In Situ Polycondensation Synthesis of NiS-g-C3N4 Nanocomposites for Catalytic Hydrogen Generation from NaBH4
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Wang, S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Co-Ord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Bharagav, U.; Reddy, N.R.; Rao, V.N.K.; Ravi, P.; Sathish, M.; Rangappa, D.; Prathap, K.; Chakra, C.S.; Shankar, M.V.; Appels, L.; et al. Bifunctional g-C3N4/carbon nanotubes/WO3 ternary nanohybrids for photocatalytic energy and environmental applications. Chemosphere 2023, 311, 137030. [Google Scholar] [CrossRef]
- Rono, N.; Kibet, J.K.; Martincigh, B.S.; Nyamori, V.O. A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci. 2021, 46, 189–217. [Google Scholar] [CrossRef]
- Hayat, A.; Al-Sehemi, A.G.; El-Nasser, K.S.; Taha, T.; Al-Ghamdi, A.A.; Syed, J.A.S.; Amin, M.A.; Ali, T.; Bashir, T.; Palamanit, A.; et al. Graphitic carbon nitride (g-C3N4)–based semiconductor as a beneficial candidate in photocatalysis diversity. Int. J. Hydrogen Energy 2021, 47, 5142–5191. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Anwar, U.; Taha, T.A.; Qazi, H.I.A.; Ajmal, Z.; Abdullah, G.A.S.; Hamed, A.; Ahmed, A.A.G.; Mohammed, A.A.; et al. A Targeted Review of Current Progress, Challenges and Future Perspective of g-C3N4 based Hybrid Photocatalyst Toward Multidimensional Applications. Chem. Rec. 2022, 23, e202200143. [Google Scholar]
- Hao, Q.; Jia, G.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B.-J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326. [Google Scholar] [CrossRef]
- Wang, A.-J.; Li, H.; Huang, H.; Qian, Z.-S.; Feng, J.-J. Fluorescent graphene-like carbon nitrides: Synthesis, properties and applications. J. Mater. Chem. C 2016, 4, 8146–8160. [Google Scholar] [CrossRef]
- Harun, N.A.M.; Shaari, N.; Ramli, Z.A.C. Progress of g-C3N4 and carbon-based material composite in fuel cell application. Int. J. Energy Res. 2022, 46, 16281–16315. [Google Scholar] [CrossRef]
- El-Sayed, S.A. Review of thermal decomposition, kinetics parameters and evolved gases during pyrolysis of energetic materials using different techniques. J. Anal. Appl. Pyrolysis 2022, 161, 105364. [Google Scholar] [CrossRef]
- Muniyappa, M.; Kalegowda, S.N.; Shetty, M.; Sriramoju, J.B.; Shastri, M.; Nabakoteswara Rap, S.V.; Debasis, D.; Shankar, M.V.; Rangappa, D. Cocatalyst free nickel sulphide nanostructure for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 5307–5318. [Google Scholar] [CrossRef]
- NavakoteswaraRao, V.; Shankar, M.V.; Yang, B.L.; Ahn, C.W.; Yang, J.M. Effective excitons separation in starfish Bi2S3/TiO2 nanostructures for enhanced hydrogen production. Mater. Today Chem. 2022, 26, 101096. [Google Scholar] [CrossRef]
- He, K.; Xie, J.; Li, M.; Li, X. In situ one-pot fabrication of g-C3N4 nanosheets/NiS cocatalyst heterojunction with intimate interfaces for efficient visible light photocatalytic H 2 generation. Appl. Surf. Sci. 2018, 430, 208–217. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Zhang, H.; Zhang, A.; Liu, Y.; Chen, X.; Li, X. Constructing Multifunctional Metallic Ni Interface Layers in the g-C3N4 Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H2 Generation. ACS Appl. Mater. Interfaces 2017, 9, 14031–14042. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cheng, J.; Wang, X.; Hong, X.; Fan, J.; Yu, H. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37–45. [Google Scholar] [CrossRef]
- Liu, J.; Fu, W.; Liao, Y.; Fan, J.; Xiang, Q. Recent advances in crystalline carbon nitride for photocatalysis. J. Mater. Sci. Technol. 2021, 91, 224–240. [Google Scholar] [CrossRef]
