Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia
Abstract
:1. Introduction
2. Configurations of Electrochemical-Reactor for e-NRR
3. Fundamental Comprehension on e-NRR
3.1. Adsorption of Nitrogen onto the Catalyst Surface
3.2. Catalytic Activation of N2
3.3. The Hydrogenation Pathway of N2 to NH3
4. Advances in Metal Catalysts Design for e-NRR
4.1. Metal-Based Catalysts
4.1.1. Noble-Metal-Based Catalysts (Ru, Rh, Pt, Au, and Pd)
4.1.2. Non-Noble-Metal-Based Catalysts
4.2. Metal Compound Catalysts
4.2.1. Metal Sulfide and Metal Nitride Catalysts
4.2.2. Metal Carbide Catalysts
5. Conclusions and Outlook
- (1)
- Selectivity of catalysts is a much larger issue for improving FE, due to the competitive reactions. The hydrogen and hydrazine simultaneously generated during the ammonia production resulted in a relatively low selectivity towards e-NRR [114,115,116]. The designed catalysts are required to have a much stronger binding energy of *N compared to the *H. In addition, the strategy of enhancing the solubility of N2 in the electrolyte also needs to be developed [117,118,119,120].
- (2)
- In-depth studies of the e-NRR mechanism are still limited and plain. Most of the research only simulated the possible reaction pathways and the energy barriers using theoretical calculations. Most reported theoretical studies for identifying the research direction toward electrocatalyst design were performed on appropriate and simplified models. However, the real-time operation of e-NRR is always in combination with different reaction conditions and parameters (pH, environmental electrolyte, voltage, environmental temperature, and pressure, etc.) that ought to be considered in further calculations [3,28,121].
- (3)
- The stability of the catalyst is as important as catalyst activity and selectivity. After longtime electrolysis operation, the electrocatalyst may undergo decomposition and deactivation [4,122]. Therefore, the electrocatalysts should be designed with a stable structure. Additionally, the prolonged periods for the stability tests are recommended to screen active electrocatalysts for e-NRR [28,123].
- (4)
- The relationship between structure and activity for e-NRR is of significance to provide a guideline on the rational design of novel catalysts. Despite the great efforts on developing advanced materials for e-NRR, it remains challenging to reveal the relationship between the structure and activity under the reaction conditions [124,125]. In situ analytical techniques and theoretical experiments are highly desirable and beneficial in providing evidence of catalyst surface reconstruction and generation of key intermediates under real-time reaction conditions, as well as in achieving a comprehensive understanding of the kinetic mechanism [25,124,126,127].
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wang, J.; Li, H.; Li, Y.; Li, J.; Wei, K.; Peng, F.; Gao, F. Nitrogen Reduction Reaction: Heteronuclear Double-Atom Electrocatalysts. Small Struct. 2023, 4, 2200306. [Google Scholar] [CrossRef]
- Shi, L.; Yin, Y.; Wang, S.; Sun, H. Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catal. 2020, 10, 6870–6899. [Google Scholar] [CrossRef]
- Yang, B.; Ding, W.; Zhang, H.; Zhang, S. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687. [Google Scholar] [CrossRef]
- Suryanto, B.H.R.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A.N.; MacFarlane, D.R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, J.; Lv, R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90. [Google Scholar] [CrossRef]
