatalytic Degradation Activity for Dye Degradation. Nanomaterials, 15(13), 1036. https://doi.org/10.3390/nano15131036