- Fronczak, M. Adsorption performance of graphitic carbon nitride-based materials: Current state of the art. J. Environ. Chem. Eng. 2020, 8, 104411. [Google Scholar] [CrossRef]
- Shcherban, N.; Shvalagin, V.; Korzhak, G.; Yaremov, P.; Skoryk, M.; Sergiienko, S.; Kuchmiy, S.Y. Hard template synthesis and photocatalytic activity of graphitic carbon nitride in the hydrogen evolution reaction using organic acids as electron donors. J. Mol. Struct. 2021, 1250, 131741. [Google Scholar] [CrossRef]
- Guru, S.; Kumar, S.; Bellamkonda, S.; Gangavarapu, R.R. Synthesis of CuTi-LDH supported on g-C3N4 for electrochemical and photoelectrochemical oxygen evolution reactions. Int. J. Hydrogen Energy 2021, 46, 16414–16430. [Google Scholar] [CrossRef]
- Saka, C. Phosphorus decorated g-C3N4-TiO2 particles as efficient metal-free catalysts for hydrogen release by NaBH4 methanolysis. Fuel 2022, 322, 124196. [Google Scholar] [CrossRef]
- Ganesan, K.; Hayagreevan, C.; Rahul, R.; Jeevagan, A.J.; Adinaveen, T.; Bhuvaneshwari, D.S.; Muthukumar, P.; Amalraj, M. Catalytic hydrolysis of sodium borohydride for hydrogen production using phosphorylated silica particles. Environ. Sci. Pollut. Res. 2022, 30, 21199–21212. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Y.; Luo, Y.; Wang, Y.; Zhu, H. Preparation of dandelion-like Co–Mo–P/CNTs-Ni foam catalyst and its performance in hydrogen production by alcoholysis of sodium borohydride. Int. J. Hydrogen Energy 2020, 45, 30443–30454. [Google Scholar] [CrossRef]
- Saka, C. Efficient and durable H2 production from NaBH4 methanolysis using N doped hybrid g-C3N4-SiO2 composites with ammonia as a nitrogen source. Fuel 2022, 324, 124594. [Google Scholar] [CrossRef]
- Saka, C. Sulphur and nitrogen-doped metal-free microalgal carbon catalysts for very active dehydrogenation of sodium borohydride in methanol. Int. J. Hydrogen Energy 2021, 46, 18326–18337. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Q.; Wu, G.; Qiu, S.; Zou, Y.; Xia, Y.; Xu, F.; Sun, L.; Chu, H. Zn-MOF-74-derived graphene nanosheets supporting CoB alloys for promoting hydrolytic dehydrogenation of sodium borohydride. J. Alloys Compd. 2023, 930, 167486. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, J.; Li, M.; Ao, C.; Wang, Q.; Zhao, J.; Zhang, W.; Lu, C. Facile fabrication of three-dimensional nanofibrous foams of cellulose@g-C3N4@Cu2O with superior visible-light photocatalytic performance. Carbohydr. Polym. 2023, 303, 120455. [Google Scholar] [CrossRef]
- Wang, Z.; Huo, Y.; Fan, Y.; Wu, R.; Wu, H.; Wang, F.; Xu, X. Facile synthesis of carbon-rich g-C3N4 by copolymerization of urea and tetracyanoethylene for photocatalytic degradation of Orange II. J. Photochem. Photobiol. A Chem. 2018, 358, 61–69. [Google Scholar] [CrossRef]
- Chang, F.; Yan, W.; Cheng, W.; Wu, F.; Deng, B.; Hu, X. The construction and enhanced photocatalytic performance of binary composite S/g-C3N4. Mater. Sci. Semicond. Process. 2018, 87, 1–6. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Vu, M.H.; Sakar, M.; Nguyen, C.C.; Do, T.O. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustain. Chem. Eng. 2018, 6, 4194–4203. [Google Scholar] [CrossRef]
- Taha, T.A.; Saad, R.; Zayed, M.; Shaban, M.; Ahmed, A.M. Tuning the surface morphologies of ZnO nanofilms for enhanced sensitivity and selectivity of CO2 gas sensor. Appl. Phys. A 2023, 129, 115. [Google Scholar] [CrossRef]