- Tang, C.; Qiao, S.Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Lim, A.; Yoon, C.; Jang, J.H.; Ham, H.C.; Han, J.; Nam, S.; Kim, D.; Sung, Y.-E.; Choi, J.; et al. Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a γ-Fe2O3 Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995. [Google Scholar] [CrossRef]
- Ithisuphalap, K.; Zhang, H.; Guo, L.; Yang, Q.; Yang, H.; Wu, G. Photocatalysis and Photoelectrocatalysis Methods of Nitrogen Reduction for Sustainable Ammonia Synthesis. Small Methods 2019, 3, 1800352. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, Y.; Zheng, H.; Pan, Y.; Luo, J.; Cao, J.; Liu, F. FeCo-ZIF derived carbon-encapsulated metal alloy as efficient cathode material for heterogeneous electro-Fenton reaction in 3-electron ORR pathway: Enhanced performance in alkaline condition. Sep. Purif. Technol. 2023, 325, 124545. [Google Scholar] [CrossRef]
- Hou, M.; Zhang, Y.; Jiao, X.; Ding, N.; Jiao, Y.; Pan, Y.; Xue, J.; Zhang, Y. Polyphenol-modified zero-valent iron prepared using ball milling technology for hexavalent chromium removal: Kinetics and mechanisms. Sep. Purif. Technol. 2023, 326, 124874. [Google Scholar] [CrossRef]
- Li, X.; Song, H.; Zhang, G.; Zou, W.; Cao, Z.; Pan, Y.; Zhang, G.; Zhou, M. Enhanced organic pollutant removal in saline wastewater by a tripolyphosphate-Fe0/H2O2 system: Key role of tripolyphosphate and reactive oxygen species generation. J. Hazard. Mater. 2023, 457, 131821. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Miao, N.; Wallace, G.G.; Chen, J.; Allwood, D.A. Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. Adv. Energy Mater. 2021, 11, 2100695. [Google Scholar] [CrossRef]
- Kim, C.; Dionigi, F.; Beermann, V.; Wang, X.; Möller, T.; Strasser, P. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO2RR). Adv. Mater. 2019, 31, 1805617. [Google Scholar] [CrossRef] [PubMed]
- Eon Jun, S.; Choi, S.; Kim, J.; Kwon, K.C.; Park, S.H.; Jang, H.W. Non-noble metal single atom catalysts for electrochemical energy conversion reactions. Chin. J. Catal. 2023, 50, 195–214. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Park, J.; Das, H.T.; Rahamathulla, N.; Cardoso, E.S.F.; Murthy, A.P.; Maia, G.; Vo, D.V.N.; Choi, M.Y. Electrocatalytic conversion of nitrate waste into ammonia: A review. Environ. Chem. Lett. 2022, 20, 2929–2949. [Google Scholar] [CrossRef]
- van Langevelde, P.H.; Katsounaros, I.; Koper, M.T.M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule 2021, 5, 290–294. [Google Scholar] [CrossRef]
- Flores, K.; Cerrón-Calle, G.A.; Valdes, C.; Atrashkevich, A.; Castillo, A.; Morales, H.; Parsons, J.G.; Garcia-Segura, S.; Gardea-Torresdey, J.L. Outlining Key Perspectives for the Advancement of Electrocatalytic Remediation of Nitrate from Polluted Waters. ACS EST Eng. 2022, 2, 746–768. [Google Scholar] [CrossRef]
- Liu, M.J.; Miller, D.M.; Tarpeh, W.A. Reactive Separation of Ammonia from Wastewater Nitrate via Molecular Electrocatalysis. Environ. Sci. Technol. Lett. 2023, 10, 458–463. [Google Scholar] [CrossRef]
- Wang, L.; Xia, M.; Wang, H.; Huang, K.; Qian, C.; Maravelias, C.T.; Ozin, G.A. Greening Ammonia toward the Solar Ammonia Refinery. Joule 2018, 2, 1055–1074. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal–Organic Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018, 30, 1703663. [Google Scholar] [CrossRef]
- Hou, J.; Yang, M.; Zhang, J. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, M.; Du, X.; Ai, H.; Lo, K.H.; Wang, S.; Chen, S.; Xing, G.; Wang, X.; Pan, H. Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Adv. Funct. Mater. 2020, 31, 2008983. [Google Scholar] [CrossRef]
- Pang, Y.; Su, C.; Xu, L.; Shao, Z. When nitrogen reduction meets single-atom catalysts. Prog. Mater. Sci. 2023, 132, 101044. [Google Scholar] [CrossRef]
