Polyvinyl Butyral Polymeric Host Material-Based Fluorescent Thin Films to Achieve Highly Efficient Red and Green Colour Conversion for Advanced Next-Generation Displays
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fluorescent Film
3.1.1. Quantum Yield (QY) and Molecular Dynamics
3.1.2. Optical and Morphological Characteristics
3.1.3. PVB- and PVP-Based Hydrophilicity
3.1.4. FTIR Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.C.; Liu, R.S. Advances in Phosphors for Light-Emitting Diodes. J. Phys. Chem. Lett. 2011, 2, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Zhi, T.; Cen, X.; Liu, B.; Wang, Q.; Xie, Z.; Chen, P.; Chen, D.; Zhou, Y.; Zheng, Y.; et al. Hybrid Cyan Nitride/Red Phosphors White Light-Emitting Diodes with Micro-Hole Structures. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Ichikawa, S.; Shiomi, K.; Morikawa, T.; Timmerman, D.; Sasaki, Y.; Tatebayashi, J.; Fujiwara, Y. Eu-Doped GaN and InGaN Monolithically Stacked Full-Color LEDs with a Wide Color Gamut. Appl. Phys. Express 2021, 14, 031008. [Google Scholar] [CrossRef]
- Mills, A. Phosphors Development for LED Lighting. III-Vs Rev. 2005, 18, 32–34. [Google Scholar] [CrossRef] [Green Version]
- McKittrick, J.; Shea-Rohwer, L.E. Review: Down Conversion Materials for Solid-State Lighting. J. Am. Ceram. Soc. Blackwell Publ. Inc. 2014, 97, 1327–1352. [Google Scholar] [CrossRef]
- Murphy, J.; Camardello, S.; Doherty, M.; Liu, J.; Smigelski, P.; Setlur, A. Narrow-Band Phosphors for next Generation Miniled and Microled Displays. In Digest of Technical Papers-SID International Symposium; John Wiley and Sons Inc: Hoboken, NJ, USA, 2021; Volume 52, pp. 902–905. [Google Scholar] [CrossRef]
- Belardi, G.; Ippolito, N.; Piga, L.; Serracino, M. Investigation on the Status of Rare Earth Elements Contained in the Powder of Spent Fluorescent Lamps. Thermochim. Acta 2014, 591, 22–30. [Google Scholar] [CrossRef]
- Rebello, R.Z.; Lima, M.T.W.D.C.; Yamane, L.H.; Siman, R.R. Characterization of End-of-Life LED Lamps for the Recovery of Precious Metals and Rare Earth Elements. Resour. Conserv. Recycl. 2020, 153, 104557. [Google Scholar] [CrossRef]
- Finkenzeller, W.J.; Hofbeck, T.; Thompson, M.E.; Yersin, H. Triplet State Properties of the OLED Emitter Ir(Btp)2(Acac): Characterization by Site-Selective Spectroscopy and Application of High Magnetic Fields. Inorg. Chem. 2007, 46, 5076–5083. [Google Scholar] [CrossRef]
- Litvinov, D.; Gerthsen, D.; Rosenauer, A.; Preis, H.; Kurtz, E.; Klingshirn, C. Cd Distribution and Defects in Single and Multilayer CdSe/ZnSe Quantum Dot Structures. Phys. Status Solidi B Basic Res. 2001, 224, 147–151. [Google Scholar] [CrossRef]
- Arivarasan, A.; Ganapathy, S.; Jayave, R. Fabrication of Highly Fluorescent Cadmium Based Aqueous Phase Colloidal Quantum Dots for Solar Cell Applications. Adv. Mat. Res. 2012, 584, 313–318. [Google Scholar] [CrossRef]
