A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts
Abstract
:1. Introduction
2. Computational Details
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DFT | Density functional theory |
PSO | Particle swarm optimization |
Ni | Nickel |
XANES | X-ray absorption near-edge structure |
HDS | Hydrodesulfurization |
RADS | Reactive adsorption desulfurization |
XRD | X-ray diffraction |
NixSy or NiSx | Ni sulfides |
CALYPSO | Crystal structure AnaLYsis by Particle Swarm Optimization |
VASP | Vienna ab initio simulation package |
PAW | Projector augmented wave method |
GGA-PBE | Generalized gradient approximation developed by Perdew–Burke–Ernzerhof |
References
- Guan, Z.; Sun, G.; Feng, C.; Li, J.; Wang, M.; Guo, M.; Liu, B.; Pan, Y.; Liu, C.; Chai, Y.; et al. Ni/ZSM-5@Ni/ZnO catalysts for fluid catalytic cracking gasoline desulfurization-aromatization tandem reactions. Fuel 2025, 381, 133613. [Google Scholar] [CrossRef]
- Wang, W.; Li, G.; Xin, M.; He, J.; Zhang, T.; Liu, L. Selective deep desulfurization of liquefied petroleum gas on Ni/ZnO-based catalyst. Fuel 2024, 358, 130197. [Google Scholar] [CrossRef]
- Botin, A.A.; Boldushevskii, R.E.; Mozhaev, A.V.; Ghambarian, M.; Balar, M.; Ghashghaee, M.; Nikulshin, P.A. Reactive adsorption desulfurization of model FCC gasoline on Ni-based adsorbents: Effect of active phase dispersion on activity and HDS/HYD selectivity. Appl. Catal. B Environ. 2023, 337, 122946. [Google Scholar] [CrossRef]
- Li, L.; Ju, F.; Ling, H. Reactivation of NiSO4/ZnO-Al2O3-SiO2 adsorbent for reactive adsorption desulfurization. Fuel 2023, 339, 127411. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Shi, N.-Y.; Liu, D.-Y.; Li, R.; Yu, J.-G.; Ma, Q.-T.; Li, T.-Y.; Ren, H.; Pan, Y.; Liu, Y.-Q.; et al. New insights into the mechanism of reactive adsorption desulfurization on Ni/ZnO catalysts: Theoretical evidence showing the existence of interfacial sulfur transfer pathway and the essential role of hydrogen. Pet. Sci. 2023, 20, 3240–3250. [Google Scholar] [CrossRef]
- Song, Y.; Peng, B.; Yang, X.; Jiang, Q.; Liu, J.; Lin, W. Trail of sulfur during the desulfurization via reactive adsorption on Ni/ZnO. Green Energy Environ. 2021, 6, 597–606. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Shi, N.; Ding, X.; Yu, Z.; Zhao, W.; Ren, H.; Pan, Y.; Liu, Y.; Guo, W. Density functional theory study of thiophene desulfurization and conversion of desulfurization products on the Ni(111) surface and Ni55 cluster: Implication for the mechanism of reactive adsorption desulfurization over Ni/ZnO catalysts. Catal. Sci. Technol. 2021, 11, 1615–1625. [Google Scholar] [CrossRef]
- Lu, C.; Lin, Y.; Wang, M.; Zhou, J.; Wang, S.; Jiang, H.; Kang, K.; Huang, L. Nickel-Catalyzed Ring-Opening of Benzofurans for the Divergent Synthesis of ortho-Functionalized Phenol Derivatives. ACS Catal. 2023, 13, 2432–2442. [Google Scholar] [CrossRef]
- Yilmazer, N.D.; Fellah, M.F.; Onal, I. A DFT Study of Ethylene Hydrogenation Reaction Mechanisms on Ni13 Nanocluster. Top. Catal. 2013, 56, 789–793. [Google Scholar] [CrossRef]
- Ma, Q.; Zhu, H.; Liu, D.; Li, R.; Li, T.; Ren, H.; Zhao, W.; Pan, Y.; Liu, Y.; Guo, W. Identifying magic-number structures of supported sub-nano Ni clusters and the influence of hydrogen coverage: A density functional theory based particle swarm optimization investigation. Catal. Sci. Technol. 2023, 13, 2080–2091. [Google Scholar] [CrossRef]