- Xue, C.; Zhou, X.; Li, X.; Yang, N.; Xin, X.; Wang, Y.; Zhang, W.; Wu, J.; Liu, W.; Huo, F. Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction. Adv. Sci. 2022, 9, 2104183. [Google Scholar] [CrossRef] [PubMed]
- Chebrolu, V.T.; Jang, D.; Rani, G.M.; Lim, C.; Yong, K.; Kim, W.B. Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy 2023, e361, 1–52. [Google Scholar] [CrossRef]
- Guo, X.; Wan, X.; Shui, J. Molybdenum-based materials for electrocatalytic nitrogen reduction reaction. Cell Rep. Phys. Sci. 2021, 2, 100447. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; He, C.; Ren, X.; Zhang, P.; Mi, H. Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction to Ammonia. Adv. Energy Mater. 2021, 11, 2003294. [Google Scholar] [CrossRef]
- Huang, Z.; Rafiq, M.; Woldu, A.R.; Tong, Q.-X.; Astruc, D.; Hu, L. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord. Chem. Rev. 2023, 478, 214981. [Google Scholar] [CrossRef]
- Wen, J.; Zuo, L.; Sun, H.; Wu, X.; Huang, T.; Liu, Z.; Wang, J.; Liu, L.; Wu, Y.; Liu, X.; et al. Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Adv. 2021, 3, 5525–5541. [Google Scholar] [CrossRef]
- Cui, X.; Tang, C.; Zhang, Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Adv. Energy Mater. 2018, 8, 1800369. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Shahid, U.B.; Gu, M.; Wang, H.; Li, H.; Shao, M. Electrochemical Synthesis of Ammonia from Nitrogen Under Mild Conditions: Current Status and Challenges. Electrochem. Energy Rev. 2020, 3, 239–270. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795. [Google Scholar] [CrossRef] [PubMed]
- Skulason, E.; Bligaard, T.; Gudmundsdottir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jonsson, H.; Norskov, J.K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Adv. Funct. Mater. 2018, 28, 1803309. [Google Scholar] [CrossRef]
- Suryanto, B.H.R.; Kang, C.S.M.; Wang, D.; Xiao, C.; Zhou, F.; Azofra, L.M.; Cavallo, L.; Zhang, X.; MacFarlane, D.R. Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Lett. 2018, 3, 1219–1224. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G.-F.; Ding, L.-X.; Wang, H. Advanced Non-metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. Chem.—A Eur. J. 2019, 25, 12464–12485. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Zhang, S.; Zhang, T. Defect Engineering in Photocatalytic Nitrogen Fixation. ACS Catal. 2019, 9, 9739–9750. [Google Scholar] [CrossRef]
- Qin, Q.; Oschatz, M. Overcoming Chemical Inertness under Ambient Conditions: A Critical View on Recent Developments in Ammonia Synthesis via Electrochemical N2 Reduction by Asking Five Questions. ChemElectroChem 2020, 7, 878–889. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Li, Z.; Li, G.; Liu, X. Recent Advances in Electrochemical Synthesis of Ammonia through Nitrogen Reduction under Ambient Conditions. ChemElectroChem 2020, 7, 1067–1079. [Google Scholar] [CrossRef]
- Li, X.-F.; Li, Q.-K.; Cheng, J.; Liu, L.; Yan, Q.; Wu, Y.; Zhang, X.-H.; Wang, Z.-Y.; Qiu, Q.; Luo, Y. Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Du, X.; Zeng, Y.; Chu, J.; Gong, C.; Huang, J.; Fan, C.; Wang, X.; Xiong, J. Atomic Structure Modification for Electrochemical Nitrogen Reduction to Ammonia. Adv. Energy Mater. 2019, 10, 1903172. [Google Scholar] [CrossRef]
- Xie, M.; Dai, F.; Guo, H.; Du, P.; Xu, X.; Liu, J.; Zhang, Z.; Lu, X. Improving Electrocatalytic Nitrogen Reduction Selectivity and Yield by Suppressing Hydrogen Evolution Reaction via Electronic Metal–Support Interaction. Adv. Energy Mater. 2023, 13, 2203032. [Google Scholar] [CrossRef]
- Hu, L.; Xing, Z.; Feng, X. Understanding the Electrocatalytic Interface for Ambient Ammonia Synthesis. ACS Energy Lett. 2020, 5, 430–436. [Google Scholar] [CrossRef]
