High-Sensitivity, Low-Hysteresis, Flexible Humidity Sensors Based on Carboxyl-Functionalized Reduced-Graphene Oxide/Ag Nanoclusters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Humidity Sensing Materials
2.2.1. Preparation of H3BTC-Functionalized Reduced Graphene Oxide
2.2.2. Preparation of H3BTC-rGO/Ag Nanocomposites
2.3. Fabrication and Measurements of the Humidity Sensors
2.4. Characterization
3. Results and Discussion
3.1. Characterization of the Sensing Materials
3.2. Humidity Sensing Properties
3.3. Application to Respiratory
3.4. Humidity Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaishag, P.V.; Noh, J.-S. A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing. Molecules 2024, 29, 4558. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.L.; Pang, Y.X.; Huang, P.; Wang, Y.L.; Zhang, X.R.; Deng, H.T.; Zhang, X.S. Silk Fibroin-Based Wearable All-Fiber Multifunctional Sensor for Smart Clothing. Adv. Fiber Mater. 2022, 4, 873–884. [Google Scholar] [CrossRef]
- Alam, N.; Sharma, K.; Islam, S.S. Boosting of Surface Anion Density on Porous Anodic Alumina Surface—A Key Factor to Enhance Moisture Sensor Operation to Critical Sub-RH Level. IEEE Sens. J. 2022, 22, 6321–6328. [Google Scholar] [CrossRef]
- Song, J.; Fan, M.; Zhang, R.; Qu, M.; Tang, P.; Wang, H.; Bin, Y. Highly Sensitive Humidity Sensor Based on Composite Film of Partially Reduced Graphene Oxide and Bacterial Cellulose. Biosens. Bioelectron. 2024, 257, 116296. [Google Scholar] [CrossRef]
- Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; et al. Wearable Humidity Sensor Based on Porous Graphene Network for Respiration Monitoring. Biosens. Bioelectron. 2018, 116, 123–129. [Google Scholar] [CrossRef]
- Saqib, M.; Khan, S.A.; Mutee Ur Rehman, H.M.; Yang, Y.; Kim, S.; Rehman, M.M.; Young Kim, W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials 2021, 11, 242. [Google Scholar] [CrossRef]
- Natashah, F.A.; Lin, C.J.; Hishamuddin, S.N.; Coffey, A.H.; Zhu, C.; Bawazeer, T.M.; Alsoufi, M.S.; Roslan, N.A.; Supangat, A. Thermally Evaporated Vanadium-Based Phthalocyanine for Low Moisture Detection in Humidity Sensors. Mater. Today Commun. 2024, 38, 108033. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Shang, Y.; Umar, A.; Xie, P.; Qi, Q.; Zhou, G. One-step Fabrication of Pyranine Modified- Reduced Graphene Oxide with Ultrafast and Ultrahigh Humidity Response. Sci. Rep. 2017, 7, 2713. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Simonenko, N.; Simonenko, E.; Sysoev, V.; Brinzari, V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. Nanomaterials 2023, 13, 1381. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhang, H.; Ran, F.; Yang, P.; Li, H. Graphene Oxide Scroll Meshes Encapsulated Ag Nanoparticles for Humidity Sensing. RSC Adv. 2017, 7, 40119–40123. [Google Scholar] [CrossRef]
- Qiao, Y.; Ding, H.; Li, W.; Wang, M.; Li, M.; Li, J.; Tan, X. Giant Permittivity and Humidity Sensitivity of SrTiO3 Based Ceramics Induced by K, Nb Donor-acceptor Co-doping. Mater. Today Commun. 2024, 41, 110772. [Google Scholar] [CrossRef]
- Yao, J.; Wang, J.; Cao, W.; Li, L.; Luo, M.; Wang, C. Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics. Nanomaterials 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Jeong, H.; Hajra, S.; Rajaitha, P.M.; Hong, S.; Kim, H.J. Biocompatible Polydopamine Based Triboelectric Nanogenerator for Humidity Sensing. Sens. Actuators B Chem. 2023, 394, 134384. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, G.; Bapna, K.; Shivagan, D.D. Semiconductor-Metal-Oxide-Based Nano-Composites for Humidity Sensing Applications. Mater. Res. Bull. 2023, 158, 112053. [Google Scholar] [CrossRef]