- Sergeev, A.G.; Hartwig, J.F. Selective, Nickel-Catalyzed Hydrogenolysis of Aryl Ethers. Science 2011, 332, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, C.G.P.M.; Gomes, J.A.N.F. The adsorption of ethylene on the (100) surfaces of platinum, palladium and nickel: A DFT study. J. Mol. Struct. THEOCHEM 2001, 542, 263–271. [Google Scholar] [CrossRef]
- Mao, S.; Wang, Z.; Luo, Q.; Lu, B.; Wang, Y. Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catal. 2023, 13, 974–1019. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Y.; Mei, D.; Bullock, R.M.; Gutiérrez, O.Y.; Camaioni, D.M.; Lercher, J.A. The Critical Role of Reductive Steps in the Nickel-Catalyzed Hydrogenolysis and Hydrolysis of Aryl Ether C−O Bonds. Angew. Chem. Int. Ed. 2020, 59, 1445–1449. [Google Scholar] [CrossRef]
- Henni, H.; Benrabaa, R.; Roussel, P.; Löfberg, A. Ni-Ag Catalysts for Hydrogen Production through Dry Reforming of Methane: Characterization and Performance Evaluation. Catalysts 2024, 14, 400. [Google Scholar] [CrossRef]
- Jeong, H.; Kang, M. Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst. Appl. Catal. B Environ. 2010, 95, 446–455. [Google Scholar] [CrossRef]
- Waldvogel, A.; Fasolini, A.; Basile, F.; Thomas, S.; Roger, A.-C. Effect of the Support Synthetic Method on the Activity of Ni/CeZrPr Mixed Oxide in the Co-Methanation of CO2/CO Mixtures for Application in Power-to-Gas with Co-Electrolysis. Energy Fuels 2021, 35, 13304–13314. [Google Scholar] [CrossRef]
- Atzori, L.; Cutrufello, M.G.; Meloni, D.; Onida, B.; Gazzoli, D.; Ardu, A.; Monaci, R.; Sini, M.F.; Rombi, E. Characterization and catalytic activity of soft-templated NiO-CeO2 mixed oxides for CO and CO2 co-methanation. Front. Chem. Sci. Eng. 2021, 15, 251–268. [Google Scholar] [CrossRef]
- Gac, W.; Zawadzki, W.; Rotko, M.; Greluk, M.; Słowik, G.; Kolb, G. Effects of support composition on the performance of nickel catalysts in CO2 methanation reaction. Catal. Today 2020, 357, 468–482. [Google Scholar] [CrossRef]
- Razzaq, R.; Li, C.; Amin, N.; Zhang, S.; Suzuki, K. Co-methanation of Carbon Oxides over Nickel-Based CexZr1–xO2 Catalysts. Energy Fuels 2013, 27, 6955–6961. [Google Scholar] [CrossRef]
- Hu, F.; Ye, R.; Lu, Z.-H.; Zhang, R.; Feng, G. Structure–Activity Relationship of Ni-Based Catalysts toward CO2 Methanation: Recent Advances and Future Perspectives. Energy Fuels 2022, 36, 156–169. [Google Scholar] [CrossRef]
- Lonkar, S.P.; Pillai, V.V.; Alhassan, S.M. Three-Dimensional NiS-MoS2/Graphene Heterostructured Nanohybrids as High-Performance Hydrodesulfurization Catalysts. ACS Appl. Nano Mater. 2018, 1, 3114–3123. [Google Scholar] [CrossRef]
- Joo, P.H.; Yang, K. Descriptors of transition metal promoters on MoS2 nanocatalysts for hydrodesulfurization: Binding energy of metal sulfides from first principles. Mol. Syst. Des. Eng. 2019, 4, 974–982. [Google Scholar] [CrossRef]
- Aray, Y.; Vega, D.; Rodriguez, J.; Vidal, A.B.; Grillo, M.E.; Coll, S. First-Principles Study of Low Miller Index Ni3 S2 Surfaces in Hydrotreating Conditions. J. Phys. Chem. B 2009, 113, 3058–3070. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, G.; Qin, Z.; Du, M.; Dong, M.; Ge, H.; Wu, Z.; Zhao, Y.; Ma, C.; Hu, T.; et al. A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO. Catal. Commun. 2010, 11, 592–596. [Google Scholar] [CrossRef]