- Kani, N.C.; Prajapati, A.; Collins, B.A.; Goodpaster, J.D.; Singh, M.R. Competing Effects of pH, Cation Identity, H2O Saturation, and N2 Concentration on the Activity and Selectivity of Electrochemical Reduction of N2 to NH3 on Electrodeposited Cu at Ambient Conditions. ACS Catal. 2020, 10, 14592–14603. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Yao, Z.-B.; Ruan, Y.-K.; Iftikhar, R.; Hao, L.-D.; Robertson, A.W.; Imran, S.M.; Sun, Z.-Y. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023, 42, 1075–1097. [Google Scholar] [CrossRef]
- Nazemi, M.; El-Sayed, M.A. Electrochemical Synthesis of Ammonia from N2 and H2O under Ambient Conditions Using Pore-Size-Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties. J. Phys. Chem. Lett. 2018, 9, 5160–5166. [Google Scholar] [CrossRef]
- Bao, D.; Zhang, Q.; Meng, F.-L.; Zhong, H.-X.; Shi, M.-M.; Zhang, Y.; Yan, J.-M.; Jiang, Q.; Zhang, X.-B. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. Adv. Mater. 2017, 29, 1604799. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Yu, H.; Xu, Y.; Xue, H.; Li, X.; Wang, H.; Wang, L. Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures. ChemSusChem 2018, 11, 3480–3485. [Google Scholar] [CrossRef] [PubMed]
- Nazemi, M.; Panikkanvalappil, S.R.; El-Sayed, M.A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, C.; Chen, H.; Fu, Y.; Xiang, C.; He, S.; Zhou, X.; Zhang, H. In situ nano Au triggered by a metal boron organic polymer: Efficient electrochemical N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 20945–20951. [Google Scholar] [CrossRef]
- Shi, M.M.; Bao, D.; Wulan, B.R.; Li, Y.H.; Zhang, Y.F.; Yan, J.M.; Jiang, Q. Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. Adv. Mater. 2017, 29, 1606550. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Bao, D.; Shi, M.M.; Wulan, B.R.; Yan, J.M.; Jiang, Q. Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions. Adv. Mater. 2017, 29, 1700001. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Wang, Q.; Ye, S.; Sun, W.; Shao, Y.; Jiang, Z.; Qiao, Q.; Zhu, Y.; Song, P.; et al. Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angew. Chem. Int. Ed. 2018, 57, 12360–12364. [Google Scholar] [CrossRef]
- Wang, D.; Azofra, L.M.; Harb, M.; Cavallo, L.; Zhang, X.; Suryanto, B.H.R.; MacFarlane, D.R. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem 2018, 11, 3416–3422. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Choi, C.; Ding, L.-X.; Jiang, Z.; Han, Z.; Jia, M.; Fan, Q.; Gao, Y.; Wang, H.; Robertson, A.W.; et al. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. Chem 2019, 5, 204–214. [Google Scholar] [CrossRef]
- Gao, W.Y.; Hao, Y.C.; Su, X.; Chen, L.W.; Bu, T.A.; Zhang, N.; Yu, Z.L.; Zhu, Z.; Yin, A.X. Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates. Chem. Commun. 2019, 55, 10705–10708. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, R.; Peng, X.; Wang, X.; Liu, X.; Ren, J.; He, J.; Zhuo, L.; Sun, J.; Liu, Y.; et al. Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites. ACS Nano 2020, 14, 6938–6946. [Google Scholar] [CrossRef]
- Andersen, S.Z.; Colic, V.; Yang, S.; Schwalbe, J.A.; Nielander, A.C.; McEnaney, J.M.; Enemark-Rasmussen, K.; Baker, J.G.; Singh, A.R.; Rohr, B.A.; et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Chen, T.; Wang, Z. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J. Am. Chem. Soc. 2017, 139, 12480–12487. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Liu, X.; Chen, J.; Lin, R.; Liu, H.; Lü, F.; Bak, S.; Liang, Z.; Zhao, S.; Stavitski, E.; et al. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew. Chem. Int. Ed. 2019, 58, 2321–2325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Z.; Lei, J.; Ma, L.; Yakobson, B.I.; Tour, J.M. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency. Small 2022, 18, 2106327. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, L.F.; Renner, J.N.; Foster, S.L. The Use of Controls for Consistent and Accurate Measurements of Electrocatalytic Ammonia Synthesis from Dinitrogen. ACS Catal. 2018, 8, 7820–7827. [Google Scholar] [CrossRef]