- Herrán, J.; Fernández, I.; Ochoteco, E.; Cabañero, G.; Grande, H. The Role of Water Vapour in ZnO Nanostructures for Humidity Sensing at Room Temperature. Sens. Actuators B Chem. 2014, 198, 239–242. [Google Scholar] [CrossRef]
- Guo, J.-Y.; Huang, X.; Tian, G.-S.; Lin, Z.-D.; Chen, Z.; Du, F.-P. LiCl-Assisted Polysiloxane Electrolyte Complexes for Highly Sensitive Humidity Sensing. Sens. Actuators B Chem. 2023, 394, 134472. [Google Scholar] [CrossRef]
- Lan, L.; Le, X.; Dong, H.; Xie, J.; Ying, Y.; Ping, J. One-Step and Large-Scale Fabrication of Flexible and Wearable Humidity Sensor Based on Laser-Induced Graphene for Real-Time Tracking of Plant Transpiration at Bio-interface. Biosens. Bioelectron. 2020, 165, 112360. [Google Scholar] [CrossRef]
- Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface Modifications and Analytical Applications of Graphene Oxide: A Review. Trends Analyt. Chem. 2021, 144, 116448. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, Y.; Zhao, Z.; Tang, Z.; Niu, Y.; Zhang, D.; Wang, Y.; Gong, W. Enhanced Room Temperature Ammonia Gas Sensing Based on a Multichannel PSS-Functionalized Graphene/PANI Network. Analyst 2025, 150, 669–679. [Google Scholar] [CrossRef]
- Waheed, W.; Anwer, S.; Khan, M.U.; Sajjad, M.; Alazzam, A. 2D Ti3C2Tx-MXene Nanosheets and Graphene Oxide Based Highly Sensitive Humidity Sensor for Wearable and Flexible Electronics. Chem. Eng. J. 2024, 480, 147981. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [PubMed]
- Paterakis, G.; Vaughan, E.; Gawade, D.R.; Murray, R.; Gorgolis, G.; Matsalis, S.; Anagnostopoulos, G.; Buckley, J.L.; O’Flynn, B.; Quinn, A.J.; et al. Highly Sensitive and Ultra-Responsive Humidity Sensors Based on Graphene Oxide Active Layers and High Surface Area Laser-Induced Graphene Electrodes. Nanomaterials 2022, 12, 2684. [Google Scholar] [CrossRef] [PubMed]
- Andrić, S.; Tomašević-Ilić, T.; Bošković, M.V.; Sarajlić, M.; Vasiljević-Radović, D.; Smiljanić, M.M.; Spasenović, M. Ultrafast Humidity Sensor Based on Liquid Phase Exfoliated Graphene. Nanotechnology 2020, 32, 025505. [Google Scholar] [CrossRef] [PubMed]
- Trajcheva, A.; Elgoyhen, J.; Ehsani, M.; Joseph, Y.; Gilev, J.B.; Tomovska, R. Advanced Nanostructured All-Waterborne Thiol-Ene/Reduced Graphene Oxide Humidity Sensors with Outstanding Selectivity. Adv. Mater. Technol. 2024, 9, 2400114. [Google Scholar] [CrossRef]
- Montes-García, V.; Samorì, P. Humidity Sensing with Supramolecular Nanostructures. Adv. Mater. 2023, 36, 2208766. [Google Scholar] [CrossRef]
- Tomer, V.K.; Thangaraj, N.; Gahlot, S.; Kailasam, K. Cubic Mesoporous Ag@CN: A High Performance Humidity Sensor. Nanoscale 2016, 8, 19794–19803. [Google Scholar] [CrossRef]
- Yin, F.; Guo, Y.; Qiu, Z.; Niu, H.; Wang, W.; Li, Y.; Kim, E.S.; Kim, N.Y. Hybrid Electronic Skin Combining Triboelectric Nanogenerator and Humidity Sensor for Contact and Non-Contact Sensing. Nano Energy 2022, 101, 107541. [Google Scholar] [CrossRef]