- Huang, L.; Wang, G.; Qin, Z.; Dong, M.; Du, M.; Ge, H.; Li, X.; Zhao, Y.; Zhang, J.; Hu, T.; et al. In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO. Appl. Catal. B Environ. 2011, 106, 26–38. [Google Scholar] [CrossRef]
- Kong, A.; Wei, Y.; Li, Y. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation. Front. Chem. Sci. Eng. 2013, 7, 170–176. [Google Scholar] [CrossRef]
- Aray, Y.; Vidal, A.B.; Coll, D.S.; Rodriguez, J.; Vega, D. First-principles study of the nature of small nickel sulfide particles. J. Comput. Methods Sci. Eng. 2009, 9, 301–312. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, L.; Du, M.; Lyu, Z.; Wen, X.-D.; Li, X.; Ge, H. A novel reactive adsorption desulfurization Ni/MnO adsorbent and its hydrodesulfurization ability compared with Ni/ZnO. Catal. Commun. 2015, 61, 37–40. [Google Scholar] [CrossRef]
- Tang, M.; Wang, W.; Zhou, L.; Zhang, Y.; Qin, Z.; Han, W.; Wang, J.; Ge, H.; Li, X. Reactive adsorption desulfurization of thiophene over NiMo/ZnO, a new adsorbent with high desulfurization performance and sulfur capacity at moderate temperature. Catal. Sci. Technol. 2019, 9, 6318–6326. [Google Scholar] [CrossRef]
- Fan, J.; Wang, G.; Sun, Y.; Xu, C.; Zhou, H.; Zhou, G.; Gao, J. Research on Reactive Adsorption Desulfurization over Ni/ZnO−SiO2−Al2O3 Adsorbent in a Fixed-Fluidized Bed Reactor. Ind. Eng. Chem. Res. 2010, 49, 8450–8460. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Ryzhikov, A.; Gadacz, G.; Bellat, J.-P. Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO. Catal. Today 2008, 130, 199–205. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Gadacz, G.; Bellat, J.-P. Interaction of Ni/SiO2 with thiophene. Mater. Chem. Phys. 2009, 114, 897–901. [Google Scholar] [CrossRef]
- Ryzhikov, A.; Bezverkhyy, I.; Bellat, J.-P. Reactive adsorption of thiophene on Ni/ZnO: Role of hydrogen pretreatment and nature of the rate determining step. Appl. Catal. B Environ. 2008, 84, 766–772. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, P. Identifying the general trend of activity of non-stoichiometric metal oxide phases for CO oxidation on Pd(111). Sci. China Chem. 2019, 62, 784–789. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y.; Zhu, L.; Ma, Y. Particle-swarm structure prediction on clusters. J. Chem. Phys. 2012, 137, 084104. [Google Scholar] [CrossRef]
- Luo, X.; Yang, J.; Liu, H.; Wu, X.; Wang, Y.; Ma, Y.; Wei, S.-H.; Gong, X.; Xiang, H. Predicting Two-Dimensional Boron–Carbon Compounds by the Global Optimization Method. J. Am. Chem. Soc. 2011, 133, 16285–16290. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y.; Zhu, L.; Ma, Y. Predicted Novel High-Pressure Phases of Lithium. Phys. Rev. Lett. 2011, 106, 015503. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Lv, J.; Zhu, L.; Wang, H.; Ma, Y. High pressure partially ionic phase of water ice. Nat. Commun. 2011, 2, 563. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Wang, Y.; Lv, J.; Ma, Y.; Cui, Q.; Ma, Y.; Zou, G. Substitutional Alloy of Bi and Te at High Pressure. Phys. Rev. Lett. 2011, 106, 145501. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Ma, Y. Quasi-Molecular and Atomic Phases of Dense Solid Hydrogen. J. Phys. Chem. C 2012, 116, 9221–9226. [Google Scholar] [CrossRef]