- Nielander, A.C.; McEnaney, J.M.; Schwalbe, J.A.; Baker, J.G.; Blair, S.J.; Wang, L.; Pelton, J.G.; Andersen, S.Z.; Enemark-Rasmussen, K.; Colic, V.; et al. A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. ACS Catal. 2019, 9, 5797–5802. [Google Scholar] [CrossRef]
- Guo, X.; Huang, S. Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: A computational study of single Fe atom supported on defective graphene. Electrochim. Acta 2018, 284, 392–399. [Google Scholar] [CrossRef]
- Wang, M.; Liu, S.; Qian, T.; Liu, J.; Zhou, J.; Ji, H.; Xiong, J.; Zhong, J.; Yan, C. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, X.; Zhao, J.; Jia, G.; Gu, L.; Zhang, Q.; Meng, L.; Shi, Z.; Zheng, L.; Wang, C.; et al. Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catal. 2018, 9, 336–344. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, J.; Zhang, C.; Liu, Y.; Xu, M.; Xue, Y.; Liu, L.; Leung, M.K.H. Bimetallic Mo–Co nanoparticles anchored on nitrogen-doped carbon for enhanced electrochemical nitrogen fixation. J. Mater. Chem. A 2020, 8, 9091–9098. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Zhang, Y.; Leung, M.K.H. Changing charge transfer mode with cobalt–molybdenum bimetallic atomic pairs for enhanced nitrogen fixation. J. Mater. Chem. A 2022, 10, 15595–15604. [Google Scholar] [CrossRef]
- Talukdar, B.; Kuo, T.C.; Sneed, B.T.; Lyu, L.M.; Lin, H.M.; Chuang, Y.C.; Cheng, M.J.; Kuo, C.H. Enhancement of NH3 Production in Electrochemical N2 Reduction by the Cu-Rich Inner Surfaces of Beveled CuAu Nanoboxes. ACS Appl. Mater. Interfaces 2021, 13, 51839–51848. [Google Scholar] [CrossRef]
- Maia, V.A.; Santos, C.M.G.; Azeredo, N.F.B.; Zambiazi, P.J.; Antolini, E.; Neto, A.O.; de Souza, R.F.B. Conversion of nitrogen to ammonia using a Cu/C electrocatalyst in a polymeric electrolyte reactor. Electrochem. Commun. 2023, 146, 107421. [Google Scholar] [CrossRef]
- Mukherjee, J.; Adalder, A.; Mukherjee, N.; Ghorai, U.K. Solvothermal synthesis of α–CuPc nanostructures for electrochemical nitrogen fixation under ambient conditions. Catal. Today 2023, 423, 113905. [Google Scholar] [CrossRef]
- Singh Verma, T.; Paramita Samal, P.; Selvaraj, K.; Krishnamurty, S. Can Li Atoms Anchored on Boron- and Nitrogen-Doped Graphene Catalyze Dinitrogen Molecules to Ammonia? A DFT Study. ChemPhysChem 2023, 24, e202200750. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, Y.; Quan, X.; Fan, X.; Chen, S.; Yu, H.; Zhao, H.; Zhang, Y.; Zhao, J. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon. ACS Catal. 2018, 8, 1186–1191. [Google Scholar] [CrossRef]
- Mukherjee, S.; Yang, X.; Shan, W.; Samarakoon, W.; Karakalos, S.; Cullen, D.A.; More, K.; Wang, M.; Feng, Z.; Wang, G.; et al. Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. Small Methods 2020, 4, 1900821. [Google Scholar] [CrossRef]
- Zang, W.; Yang, T.; Zou, H.; Xi, S.; Zhang, H.; Liu, X.; Kou, Z.; Du, Y.; Feng, Y.P.; Shen, L.; et al. Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catal. 2019, 9, 10166–10173. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A.M.; Chen, L.; Tang, B.; Sun, X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Adv. Mater. 2018, 30, 1800191. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Ma, Y.; Wei, Q.; Qiu, W.; Guo, H.; Shi, X.; Zhang, P.; Asiri, A.M.; Chen, L.; et al. Boosted Electrocatalytic N2 Reduction to NH3 by Defect-Rich MoS2 Nanoflower. Adv. Energy Mater. 2018, 8, 1801357. [Google Scholar] [CrossRef]