- Manzoor, S.; Abid, A.G.; Aman, S.; Abdullah, M.; Rashid, A.R.; Ali, H.M.; Ali, T.E.; Assiri, M.A.; Ashiq, M.N.; Taha, T. Facile synthesis of CoFePO4 on eggshell membrane for oxygen evolution reaction and supercapacitor applications. Ceram. Int. 2022, 48, 36975–36982. [Google Scholar] [CrossRef]
- Fan, C.; Miao, J.; Xu, G.; Liu, J.; Lv, J.; Wu, Y. Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light. RSC Adv. 2017, 7, 37185–37193. [Google Scholar] [CrossRef]
- Lu, Q.; Deng, J.; Hou, Y.; Wang, H.; Li, H.; Zhang, Y. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem. Commun. 2015, 51, 12251–12253. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; Qian, X.; Dong, Y.; Xu, H.; Song, R.; Yan, C.; Zhu, H.; Zhong, Q.; Qian, G.; et al. One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis. J. Solid State Chem. 2015, 228, 60–64. [Google Scholar] [CrossRef]
- Wang, Z.-T.; Xu, J.-L.; Zhou, H.; Zhang, X. Facile synthesis of Zn(II)-doped g-C3N4 and their enhanced photocatalytic activity under visible light irradiation. Rare Met. 2019, 38, 459–467. [Google Scholar] [CrossRef]
- Bojdys, M.J.; Müller, J.-O.; Antonietti, M.; Thomas, A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chem A Eur. J. 2008, 14, 8177–8182. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238. [Google Scholar] [CrossRef]
- Vijayakumar, E.; Preetha, R.; Narendran, M.G.; Jennifer, G.A.; Varathan, E.; Neppolian, B.; Ganesh, V.K.; Bosco, A.J. Experimental investigation into the π-conjugated HT-g-C3N4/MoS2 (X) evokes the electron transport in type-II heterojunction to achieve high photocatalytic antibiotic removal under visible-light irradiation. Sep. Purif. Technol. 2022, 292, 121028. [Google Scholar]
- Alshammari, A.H.; Alshammari, M.; Alshammari, K.; Allam, N.K.; Taha, T. PVC/PVP/SrTiO3 polymer blend nanocomposites as potential materials for optoelectronic applications. Results Phys. 2023, 44, 106173. [Google Scholar] [CrossRef]
- Hosseini, A.; Faghihian, H. Application of FSM-16 impregnated by TiO2 as an efficient photocatalyst for elimination of benzothiophene and dibenzothiophene, adsorptive removal of degradation products by MCM-41. J. Ind. Eng. Chem. 2019, 76, 122–132. [Google Scholar] [CrossRef]
- Zarringhadam, P.; Farhadi, S. Novel sheet-like bismuth subcarbonate-zinc ferrite (Bi2O2CO3/ZnFe2O4) magnetically recyclable nanocomposites: Synthesis, characterization and enhanced catalytic performance for the reduction of nitrophenols and nitroanilines. Appl. Organomet. Chem. 2018, 32, e4518. [Google Scholar] [CrossRef]
- Cao, S.; Yu, J. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101–2107. [Google Scholar] [CrossRef]
- Wang, X.; Gong, J.; Dong, Y.; An, S.; Zhang, X.; Tian, J. Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C3N4 nanotubes for enhanced photocatalytic H2 production. Mater. Today Phys. 2022, 27, 100806. [Google Scholar] [CrossRef]
- Song, X.; Mao, W.; Wu, Y.; Wang, M.; Liu, X.; Zhou, W.; Huo, P. Fabricating carbon nitride-based 3D/0D intramolecular donor–acceptor catalysts for efficient photoreduction of CO2. New J. Chem. 2022, 46, 20225–20234. [Google Scholar] [CrossRef]
- Rong, X.; Qiu, F.; Rong, J.; Zhu, X.; Yan, J.; Yang, D. Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2. Mater. Lett. 2016, 164, 127–131. [Google Scholar] [CrossRef]
- Metin, Ö.; Özkar, S. Hydrogen generation from the hydrolysis of sodium borohydride by using water dispersible, hydrogenphosphate-stabilized nickel (0) nanoclusters as catalyst. Int. J. Hydrogen Energy 2017, 32, 1707–1715. [Google Scholar] [CrossRef]
