The Atomic Observation of the Structural Change Process in Pt Networks in Air Using Environmental Cell Scanning Transmission Electron Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparations in Environmental Cells
2.2. Environmental Cell Scanning Transmission Electron Microscopy
2.3. Achievement of Atomic Resolution by Improving the Depth Resolution of a STEM Probe
2.4. The Dose Rate of STEM Observation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, T.Y.; Dai, S.; Qiao, S.Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 2016, 19, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Ehelebe, K.; Schmitt, N.; Sievers, G.; Jensen, A.W.; Hrnjić, A.; Jiménez, P.C.; Kaiser, P.; Geuß, M.; Ku, Y.; Jovanovič, P.; et al. Benchmarking fuel cell electrocatalysts using gas diffusion electrodes: Inter-lab comparison and best practices. ACS Energy Lett. 2022, 7, 816–826. [Google Scholar] [CrossRef]
- Tian, H.; Song, A.; Tian, H.; Liu, J.; Shao, G.; Liu, H.; Wang, G. Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 2021, 12, 7656–7676. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, X.; Hu, X.; Guo, Z.; Ye, Q.; Li, L.; Song, J.; Song, P. The review of the degradation mechanism of the catalyst layer of membrane electrode assembly in the proton exchange membrane fuel cell. IOP Conf. Ser. Earth Environ. Sci. 2020, 558, 052041. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, Y.; Jiang, H.; Xu, Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B.C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004. [Google Scholar] [CrossRef]
- Tajuddin, A.A.H.; Wakisaka, M.; Ohto, T.; Yu, Y.; Fukushima, H.; Tanimoto, H.; Li, X.; Misu, Y.; Jeong, S.; Fujita, J.; et al. Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv. Mater. 2023, 35, 2207466. [Google Scholar] [CrossRef]
- Jensen, W.; Sievers, G.W.; Jensen, K.D.; Quinson, J.; Arminio-Ravelo, J.A.; Brüser, V.; Arenz, M.; Escudero-Escribano, M. Self-supported nanostructured iridium-based networks as highly active electrocatalysts for oxygen evolution in acidic media. J. Mater. Chem. A 2020, 8, 1066–1071. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Sakai, G.; Yoshimura, T.; Isohata, S.; Uota, M.; Kawasaki, H.; Kuwahara, T.; Fujikawa, D.; Kijima, T. Synthesis of Nanogroove-network-structured platinum nanosheets and their carbon-supported forms using a mixed-surfactant templating approach. Adv. Mater. 2007, 9, 237–241. [Google Scholar] [CrossRef]
- Funatsu, A.; Tateishi, T.; Hatakeyama, K.; Fukunaga, Y.; Taniguchi, T.; Koinuma, M.; Matsuura, H.; Matsumoto, Y. Synthesis of monolayer platinum nanosheets. Chem. Commun. 2014, 50, 8503–8506. [Google Scholar] [CrossRef] [PubMed]
- Sievers, G.W.; Jensen, A.W.; Quinson, J.; Zana, A.; Bizzotto, F.; Oezaslan, M.; Dworzak, A.; Kirkensgaard, J.J.K.; Smitshuysen, T.E.L.; Kadkhodazadeh, S.; et al. Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nat. Mater. 2021, 20, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Guan, P.; McKenna, K.; Lang, X.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 75–780. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Qi, Z.; Foucher, A.C.; Ngan, H.T.; Dennis, K.; Cui, J.; Sadykov, I.I.; Crumlin, E.J.; Sautet, P.; Stach, E.A.; et al. Facilitating hydrogen dissociation over dilute nanoporous Ti–Cu catalysts. J. Am. Chem. Soc. 2022, 144, 16778–16791. [Google Scholar] [CrossRef]
- Chen, T.; Pang, D.; Kang, J.; Zhang, D.; Guo, L. Network-like platinum nanosheets enabled by a calorific-effect-induced-fusion strategy for enhanced catalytic hydrogenation performance. Front. Chem. 2022, 9, 818900. [Google Scholar] [CrossRef]
- Fujita, T.; Tokunaga, T.; Zhang, L.; Li, D.; Chen, L.; Arai, S.; Yamamoto, Y.; Hirata, A.; Tanaka, N.; Ding, Y.; et al. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold. Nano Lett. 2014, 14, 172–1177. [Google Scholar] [CrossRef]
- Liu, P.; Wei, X.; Song, S.; Wang, L.; Hirata, A.; Fujita, T.; Han, X.; Zhang, Z.; Chen, M. Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater. 2019, 165, 99–108. [Google Scholar] [CrossRef]
- Li, X.; Mitsuishi, K.; Takeguchi, M. Fabrication of a liquid cell for in situ transmission electron microscopy. Microscopy 2021, 70, 327–332. [Google Scholar] [CrossRef]
- Takeguchi, M.; Li, X.; Mitsuishi, K. High-resolution STEM observation of the dynamics of Pt nanoparticles in a liquid. Jpn. J. Appl. Phys. 2022, 61, SD1021. [Google Scholar] [CrossRef]