- Abghoui, Y.; Skúlason, E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal. Today 2017, 286, 69–77. [Google Scholar] [CrossRef]
- Abghoui, Y.; Garden, A.L.; Hlynsson, V.F.; Bjorgvinsdottir, S.; Olafsdottir, H.; Skulason, E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015, 17, 4909–4918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ji, X.; Ren, X.; Luo, Y.; Shi, X.; Asiri, A.M.; Zheng, B.; Sun, X. Efficient Electrochemical N2 Reduction to NH3 on MoN Nanosheets Array under Ambient Conditions. ACS Sustain. Chem. Eng. 2018, 6, 9550–9554. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, R.M.; Du, H.; Xia, L.; Qu, F. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 2018, 54, 5323–5325. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J.G.; Yan, Y.; Xu, B. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; He, L.; Sun, C.; Zhang, X. Computational Study of MoN2 Monolayer as Electrochemical Catalysts for Nitrogen Reduction. J. Phys. Chem. C 2017, 121, 27563–27568. [Google Scholar] [CrossRef]
- Ren, X.; Cui, G.; Chen, L.; Xie, F.; Wei, Q.; Tian, Z.; Sun, X. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst. Chem. Commun. 2018, 54, 8474–8477. [Google Scholar] [CrossRef] [PubMed]
- Michalsky, R.; Zhang, Y.-J.; Medford, A.J.; Peterson, A.A. Departures from the Adsorption Energy Scaling Relations for Metal Carbide Catalysts. J. Phys. Chem. C 2014, 118, 13026–13034. [Google Scholar] [CrossRef]
- Yu, G.; Guo, H.; Liu, S.; Chen, L.; Alshehri, A.A.; Alzahrani, K.A.; Hao, F.; Li, T. Cr3C2 Nanoparticle-Embedded Carbon Nanofiber for Artificial Synthesis of NH3 through N2 Fixation under Ambient Conditions. ACS Appl. Mater. Interfaces 2019, 11, 35764–35769. [Google Scholar] [CrossRef] [PubMed]
- Matanovic, I.; Garzon, F.H. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: A density functional study. Phys. Chem. Chem. Phys. 2018, 20, 14679–14687. [Google Scholar] [CrossRef]
- Cheng, H.; Ding, L.X.; Chen, G.F.; Zhang, L.; Xue, J.; Wang, H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018, 30, 1803694. [Google Scholar] [CrossRef]
- Han, J.; Ji, X.; Ren, X.; Cui, G.; Li, L.; Xie, F.; Wang, H.; Li, B.; Sun, X. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. J. Mater. Chem. A 2018, 6, 12974–12977. [Google Scholar] [CrossRef]
- Gouveia, J.D.; Morales-García, Á.; Viñes, F.; Gomes, J.R.B.; Illas, F. Facile Heterogeneously Catalyzed Nitrogen Fixation by MXenes. ACS Catal. 2020, 10, 5049–5056. [Google Scholar] [CrossRef]
- Khalil, I.E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. The Role of Defects in Metal–Organic Frameworks for Nitrogen Reduction Reaction: When Defects Switch to Features. Adv. Funct. Mater. 2021, 31, 2010052. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, G.-F.; Ding, L.; Chen, X.; Ding, L.-X.; Wang, H. Efficient Electrocatalytic N2 Fixation with MXene under Ambient Conditions. Joule 2019, 3, 279–289. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, L.; Wang, H.; Zhu, G.; Wen, H.; Feng, H.; Sun, X.; Guan, X.; Wen, J.; Yao, Y. In Situ Hydrothermal Growth of TiO2 Nanoparticles on a Conductive Ti3C2Tx MXene Nanosheet: A Synergistically Active Ti-Based Nanohybrid Electrocatalyst for Enhanced N2 Reduction to NH3 at Ambient Conditions. Inorg. Chem. 2019, 58, 5414–5418. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, T.; Wang, Z.; Wang, X.; Zhou, X.; Wang, Q.; Yang, Y. A General Strategy toward Metal Sulfide Nanoparticles Confined in a Sulfur-Doped Ti3C2Tx MXene 3D Porous Aerogel for Efficient Ambient N2 Electroreduction. Small 2021, 17, e2103305. [Google Scholar] [CrossRef]