- He, J.; Zheng, X.; Zheng, Z.; Kong, D.; Ding, K.; Chen, N.; Zhang, H.; Yang, W. Pair Directed Silver Nano-Lines by Single-Particle Assembly in Nanofibers for Non-Contact Humidity Sensors. Nano Energy 2022, 92, 106748. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Umar, A.; Wang, Y.; Tian, T.; Shang, Y.; Fan, Y.; Qi, Q.; Xu, D. Supramolecularly Modified Graphene for Ultrafast Responsive and Highly Stable Humidity Sensor. J. Phys. Chem. C 2015, 119, 28640–28647. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, S.; Zhang, Y.; Wang, L.; Liu, Y.; Duan, Q. One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction. Molecules 2021, 26, 7261. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Song, Y.; Liu, F.; Deng, D.; Zhu, X.; He, H.; Yan, X.; Luo, L. A Sandwich-Type Electrochemical Immunosensor Based on Spherical Nucleic Acids-Templated Ag Nanoclusters for Ultrasensitive Detection of Tumor Biomarker. Biosens. Bioelectron. 2023, 223, 115029. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-S.; Choi, J.-K.; Woo, H.-S.; Kim, S.-J.; Jung, S.-Y.; Seong, T.-Y.; Kim, I.-D.; Lee, J.-H. Facile Control of C2H5OH Sensing Characteristics by Decorating Discrete Ag Nanoclusters on SnO2 Nanowire Networks. ACS Appl. Mater. Interfaces 2011, 3, 3140–3145. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xu, S.; Liu, H.; Wu, X.; Tu, X.; Bo, M.; Zhu, W. Hybridized Ag-CuCrO2 Nanostructured Composites for Enhanced Gas Sensing. ACS Appl. Nano Mater. 2022, 5, 12690–12698. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Zhao, G.; Xu, Z.; Hussain, S.; Wang, M.; Qiao, G.; Liu, G. Influence of the Surface Decoration of Phosphorene with Ag Nanoclusters on Gas Sensing Properties. Appl. Surf. Sci. 2020, 504, 144374. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Pan, D.; Wang, Y.; Noetzel, R.; Li, H.; Xie, P.; Pei, W.; Umar, A.; Jiang, L.; et al. Mimicking A Dog’s Nose: Scrolling Graphene Nanosheets. ACS Nano 2018, 12, 2521–2530. [Google Scholar] [CrossRef]
- Liang, H.; Guo, X.; Guo, L.; Liu, S.; Zhan, Q.; Yang, H.; Li, H.; Rooij, N.F.d.; Lee, Y.-K.; French, P.J.; et al. A Plant-Inspired Light Transducer for High-Performance Near-Infrared Light Mediated Gas Sensing. Adv. Funct. Mater. 2023, 33, 2215099. [Google Scholar] [CrossRef]
- Liang, H.; Guo, L.; Cao, N.; Hu, H.; Li, H.; Rooij, N.F.d.; Umar, A.; Algarni, H.; Wang, Y.; Zhou, G. Practical Room Temperature Formaldehyde Sensing Based on Combination of Visible-Light Activation and Dipole Modification. J Mater. Chem. A 2021, 9, 23955. [Google Scholar] [CrossRef]
- Liang, H.; Hu, H.; Wang, J.; Li, H.; Rooij, N.F.d.; Zhou, G.; Wang, Y. Graphene-Based Room Temperature Gas Sensing Materials. Curr. Chin. Sci. 2020, 1, 98–114. [Google Scholar] [CrossRef]
- Tung, T.T.; Yoo, J.; Alotaibi, F.K.; Nine, M.J.; Karunagaran, R.; Krebsz, M.; Nguyen, T.G.; Tran, D.N.H.; Feller, J.F.; Losic, D. Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite Into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Appl. Mater. Interfaces 2016, 8, 16521–16532. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Y.; Ding, H.; Wu, Z.; Yang, X.; Li, Z.; Huang, W.; Xie, X.; Tao, K.; Wang, X. Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH3 and NO2 Detection at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 20623–20632. [Google Scholar] [CrossRef]
- Wu, J.; Tao, K.; Zhang, J.; Guo, Y.; Miao, J.; Norford, L.K. Chemically Functionalized 3D Graphene Hydrogel for High Performance Gas Sensing. J Mater. Chem. A 2016, 4, 8130–8140. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B. Humidity-Sensing Properties of Chemically Reduced Graphene Oxide/Polymer Nanocomposite Film Sensor Based on Layer-by-Layer Nano Self-Assembly. Sens. Actuators B Chem. 2014, 197, 66–72. [Google Scholar] [CrossRef]