- Stavitskaya, A.V.; Novikov, A.A.; Kotelev, M.S.; Kopitsyn, D.S.; Rozhina, E.V.; Ishmukhametov, I.R.; Fakhrullin, R.F.; Ivanov, E.V.; Lvov, Y.M.; Vinokurov, V.A. Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. Nanomaterials 2018, 8, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Lin, C.H.; Hyun, B.R.; Sher, C.W.; Lv, Z.; Luo, B.; Jiang, F.; Wu, T.; Ho, C.H.; Kuo, H.C.; et al. Micro-Light-Emitting Diodes with Quantum Dots in Display Technology. Light Sci. Appl. 2020, 9, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bozyigit, D.; Wood, V. Challenges and Solutions for High-Efficiency Quantum Dot-Based LEDs. MRS Bull. 2013, 38, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.T.; Bansal, A.K.; Antolini, F.; Preis, E.; Stroea, L.; Toffanin, S.; Muccini, M.; Ortolani, L.; Migliori, A.; Allard, S.; et al. Development of Quantum Dot (Qd) Based Color Converters for Multicolor Display. Nanomaterials 2021, 11, 1089. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 2010, 43, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Deng, F.; Xu, S.; Gao, S. Performance Analysis of Multi-Primary Color Display Based on OLEDs/PLEDs. Opt. Commun. 2017, 398, 49–55. [Google Scholar] [CrossRef]
- Gou, F.; Hsiang, E.L.; Tan, G.; Lan, Y.F.; Tsai, C.Y.; Wu, S.T. High Performance Color-Converted Micro-LED Displays. J. Soc. Inf. Disp. 2019, 27, 199–206. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, W.; Tian, H. Dicyanomethylene-4H-Pyran Chromophores for OLED Emitters, Logic Gates and Optical Chemosensors. Chem. Commun. 2012, 48, 6073–6084. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, S.M.; Kim, J.Y.; Kim, Y.K.; Yoon, S.S. Red Fluorescent Organic Light-Emitting Diodes Using Modified Pyran-Containing DCJTB Derivatives. Bull. Korean Chem. Soc. 2010, 31, 2884–2888. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.S.; Zhou, Q.X.; Wang, X.S.; Wang, Y.; Zhang, B.W. A DCM-Type Red-Fluorescent Dopant for High-Performance Organic Electroluminescent Devices. Adv. Funct. Mater. 2007, 17, 93–100. [Google Scholar] [CrossRef]
- Zhang, X.H.; Chen, B.J.; Lin, X.Q.; Wong, O.Y.; Lee, C.S.; Kwong, H.L.; Lee, S.T.; Wu, S.K. A New Family of Red Dopants Based on Chromene-Containing Compounds for Organic Electroluminescent Devices. Chem. Mater. 2001, 13, 1565–1569. [Google Scholar] [CrossRef]
- Schaer, M.; Nüesch, F.; Berner, D.; Leo, W.; Zuppiroli, L. Water Vapor and Oxygen Degradation Mechanisms in Organic Light Emitting Diodes. Adv. Funtional Mater. 2001, 11, 116–121. [Google Scholar] [CrossRef]
- Tyagi, P.; Srivastava, R.; Giri, L.I.; Tuli, S.; Lee, C. Degradation of Organic Light Emitting Diode: Heat Related Issues and Solutions. Synth. Met. 2016, 216, 40–50. [Google Scholar] [CrossRef]
- Lee, H.Y.; Le, D.H.; Sung, J.; Moon, S.P.; Kim, N.; Oh, H.; Kim, J.; Min, S.Y.; Shin, D.M.; Son, S. A Color Conversion Film with High Quantum Yield and Operational Stability. In Digest of Technical Papers-SID International Symposium; John Wiley and Sons Inc: Hoboken, NJ, USA, 2018; Volume 49, pp. 946–948. [Google Scholar] [CrossRef]
- Balaganesan, B.; Wen, S.W.; Chen, C.H. Synthetic Study of Tetramethyljulolidine—A Key Intermediate toward the Synthesis of the Red Dopant DCJTB for OLED Applications. Tetrahedron Lett. 2003, 44, 145–147. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, T.; Chu, B.; Li, W.; Su, Z.; Wu, H.; Yan, X.; Jin, F.; Gao, Y.; Liu, C. Highly Efficient Red OLEDs Using DCJTB as the Dopant and Delayed Fluorescent Exciplex as the Host. Sci. Rep. 2015, 5, 10697. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Chen, H.; Wong, M.; Kwok, H.S. Dopant Emission Mechanism and the Effects of Host Materials on the Behavior of Doped Organic Light-Emitting Diodes. IEEE Trans. Electron. Devices 2002, 49, 1540–1544. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, D. Improved Amplified Spontaneous Emission by Doping of Green Fluorescent Dye C545T in Red Fluorescent Dye DCJTB:PS Polymer Films. Appl. Opt. 2007, 46, 2996–3000. [Google Scholar] [CrossRef]
