Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode
Abstract
1. Introduction
2. Structure and Methods
3. Results
3.1. WGM Mechanism of Single BN Microdisk
3.2. BN Microdisks Cascaded for Single-Mode Control
3.3. BN Microdisk for Nanoparticle Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef]
- Zalogina, A.; Carletti, L.; Rudenko, A.; Moloney, J.V.; Tripathi, A.; Lee, H.-C.; Shadrivov, I.; Park, H.-G.; Kivshar, Y.; Kruk, S.S. High-harmonic generation from a subwavelength dielectric resonator. Sci. Adv. 2023, 9, eadg2655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Z.; Zhang, X.; Wang, T.; Choi, H.W. Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si. Appl. Phys. Lett. 2014, 104, 221106. [Google Scholar] [CrossRef]
- Li, J.; Lin, Y.; Lu, J.; Xu, C.; Wang, Y.; Shi, Z.; Dai, J. Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance. ACS Nano 2015, 9, 6794–6800. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Froch, J.E.; Christian, J.; Straw, M.; Bishop, J.; Totonjian, D.; Watanabe, K.; Taniguchi, T.; Toth, M.; Aharonovich, I. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 2018, 9, 2623. [Google Scholar] [CrossRef] [PubMed]
- Froch, J.E.; Hwang, Y.; Kim, S.; Aharonovich, I.; Toth, M. Photonic Nanostructures from Hexagonal Boron Nitride. Adv. Opt. Mater. 2019, 7, 1801344. [Google Scholar] [CrossRef]
- Das, A.; Lee, D.J.; Shandilya, P.K.; Kim, S.; Kang, G.; Lake, D.P.; Behera, B.; Sukachev, D.; Aharonovich, I.; Lee, J.-H.; et al. Demonstration of Hybrid High-Q Hexagonal Boron Nitride Microresonators. ACS Photonics 2021, 8, 3027–3033. [Google Scholar] [CrossRef]
- Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.V.; Petroff, P.M.; Zhang, L.D.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285. [Google Scholar] [CrossRef]
- Sandoghdar, V.; Treussart, F.; Hare, J.; Lefevre-Seguin, V.; Raimond, J.-M.; Haroche, S. Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A At. Mol. Opt. Phys. 1996, 54, R1777–R1780. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef]
- Li, K.H.; Ma, Z.; Choi, H.W. Single-mode whispering gallery lasing from metal-clad GaN nanopillars. Opt. Lett. 2012, 37, 374–376. [Google Scholar] [CrossRef]
- Gargas, D.J.; Moore, M.C.; Ni, A.; Chang, S.-W.; Zhang, Z.; Chuang, S.-L.; Yang, P. Whispering Gallery Mode Lasing from Zinc Oxide Hexagonal Nanodisks. ACS Nano 2010, 4, 3270–3276. [Google Scholar] [CrossRef]
- Xiao, Y.; Meng, C.; Wu, X.; Tong, L. Single mode lasing in coupled nanowires. Appl. Phys. Lett. 2011, 99, 023109. [Google Scholar] [CrossRef]
- Shang, L.; Liu, L.; Xu, L. Single-frequency coupled asymmetric microcavity laser. Opt. Lett. 2008, 33, 1150–1152. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Qiang, L.; Zhang, Y.; Hao, S. Single-mode lasing of nanowire self-coupled resonator. Nanoscale 2013, 5, 6297–6302. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Fu, A.; Andrews, S.C.; Yang, P. Cleaved-coupled nanowire lasers. Proc. Natl. Acad. Sci. USA 2013, 110, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.; Yu, X.-C.; Gong, Q.; Yang, L.; Xiao, Y.-F. Single Nanoparticle Detection Using Optical Microcavities. Adv. Mater. 2017, 29, 1604920. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jiang, X.; Zhao, G.; Ma, D.; Tao, H.; Liu, Z.; Omenetto, F.G.; Yang, L. High-Q silk fibroin whispering gallery microresonator. Opt. Express 2016, 24, 20825–20830. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ozdemir, S.K.; Xiao, Y.-F.; Li, L.; He, L.; Chen, D.-R.; Yang, L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 2010, 4, 46–49. [Google Scholar] [CrossRef]
- Shao, L.; Jiang, X.-F.; Yu, X.-C.; Li, B.-B.; Clements, W.R.; Vollmer, F.; Wang, W.; Xiao, Y.-F.; Gong, Q. Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening. Adv. Mater. 2013, 25, 5616–5620. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Ko, J.H.; Lee, G.J.; Kang, J.; Kim, M.S.; Stanciu, S.G.; Jeong, H.-H.; Kim, D.-H.; Song, Y.M. Gires-Tournois Immunoassay Platform for Label-Free Bright-Field Imaging and Facile Quantification of Bioparticles. Adv. Mater. 2022, 34, 2110003. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wu, L.; Geng, Z.; Shum, P.P.; Ma, X.; Wang, J. Refractometric Imaging and Biodetection Empowered by Nanophotonics. Laser Photonics Rev. 2023, 17, 2200814. [Google Scholar] [CrossRef]