- Wu, J.; Lu, P.; Dai, J.; Zheng, C.; Zhang, T.; Yu, W.W.; Zhang, Y. High Performance Humidity Sensing Property of Ti3C2Tx MXene-Derived Ti3C2Tx/K2Ti4O9 Composites. Sens. Actuators B Chem. 2021, 326, 128969. [Google Scholar] [CrossRef]
- Kumar, Y.; Sharma, A.; Shirage, P. Shape-Controlled CoFe2O4 Nanoparticles as An Excellent Material for Humidity Sensing. RSC Adv. 2017, 7, 55778–55785. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, W.-T.; Huang, C.-H.; Woon, W.-Y.; Lin, C.-T. Effects of π-Electron in Humidity Sensing of Artificially Stacked Graphene Bilayers Modified with Carboxyl and Hydroxyl Groups. Sens. Actuators B Chem. 2019, 301, 127020. [Google Scholar] [CrossRef]
- Li, T.; Zhao, T.; Tian, X.; Yuan, L.; Xue, X.; Wang, Z.; Yin, L.; Zhang, J. A High-Performance Humidity Sensor Based on Alkalized MXenes and Poly(Dopamine) for Touchless Sensing and Respiration Monitoring. J. Mater. Chem. C 2022, 10, 2281–2289. [Google Scholar] [CrossRef]
- Ni, L.; Li, X.; Cai, F.; Dong, Z.; Deng, Y.; Jiang, T.; Su, Z.; Chang, H.; Zhang, Z.; Luo, Y. Printable and Flexible Humidity Sensor Based on Graphene -Oxide-Supported MoTe2 Nanosheets for Multifunctional Applications. Nanomaterials 2023, 13, 1309. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Wang, F.; Chi, H. Evolution of Oxygen Content of Graphene Oxide for Humidity Sensing. Molecules 2024, 29, 3741. [Google Scholar] [CrossRef]
Materials | Sensor Type | S | Tres (s)/ Trec (s) | Flexible | DR (RH) |
---|---|---|---|---|---|
Ti3C2Tx/K2Ti4O9 [43] | Resistance | 1.49 | 65.2/84.8 | no | 11–95% |
rGO-Ag scroll [10] | Resistance | 908–1243 | 50/13 | no | 11–97% |
CoFe2O4 [44] | Resistance | ~590 | 25/2.6 | no | 8–97% |
BL-G [45] | Resistance | 5% | few seconds | no | 30–70% |
GO/BC [4] | Resistance | 94% | 13/47 | no | 5–85% |
PDDA/GO [42] | Resistance | 20.66% | 94/134 | yes | 11–97% |
Ti3C2Tx/PDA [46] | Resistance | ~85% | 0.4/0.5 | yes | 5–95% |
H3BTC-rGO/Ag (This work) | Resistance | 88.9% | 9/16 | yes | 0–100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Guo, L.; Niu, Y.; Tang, Z.; Zhao, Z.; Mei, H.; Fang, R.; Liu, C.; Gong, W. High-Sensitivity, Low-Hysteresis, Flexible Humidity Sensors Based on Carboxyl-Functionalized Reduced-Graphene Oxide/Ag Nanoclusters. Nanomaterials 2025, 15, 800. https://doi.org/10.3390/nano15110800
Liang H, Guo L, Niu Y, Tang Z, Zhao Z, Mei H, Fang R, Liu C, Gong W. High-Sensitivity, Low-Hysteresis, Flexible Humidity Sensors Based on Carboxyl-Functionalized Reduced-Graphene Oxide/Ag Nanoclusters. Nanomaterials. 2025; 15(11):800. https://doi.org/10.3390/nano15110800
Chicago/Turabian StyleLiang, Hongping, Lanpeng Guo, Yue Niu, Zilun Tang, Zhenting Zhao, Haijuan Mei, Ru Fang, Chen Liu, and Weiping Gong. 2025. "High-Sensitivity, Low-Hysteresis, Flexible Humidity Sensors Based on Carboxyl-Functionalized Reduced-Graphene Oxide/Ag Nanoclusters" Nanomaterials 15, no. 11: 800. https://doi.org/10.3390/nano15110800
APA StyleLiang, H., Guo, L., Niu, Y., Tang, Z., Zhao, Z., Mei, H., Fang, R., Liu, C., & Gong, W. (2025). High-Sensitivity, Low-Hysteresis, Flexible Humidity Sensors Based on Carboxyl-Functionalized Reduced-Graphene Oxide/Ag Nanoclusters. Nanomaterials, 15(11), 800. https://doi.org/10.3390/nano15110800