- Gaurav, A.; Cheng, Y.-C.; Lin, J.H.; Lin, C.F. Water-Repellent Highly Stable Host Material for Colour Conversion Layer with Enhanced Quantum Efficiency for Micro-Led Display Applications. SPIE-Intl. Soc. Opt. Eng. 2022, 12208, 28. [Google Scholar] [CrossRef]
- Sadeghi, S.; Mutcu, S.E.; Srivastava, S.B.; Aydindogan, G.; Caynak, S.; Karsli, K.; Melikov, R.; Nizamoglu, S. High Quality Quantum Dots Polymeric Films as Color Converters for Smart Phone Display Technology. Mater. Res. Express 2019, 6, 035015. [Google Scholar] [CrossRef]
- Gaurav, A.; Jain, A.; Tripathi, S.K. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. Materials 2022, 15, 7888. [Google Scholar] [CrossRef]
- Rassamesard, A.; Huang, Y.F.; Lee, H.Y.; Lim, T.S.; Li, M.C.; White, J.D.; Hodak, J.H.; Osotchan, T.; Peng, K.Y.; Chen, S.A.; et al. Environmental Effect on the Fluorescence Lifetime and Quantum Yield of Single Extended Luminescent Conjugated Polymers. J. Phys. Chem. C 2009, 113, 18681–18688. [Google Scholar] [CrossRef]
- Birks, J.B. Fluorescence Quantum Yield Measurements. J. Res. Natl. Bur. Stand. A Phys. Chem. 1976, 80A, 389. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in Highly Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.F.; Knutson, J.R. Mechanism of Fluorescence Concentration Quenching of Carboxyfluorescein in Liposomes: Energy Transfer to Nonfluorescent Dimers. Anal. Biochem. 1988, 172, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Green, A.P.; Buckley, A.R. Solid State Concentration Quenching of Organic Fluorophores in PMMA. Phys. Chem. Chem. Phys. 2015, 17, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonda, G.R. The Fluorescence of Rhodamine. J. Opt. Soc. Am. 1936, 26, 316–322. [Google Scholar] [CrossRef]
- Liu, X.; Cole, J.M.; Waddell, P.G.; Lin, T.C.; Radia, J.; Zeidler, A. Molecular Origins of Optoelectronic Properties in Coumarin Dyes: Toward Designer Solar Cell and Laser Applications. J. Phys. Chem. A 2012, 116, 727–737. [Google Scholar] [CrossRef]
- Xiao, P.; Frigoli, M.; Dumur, F.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Julolidine or Fluorenone Based Push-Pull Dyes for Polymerization upon Soft Polychromatic Visible Light or Green Light. Macromolecules 2014, 47, 106–112. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, M.H.; Kim, S.M.; Kim, Y.K.; Yoon, S.S. Modified Julolidine-Containing Emitters for Red Organic Light-Emitting Diodes. Jpn. J. Appl. Phys. 2010, 49 Pt 2, 08JG02. [Google Scholar] [CrossRef]
- da Luz de Sousa, I.; Ximenes, V.F.; de Souza, A.R.; Morgon, N.H. Solvent-Induced Stokes’ Shift in DCJTB: Experimental and Theoretical Results. J. Mol. Struct. 2019, 1192, 186–191. [Google Scholar] [CrossRef]
- Kurban, M.; Gündüz, B. Physical and Optical Properties of DCJTB Dye for OLED Display Applications: Experimental and Theoretical Investigation. J. Mol. Struct. 2017, 1137, 403–411. [Google Scholar] [CrossRef]
- Kumar, P.; Khan, N.; Kumar, D. Polyvinyl Butyral (Pvb), Versetile Template for Designing Nanocomposite/Composite Materials: A Review. Green Chem. Technol. Lett. 2016, 2, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Carrot, C.; Bendaoud, A.; Pillon, C. 3 Polyvinyl Butyral; CRC Press: London, UK, 2022. [Google Scholar] [CrossRef]