- Li, Q.; Wang, M.; Bai, Y.; Zhang, Q.; Zhang, H.; Tian, Z.; Guo, Y.; Zhu, J.; Liu, Y.; Yun, F.; et al. Two-Inch Wafer-Scale Exfoliation of Hexagonal Boron Nitride Films Fabricated by RF-Sputtering. Adv. Funct. Mater. 2022, 32, 2206094. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Zhang, Q.; Li, J.; Zhang, Z.; Fang, W.; Wang, L.; Yun, F.; Wang, T.; Hao, Y. High-Crystallinity and High-Temperature Stability of the Hexagonal Boron Nitride Film Grown on Sapphire. Cryst. Growth Des. 2023, 23, 8783–8792. [Google Scholar] [CrossRef]
- Ahmed, K.; Dahal, R.; Weltz, A.; Lu, J.Q.; Danon, Y.; Bhat, I.B. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection. Appl. Phys. Lett. 2016, 109, 113501. [Google Scholar] [CrossRef]
- Ren, T.; Song, P.; Chen, J.; Loh, K.P. Whisper Gallery Modes in Monolayer Tungsten Disulfide-Hexagonal Boron Nitride Optical Cavity. ACS Photonics 2018, 5, 353–358. [Google Scholar] [CrossRef]
- Hu, Y.-Q.; Yang, H.; Wang, T.; Mao, X.; Xie, R.-R.; Liang, J.-Y.; Qin, G.-Q.; Wang, M.; Long, G.-L. A novel method to fabricate on-chip ultra-high-Q microtoroid resonators. Opt. Commun. 2020, 476, 126259. [Google Scholar] [CrossRef]
- Armani, D.K.; Kippenberg, T.J.; Spillane, S.M.; Vahala, K.J. Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925–928. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Ma, L.; Schmidt, O.G. Recent Progress on Optoplasmonic Whispering-Gallery-Mode Microcavities. Adv. Opt. Mater. 2021, 9, 2100143. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Sun, H. Advances and Prospects for Whispering Gallery Mode Microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162. [Google Scholar] [CrossRef]
- Zhang, P.; He, D.; Zhang, C.; Yan, Z. FDTD Simulation: Simultaneous Measurement of the Refractive Index and the Pressure Using Microdisk Resonator with Two Whispering-Gallery Modes. Sensors 2020, 20, 3955. [Google Scholar] [CrossRef]
- Ilchenko, V.S.; Matsko, A.B. Optical resonators with whispering-gallery modes—Part II: Applications. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15–32. [Google Scholar] [CrossRef]
- Schunk, G.; Fuerst, J.U.; Foertsch, M.; Strekalov, D.V.; Vogl, U.; Sedlmeir, F.; Schwefel, H.G.L.; Leuchs, G.; Marquardt, C. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern. Opt. Express 2014, 22, 30795–30806. [Google Scholar] [CrossRef]
- Oraevsky, A.N. Whispering-gallery waves. Quantum Electron. 2002, 32, 377–400. [Google Scholar] [CrossRef]
- Van Duong, T.; Chen, R.; Sun, H.D. Tuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets. Sci. Rep. 2013, 3, 1362. [Google Scholar] [CrossRef]
- Jahangiri, M.; Moradiani, F.; Parsanasab, G.-M.; Mirmohammadi, M. High side-mode suppression ratio with a Vernier effect single-mode laser using triple coupled microrings. Sci. Rep. 2023, 13, 7092. [Google Scholar] [CrossRef] [PubMed]
- Dionne, J.; Ashwath, H.; Kuznetsova, L. Subwavelength silicon disk whispering-gallery-mode microcavities for size-dependent nanoparticles detection in the mid-infrared. Opt. Eng. 2017, 56, 057111. [Google Scholar] [CrossRef]
- Huang, H.; Fan, C.; Li, M.; Nie, H.-L.; Wang, F.-B.; Wang, H.; Wang, R.; Xia, J.; Zheng, X.; Zuo, X.; et al. COVID-19: A Call for Physical Scientists and Engineers. ACS Nano 2020, 14, 3747–3754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, Q.; Chen, R.; Zhang, Q.; Fang, W.; Liu, K.; Li, F.; Yun, F. Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode. Nanomaterials 2024, 14, 501. https://doi.org/10.3390/nano14060501
Li J, Li Q, Chen R, Zhang Q, Fang W, Liu K, Li F, Yun F. Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode. Nanomaterials. 2024; 14(6):501. https://doi.org/10.3390/nano14060501
Chicago/Turabian StyleLi, Jiaxing, Qiang Li, Ransheng Chen, Qifan Zhang, Wannian Fang, Kangkang Liu, Feng Li, and Feng Yun. 2024. "Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode" Nanomaterials 14, no. 6: 501. https://doi.org/10.3390/nano14060501
APA StyleLi, J., Li, Q., Chen, R., Zhang, Q., Fang, W., Liu, K., Li, F., & Yun, F. (2024). Single-Mode Control and Individual Nanoparticle Detection in the Ultraviolet Region Based on Boron Nitride Microdisk with Whispering Gallery Mode. Nanomaterials, 14(6), 501. https://doi.org/10.3390/nano14060501