- Li, X.; Mitsuishi, K.; Takeguchi, M. Effect of amorphous carbon coating on the performance of liquid phase transmission electron microscopy (LP-TEM) and the dynamics of enclosed Pt nano-colloids. Microscopy 2022, 71, 181–186. [Google Scholar] [CrossRef]
- de Jonge, N.; Ross, F.M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704. [Google Scholar] [CrossRef]
- de Jonge, N. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy 2018, 187, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Jongbaek, S.; Bae, Y.; Park, H.; Kang, S.; Choi, B.K.; Kim, J.; Park, J. Liquid-phase transmission electron microscopy for reliable in situimaging of nanomaterials. Annu. Rev. Chem. Biomol. Eng. 2022, 10, 167–191. [Google Scholar] [CrossRef]
- van Benthem, K.; Lupini, A.R.; Kim, M.; Baik, H.S.; Doh, S.; Lee, J.; Oxley, M.P.; Findlay, S.D.; Allen, L.J.; Luck, J.T.; et al. Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 2005, 87, 034104. [Google Scholar] [CrossRef] [Green Version]
- van Benthem, K.; Lupini, A.R.; Oxley, M.O.; Findlay, S.D.; Allen, L.J.; Pennycook, S.J. Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 2006, 106, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.L.; Intaraprasonk, V.; Muller, D.A. Depth Sectioning of Individual Dopant Atoms with Aberration-Corrected Scanning Transmission Electron Microscopy. Microsc. Microanal. 2007, 13, 884–885. [Google Scholar] [CrossRef]
- Hamaoka, T.; Jao, C.; Zhang, X.; Oshima, Y.; Takeguchi, M. Three-dimensional characterization of Guinier–Preston zones in an Al–Cu alloy using depth-sectioning technique. Microscopy 2017, 66, 78–88. [Google Scholar] [CrossRef]
- Borisevich, A.Y.; Lupini, A.R.; Pennycook, S.J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. USA 2006, 103, 3044–3048. [Google Scholar] [CrossRef]
- Ishikawa, R.; Shibata, N.; Taniguchi, T.; Ikuhara, Y. Three-dimensional imaging of a single dopant in a crystal. Phys. Rev. Appl. 2020, 13, 034064. [Google Scholar] [CrossRef]
- Ishikawa, R.; Tanaka, R.; Kawahara, K.; Shibata, N.; Ikuhara, Y. Atomic-resolution topographic imaging of crystal surfaces. ACS Nano 2021, 15, 9186–9193. [Google Scholar] [CrossRef] [PubMed]
- Bultema, L.A.; Bücker, R.; Schulz, E.C.; Tellkamp, F.; Gonschior, J.; Miller, R.J.D.; Kassier, G.H. The effect of secondary electrons on radiolysis as observed by in liquid TEM: The role of window material and electrical bias. Ultramicroscopy 2022, 240, 113579. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liang, S.; Song, E.; Zhou, Y.; Wang, W.; Shan, F.; Shi, Y.; Hao, C.; Yin, K.; Zhang, T.; et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 2018, 9, 421. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Bae, J.; Jo, H.; Park, H.; Lee, S.; Hong, S.J.; Chun, H.; Cho, M.K.; Kim, J.; Kim, J.; et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 2022, 603, 631–636. [Google Scholar] [CrossRef]
- Yoshida, H.; Omote, H.; Takeda, S. Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy. Nanoscale 2014, 6, 13113–13118. [Google Scholar] [CrossRef]
- Agrawal, P.M.; Rice, B.M.; Thompson, D.L. Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 2002, 515, 21–35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeguchi, M.; Takei, T.; Mitsuishi, K. The Atomic Observation of the Structural Change Process in Pt Networks in Air Using Environmental Cell Scanning Transmission Electron Microscopy. Nanomaterials 2023, 13, 2170. https://doi.org/10.3390/nano13152170
Takeguchi M, Takei T, Mitsuishi K. The Atomic Observation of the Structural Change Process in Pt Networks in Air Using Environmental Cell Scanning Transmission Electron Microscopy. Nanomaterials. 2023; 13(15):2170. https://doi.org/10.3390/nano13152170
Chicago/Turabian StyleTakeguchi, Masaki, Toshiaki Takei, and Kazutaka Mitsuishi. 2023. "The Atomic Observation of the Structural Change Process in Pt Networks in Air Using Environmental Cell Scanning Transmission Electron Microscopy" Nanomaterials 13, no. 15: 2170. https://doi.org/10.3390/nano13152170
APA StyleTakeguchi, M., Takei, T., & Mitsuishi, K. (2023). The Atomic Observation of the Structural Change Process in Pt Networks in Air Using Environmental Cell Scanning Transmission Electron Microscopy. Nanomaterials, 13(15), 2170. https://doi.org/10.3390/nano13152170