- Saka, C.; Balbay, A. Influence of process parameters on enhanced hydrogen generation via semi-methanolysis and semi-ethanolysis reactions of sodium borohydride using phosphoric acid. Int. J. Hydrogen Energy 2019, 44, 30119–30126. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Guo, Q. Research progress on catalysts for hydrogen generation through sodium borohydride alcoholysis. Int. J. Hydrogen Energy 2021, 47, 5929–5946. [Google Scholar] [CrossRef]
- Demirci, S.; Sunol, A.K.; Sahiner, N. Catalytic activity of amine functionalized titanium dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation. Appl. Catal. B Environ. 2020, 261, 118242. [Google Scholar] [CrossRef]
- Hannauer, J.; Demirci, U.B.; Pastor, G.; Geantet, C.; Herrmann, J.M.; Miele, P. Hydrogen release through catalyzed methanolysis of solid sodium borohydride. Energy Environ. Sci. 2010, 3, 1796–1803. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Metal-organic frameworks (MOFs) and MOFs-derived CuO@ C for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 2019, 44, 31230–31238. [Google Scholar] [CrossRef]
- Saka, C. g-C3N4 particles with boron and oxygen dopants/carbon vacancies for efficient dehydrogenation in sodium borohydride methanolysis. Int. J. Hydrogen Energy 2022, 47, 19016–19026. [Google Scholar] [CrossRef]
- Cline, E.D.; Adamson, S.E.; Bernhard, S. Homogeneous Catalytic System for Photoinduced Hydrogen Production Utilizing Iridium and Rhodium Complexes. Inorg. Chem. 2008, 47, 10378–10388. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fan, C.; Zhang, J.; Zhang, F.; Li, R.; Yi, S.; Sun, Y.; Dong, H. Poly(acrylic acid)-modified silica nanoparticles as a nonmetal catalyst for NaBH4 methanolysis. Int. J. Hydrogen Energy 2021, 46, 23236–23244. [Google Scholar] [CrossRef]
- Dai, P.; Yao, Y.; Hu, E.; Xu, D.; Li, Z.; Wang, C. Self-assembled ZIF-67@graphene oxide as a cobalt-based catalyst precursor with enhanced catalytic activity toward methanolysis of sodium borohydride. Appl. Surf. Sci. 2021, 546, 149128. [Google Scholar] [CrossRef]
- Wang, F.; Luo, Y.; Zhang, Y.; Wang, Y.; Zhu, H. Preparation of bush-like Ru/NiO-Ni foam catalyst and its performance in hydrogen production from sodium borohydride alcoholysis. Energy Fuels 2020, 34, 11365–11372. [Google Scholar] [CrossRef]
Sample | C (wt.%) | N (wt.%) | S (wt.%) | Ni (wt.%) |
---|---|---|---|---|
0.5 wt.% NiS | 37.75 | 61.14 | 0.17 | 0.94 |
1.0 wt.% NiS | 46.11 | 52.13 | 0.30 | 1.47 |
1.5 wt.% NiS | 35.64 | 57.27 | 1.08 | 6.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, A.H.; Alshammari, K.; Alotaibi, T.; Alshammari, M.; Alhassan, S.; Taha, T.A.M. In Situ Polycondensation Synthesis of NiS-g-C3N4 Nanocomposites for Catalytic Hydrogen Generation from NaBH4. Nanomaterials 2023, 13, 938. https://doi.org/10.3390/nano13050938
Alshammari AH, Alshammari K, Alotaibi T, Alshammari M, Alhassan S, Taha TAM. In Situ Polycondensation Synthesis of NiS-g-C3N4 Nanocomposites for Catalytic Hydrogen Generation from NaBH4. Nanomaterials. 2023; 13(5):938. https://doi.org/10.3390/nano13050938
Chicago/Turabian StyleAlshammari, Alhulw H., Khulaif Alshammari, Turki Alotaibi, Majed Alshammari, Sultan Alhassan, and Taha Abdel Mohaymen Taha. 2023. "In Situ Polycondensation Synthesis of NiS-g-C3N4 Nanocomposites for Catalytic Hydrogen Generation from NaBH4" Nanomaterials 13, no. 5: 938. https://doi.org/10.3390/nano13050938
APA StyleAlshammari, A. H., Alshammari, K., Alotaibi, T., Alshammari, M., Alhassan, S., & Taha, T. A. M. (2023). In Situ Polycondensation Synthesis of NiS-g-C3N4 Nanocomposites for Catalytic Hydrogen Generation from NaBH4. Nanomaterials, 13(5), 938. https://doi.org/10.3390/nano13050938