- Wang, H.; Tse, J.S.; Tanaka, K.; Iitaka, T.; Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA 2012, 109, 6463–6466. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Wang, Y.; Zou, G.; Mao, H.; Ma, Y. Spiral chain O4 form of dense oxygen. Proc. Natl. Acad. Sci. USA 2012, 109, 751–753. [Google Scholar] [CrossRef]
- Yang, H.; Fan, J.; Song, Y.; Li, J.; Yu, J.; Zhu, L.; Cheng, Z.; Zhang, Y.; Li, J. Research status and prospect of oxidation behavior of nickel-based single crystal superalloys. Chin. J. Rare Met. 2024, 48, 1274–1291. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Chakarvarti, S.K. SEM morphology and XRD characterization of Ni microstructure arrays synthesized by dc electrodeposition in porous polycarbonate templates. J. Mater. Sci. 2004, 39, 3249–3251. [Google Scholar] [CrossRef]
- Morin, C.; Eichler, A.; Hirschl, R.; Sautet, P.; Hafner, J. DFT study of adsorption and dissociation of thiophene molecules on Ni(110). Surf. Sci. 2003, 540, 474–490. [Google Scholar] [CrossRef]
- Mittendorfer, F. Initial steps in the desulfurization of thiophene/Ni(100)—A DFT study. J. Catal. 2003, 214, 234–241. [Google Scholar] [CrossRef]
- Mittendorfer, F.; Hafner, J. A DFT study of the adsorption of thiophene on Ni(100). Surf. Sci. 2001, 492, 27–33. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Y.; Liu, H.; Miao, M.; Ma, Y. Self-assembled ultrathin nanotubes on diamond (100) surface. Nat. Commun. 2014, 5, 3666. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 2010, 82, 094116. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Suh, I.-K.; Ohta, H.; Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J. Mater. Sci. 1988, 23, 757–760. [Google Scholar] [CrossRef]
- Fjellvag, H.; Andersen, A. Properties of Ni3S2 at high temperatures. Acta. Chem. Scand. 1994, 48, 290–293. [Google Scholar] [CrossRef]
- Yu, Y.G.; Ross, N.L. Vibrational and thermodynamic properties of Ni3S2 polymorphs from first-principles calculations. Phys. Chem. Minerals 2011, 38, 241–249. [Google Scholar] [CrossRef]
- Su, Y.-Q.; Filot, I.A.W.; Liu, J.-X.; Hensen, E.J.M. Stable Pd-Doped Ceria Structures for CH4 Activation and CO Oxidation. ACS Catal. 2018, 8, 75–80. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Li, X.; Zhang, X.; Fan, Y.; Wang, X.; Liu, D.; Liu, Z.; Gong, X.; Guo, W.; Ren, H. A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts. Nanomaterials 2025, 15, 788. https://doi.org/10.3390/nano15110788
Zhu H, Li X, Zhang X, Fan Y, Wang X, Liu D, Liu Z, Gong X, Guo W, Ren H. A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts. Nanomaterials. 2025; 15(11):788. https://doi.org/10.3390/nano15110788
Chicago/Turabian StyleZhu, Houyu, Xiaohan Li, Xiaoxin Zhang, Yucheng Fan, Xin Wang, Dongyuan Liu, Zhennan Liu, Xiaoxiao Gong, Wenyue Guo, and Hao Ren. 2025. "A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts" Nanomaterials 15, no. 11: 788. https://doi.org/10.3390/nano15110788
APA StyleZhu, H., Li, X., Zhang, X., Fan, Y., Wang, X., Liu, D., Liu, Z., Gong, X., Guo, W., & Ren, H. (2025). A Density Functional Theory-Based Particle Swarm Optimization Investigation of Metal Sulfide Phases for Ni-Based Catalysts. Nanomaterials, 15(11), 788. https://doi.org/10.3390/nano15110788