- Höskuldsson, Á.B.; Abghoui, Y.; Gunnarsdóttir, A.B.; Skúlason, E. Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation. ACS Sustain. Chem. Eng. 2017, 5, 10327–10333. [Google Scholar] [CrossRef]
- Chu, K.; Luo, Y.; Shen, P.; Li, X.; Li, Q.; Guo, Y. Unveiling the Synergy of O-Vacancy and Heterostructure over MoO3−x/MXene for N2 Electroreduction to NH3. Adv. Energy Mater. 2021, 12, 2103022. [Google Scholar] [CrossRef]
- Huang, L.; Wu, J.; Han, P.; Al-Enizi, A.M.; Almutairi, T.M.; Zhang, L.; Zheng, G. NbO2 Electrocatalyst Toward 32% Faradaic Efficiency for N2 Fixation. Small Methods 2018, 3, 1800386. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Seriani, N.; Gebauer, R. Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317–14322. [Google Scholar] [CrossRef]
- Cui, X.; Tang, C.; Liu, X.M.; Wang, C.; Ma, W.; Zhang, Q. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts. Chemistry 2018, 24, 18494–18501. [Google Scholar] [CrossRef]
- Chen, S.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D.; Centi, G. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angew. Chem. Int. Ed. 2017, 56, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, X.; Zhang, B.; Luo, Y.; Cui, G.; Xie, F.; Sun, X. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389. [Google Scholar] [CrossRef]
- Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W.E.; Feng, X. Ambient Electrochemical Ammonia Synthesis with High Selectivity on Fe/Fe Oxide Catalyst. ACS Catal. 2018, 8, 9312–9319. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.-p.; Zhang, H.; Huang, D.-j.; Chu, K. Ambient electrocatalytic nitrogen reduction on a MoO2/graphene hybrid: Experimental and DFT studies. Catal. Sci. Technol. 2019, 9, 4248–4254. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.; Luo, Y.; Shi, X.; Asiri, A.M.; Li, T.; Sun, X. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. 2018, 54, 12966–12969. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Li, Y.B.; Zhang, H.; Chu, K. Boosted Electrocatalytic N2 Reduction on Fluorine-Doped SnO2 Mesoporous Nanosheets. Inorg. Chem. 2019, 58, 10424–10431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ren, X.; Shi, X.; Xie, F.; Zheng, B.; Guo, X.; Sun, X. Enabling Effective Electrocatalytic N2 Conversion to NH3 by the TiO2 Nanosheets Array under Ambient Conditions. ACS Appl. Mater. Interfaces 2018, 10, 28251–28255. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Gong, F.; Zhou, Q.; Yu, G.; Ji, L.; Sun, X.; Asiri, A.M.; Wang, T.; Luo, Y.; Xu, Y. An MnO2–Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 18823–18827. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y.; Guo, H.; Li, Y.; Gao, P.; et al. Electrocatalytic Hydrogenation of N2 to NH3 by MnO: Experimental and Theoretical Investigations. Adv. Sci. 2019, 6, 1801182. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yu, J.; Yang, L.; Zhao, J.; Kong, W.; Wang, T.; Asiri, A.M.; Li, Q.; Sun, X. Spinel LiMn2O4 Nanofiber: An Efficient Electrocatalyst for N2 Reduction to NH3 under Ambient Conditions. Inorg. Chem. 2019, 58, 9597–9601. [Google Scholar] [CrossRef]
- Wu, X.; Xia, L.; Wang, Y.; Lu, W.; Liu, Q.; Shi, X.; Sun, X. Mn3O4 Nanocube: An Efficient Electrocatalyst Toward Artificial N2 Fixation to NH3. Small 2018, 14, e1803111. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Gong, F.; Wang, Y.; Wang, H.; Wu, X.; Lu, W.; Zhao, R.; Chen, H.; Shi, X.; Asiri, A.M.; et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Res. 2019, 12, 1093–1098. [Google Scholar] [CrossRef]