- Petri, D.F.S. Characterization of Spin-Coated Polymer Films. J. Braz. Chem. Soc. 2002, 13, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Resins, W. Process Economics. Process Eng. 2002, 83, 11. [Google Scholar] [CrossRef]
- Brahma, S.; Rao, K.J.; Shivashankar, S. Rapid Growth of Nanotubes and Nanorods of Würtzite ZnO through Microwave-Irradiation of a Metalorganic Complex of Zinc and a Surfactant in Solution. Bull. Mater. Sci. 2010, 33, 89–95. [Google Scholar] [CrossRef]
- Nakada, M.; Ishida, H.; Furushima, Y. Structural and Dynamical Characterisation of Intermediate Water Interacting Polyvinyl Pyrrolidone. Materialia 2020, 12, 100743. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tsai, H.Y.; Huang, J.K.; Lin, C.F. The Relationship between Basic Group Resonance and Quantum Yield of High Efficiency Red Light Fluorescent Solutions. RSC Adv. 2021, 11, 39142–39146. [Google Scholar] [CrossRef]
- Peebles, L.H. On the Chromophore of Polyacrylonitrile. J. Polym. Sci. A1 1967, 5, 2637–2640. [Google Scholar] [CrossRef]
- Qiao, Y.; Duan, L. Curcumin-Loaded Polyvinyl Butyral Film with Antibacterial Activity. E-Polymers 2020, 20, 673–681. [Google Scholar] [CrossRef]
DCJTB Concentration (mg) | Quantum Yield (%) | Absorption (%) | Emission Wavelength (nm) |
---|---|---|---|
3 | 80.1 | 13.83 | 629 nm |
4 | 86.5 | 26.23 | 632 nm |
5 | 89.0 | 36.35 | 634 nm |
6 | 80.9 | 45.83 | 639 nm |
7 | 79.4 | 55.54 | 641 nm |
Coumarin-6 Concentration (mg) | Quantum Yield (%) | Absorption (%) | Emission Wavelength (nm) |
---|---|---|---|
3 | 80.4 | 25.39 | 519 nm |
4 | 73.1 | 40.08 | 521 nm |
5 | 72.6 | 45.38 | 523 nm |
6 | 66.9 | 45.46 | 525 nm |
7 | 67.7 | 50.65 | 528 nm |
RPM Speed | Quantum Yield (%) | Thickness (µm) |
---|---|---|
2500–4000 | 76.6 | 10.3 |
2500–5000 | 78.7 | 7.5 |
2500–6000 | 79.4 | 7.2 |
2500–7000 | 80.3 | 5.2 |
Exposure Time | Quantum Yield (%) |
---|---|
Day 1 | 66.90 |
Day 30 (0 h) | 65.04 |
2 h | 64.32 |
4 h | 62.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaurav, A.; Lin, Y.-S.; Tsai, C.-Y.; Huang, J.-K.; Lin, C.-F. Polyvinyl Butyral Polymeric Host Material-Based Fluorescent Thin Films to Achieve Highly Efficient Red and Green Colour Conversion for Advanced Next-Generation Displays. Nanomaterials 2023, 13, 1009. https://doi.org/10.3390/nano13061009
Gaurav A, Lin Y-S, Tsai C-Y, Huang J-K, Lin C-F. Polyvinyl Butyral Polymeric Host Material-Based Fluorescent Thin Films to Achieve Highly Efficient Red and Green Colour Conversion for Advanced Next-Generation Displays. Nanomaterials. 2023; 13(6):1009. https://doi.org/10.3390/nano13061009
Chicago/Turabian StyleGaurav, Ashish, Yi-Shan Lin, Chih-Yuan Tsai, Jung-Kuan Huang, and Ching-Fuh Lin. 2023. "Polyvinyl Butyral Polymeric Host Material-Based Fluorescent Thin Films to Achieve Highly Efficient Red and Green Colour Conversion for Advanced Next-Generation Displays" Nanomaterials 13, no. 6: 1009. https://doi.org/10.3390/nano13061009
APA StyleGaurav, A., Lin, Y.-S., Tsai, C.-Y., Huang, J.-K., & Lin, C.-F. (2023). Polyvinyl Butyral Polymeric Host Material-Based Fluorescent Thin Films to Achieve Highly Efficient Red and Green Colour Conversion for Advanced Next-Generation Displays. Nanomaterials, 13(6), 1009. https://doi.org/10.3390/nano13061009