- Du, H.; Guo, X.; Kong, R.M.; Qu, F. Cr2O3 nanofiber: A high-performance electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 12848–12851. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Wang, M.; Cheng, Q.; Qian, T.; Yan, C. Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions. J. Energy Chem. 2023, 80, 302–323. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, W.; Gu, Y.; Liao, T.; Sun, Z. Metal-Nitrogen-Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Adv. Sci. 2020, 7, 2001069. [Google Scholar] [CrossRef]
- Zeng, Y.; Priest, C.; Wang, G.; Wu, G. Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. Small Methods 2020, 4, 2000672. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, X.; Chen, L.; Zhang, Q.; Ma, L.; Liu, J. A review on catalysts for electrocatalytic and photocatalytic reduction of N2 to ammonia. Green Chem. 2022, 24, 9003–9026. [Google Scholar] [CrossRef]
- Rehman, F.; Delowar Hossain, M.; Tyagi, A.; Lu, D.; Yuan, B.; Luo, Z. Engineering electrocatalyst for low-temperature N2 reduction to ammonia. Mater. Today 2021, 44, 136–167. [Google Scholar] [CrossRef]
- Pang, Y.; Su, C.; Jia, G.; Xu, L.; Shao, Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem. Soc. Rev. 2021, 50, 12744–12787. [Google Scholar] [CrossRef]
- Wang, T.; Guo, Z.; Zhang, X.; Li, Q.; Yu, A.; Wu, C.; Sun, C. Recent progress of iron-based electrocatalysts for nitrogen reduction reaction. J. Mater. Sci. Technol. 2023, 140, 121–134. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, G.; Chen, G.F.; Zhang, H.; Zhang, S.; Wang, H. Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Adv. Mater. 2021, 33, 2007650. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; An, L.; Wang, X.; Sun, Z. Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels. J. Energy Chem. 2021, 61, 304–318. [Google Scholar] [CrossRef]
- Gu, H.; Chen, W.; Li, X. Atomically dispersed metal catalysts for the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2022, 10, 22331–22353. [Google Scholar] [CrossRef]
- Qiang, S.; Wu, F.; Yu, J.; Liu, Y.T.; Ding, B. Complementary Design in Multicomponent Electrocatalysts for Electrochemical Nitrogen Reduction: Beyond the Leverage in Activity and Selectivity. Angew. Chem. Int. Ed. 2023, 62, 202217265. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.W.; Liu, X.L.; Suo, Y.J.; Liu, Y.P.; Yuan, Z.Y. Identifying the Dominant Role of Pyridinic-N-Mo Bonding in Synergistic Electrocatalysis for Ambient Nitrogen Reduction. ACS Nano 2021, 15, 12109–12118. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhu, Y.; Liu, J.; Qin, Y.; Wang, H.; Liu, H.; Chen, Y.; Zhang, Z.; Hu, W. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 2020, 77, 105126. [Google Scholar] [CrossRef]
- Min, B.; Gao, Q.; Yan, Z.; Han, X.; Hosmer, K.; Campbell, A.; Zhu, H. Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Ind. Eng. Chem. Res. 2021, 60, 14635–14650. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-Z.; Li, P.-H.; Ren, Y.-N.; He, Y.; Zhang, C.-X.; Hu, J.; Cao, X.-Q.; Leung, M.K.H. Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. Nanomaterials 2023, 13, 2580. https://doi.org/10.3390/nano13182580
Zhang Y-Z, Li P-H, Ren Y-N, He Y, Zhang C-X, Hu J, Cao X-Q, Leung MKH. Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. Nanomaterials. 2023; 13(18):2580. https://doi.org/10.3390/nano13182580
Chicago/Turabian StyleZhang, Yi-Zhen, Peng-Hui Li, Yi-Nuo Ren, Yun He, Cheng-Xu Zhang, Jue Hu, Xiao-Qiang Cao, and Michael K. H. Leung. 2023. "Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia" Nanomaterials 13, no. 18: 2580. https://doi.org/10.3390/nano13182580
APA StyleZhang, Y.-Z., Li, P.-H., Ren, Y.-N., He, Y., Zhang, C.-X., Hu, J., Cao, X.-Q., & Leung, M. K. H. (2023). Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. Nanomaterials, 13(18), 2580. https://doi.org/10.3390/nano13182580