Effect of Acidic Strength of Surface Ligands on the Carrier Relaxation Dynamics of Hybrid Perovskite Nanocrystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Perovskite Nanocrystals
2.3. Optical Characterizations
3. Results
3.1. UV-PL Spectroscopy
3.2. TCSPC Decay Kinetics
3.3. TAS Decay Dynamics: Above Bandgap Excitation
3.4. TAS Decay Dynamics: Near-Resonant Excitation
3.5. Decay-Assisted Spectral Deconvolution: Kinetic Modeling of TAS Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef][Green Version]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 per Cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 10775–10981. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef]
- Geiregat, P.; Maes, J.; Chen, K.; Drijvers, E.; Roo, J.D.; Hodgkiss, J.M.; Hens, Z. Using Bulk-Like Nanocrystals to Probe Intrinsic Optical Gain Characteristics of Inorganic Lead Halide Perovskites. ACS Nano 2018, 12, 10178–10188. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.-P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, Y.; Deng, Y.; Lin, C.; Fang, Z.; Xiang, C.; Bai, P.; Du, K.; Zuo, X.; Wen, K.; et al. Efficient Light-Emitting Diodes Based on Oriented Perovskite Nanoplatelets. Sci. Adv. 2021, 7, eabg8458. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Zhang, X.; Yuan, J.; Wang, Y.; Shi, G.; Patterson, R.; Shi, J.; Ling, X.; Hu, L.; Wu, T.; et al. Tuning the Surface-Passivating Ligand Anchoring Position Enables Phase Robustness in CsPbI3 Perovskite Quantum Dot Solar Cells. ACS Energy Lett. 2020, 5, 3322–3329. [Google Scholar] [CrossRef]
- de Arquer, F.P.G.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor Quantum Dots: Technological Progress and Future Challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Byranvand, M.M.; Martínez, C.O.; Hoye, R.L.Z.; Saliba, M.; Polavarapu, L. Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angew. Chem. 2021, 60, 21636–21660. [Google Scholar] [CrossRef]
- Ten Brinck, S.; Zaccaria, F.; Infante, I. Defects in Lead Halide Perovskite Nanocrystals: Analogies and (Many) Differences with the Bulk. ACS Energy Lett. 2019, 4, 2739–2747. [Google Scholar] [CrossRef]
- du Fossé, I.; Mulder, J.T.; Almeida, G.; Spruit, A.G.M.; Infante, I.; Grozema, F.C.; Houtepen, A.J. Limits of Defect Tolerance in Perovskite Nanocrystals: Effect of Local Electrostatic Potential on Trap States. J. Am. Chem. Soc. 2022, 144, 11059–11063. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, X.; Zhang, C.; Wang, L.; Wang, S.; Cao, F.; Zhao, D.; Rogach, A.L.; Yang, X. Stability of Perovskite Light-Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. Adv. Mater. 2022, 34, 2205217. [Google Scholar] [CrossRef]
- Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the Defects, Stability, and Photoluminescence of CsPbX3 Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 1610–1618. [Google Scholar] [CrossRef]
- Wang, C.; Malinoski, A.; Yuan, J.; Brea, C.; Hu, G. A Surface Engineering Approach for Promoting Dexter Energy Transfer from Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C 2023, 127, 1135–1144. [Google Scholar] [CrossRef]
- Krieg, F.; Ochsenbein, S.T.; Yakunin, S.; Ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; et al. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641–646. [Google Scholar] [CrossRef][Green Version]
- Nenon, D.P.; Pressler, K.; Kang, J.; Koscher, B.A.; Olshansky, J.H.; Osowiecki, W.T.; Koc, M.A.; Wang, L.-W.; Alivisatos, A.P. Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem. Soc. 2018, 140, 17760–17772. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koscher, B.A.; Swabeck, J.K.; Bronstein, N.D.; Alivisatos, A.P. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569. [Google Scholar] [CrossRef][Green Version]
- Fiuza-Maneiro, N.; Sun, K.; López-Fernández, I.; Gómez-Graña, S.; Müller-Buschbaum, P.; Polavarapu, L. Ligand Chemistry of Inorganic Lead Halide Perovskite Nanocrystals. ACS Energy Lett. 2023, 8, 1152–1191. [Google Scholar] [CrossRef]
- Baek, S.-D.; Wang, C.; Khang, D.-Y.; Myoung, J.-M. Mixed Halide Perovskite Nanocrystals with Surface Engineering Based on Pseudohalide Passivation and Short-Chain Ligand Exchange for High-Performance Blue Light-Emitting Diodes. Chem. Eng. J. 2023, 455, 140594. [Google Scholar] [CrossRef]
- Shen, X.; Kang, K.; Yu, Z.; Jeong, W.H.; Choi, H.; Park, S.H.; Stranks, S.D.; Snaith, H.J.; Friend, R.H.; Lee, B.R. Passivation Strategies for Mitigating Defect Challenges in Halide Perovskite Light-Emitting Diodes. Joule 2023, 7, 272–308. [Google Scholar] [CrossRef]
- Yu, Y.; Tang, Y.; Wang, B.; Zhang, K.; Tang, J.; Li, Y. Red Perovskite Light-Emitting Diodes: Recent Advances and Perspectives. Laser Photonics Rev. 2023, 17, 2200608. [Google Scholar] [CrossRef]
- DuBose, J.T.; Kamat, P.V. Surface Chemistry Matters. How Ligands Influence Excited State Interactions between CsPbBr3 and Methyl Viologen. J. Phys. Chem. C 2020, 124, 12990–12998. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, A.-Y.; Yu, J.C.; Nam, Y.S.; Choi, Y.; Park, J.; Song, M.H. Surface Ligand Engineering for Efficient Perovskite Nanocrystal-Based Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2019, 11, 8428–8435. [Google Scholar] [CrossRef] [PubMed]
- Roo, J.D.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J.C.; Driessche, I.V.; Kovalenko, M.V.; Hens, Z. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2016, 10, 2071–2081. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pan, J.; Shang, Y.; Yin, J.; Bastiani, M.D.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A.M.; Hedhili, M.N.; Emwas, A.-H.; et al. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. J. Am. Chem. Soc. 2018, 140, 562–565. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, D.; Li, X.; Zhou, W.; Zhang, S.; Meng, C.; Wu, Y.; Wang, Y.; Zeng, H. CsPbBr3 Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Adv. Mater. 2019, 31, e1900767. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, C.; Nie, W.; Duan, S.; Saggau, C.N.; Tang, M.; Zhu, M.; Zhao, Y.S.; Ma, L.; Schmidt, O.G. Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites. Angew. Chem. Int. Ed. 2022, 61, e202115875. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ijaz, P.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Prato, M.; Almeida, G.; Infante, I.; Manna, L. Simultaneous Cationic and Anionic Ligand Exchange For Colloidally Stable CsPbBr 3 Nanocrystals. ACS Energy Lett. 2019, 4, 819–824. [Google Scholar] [CrossRef]
- Malinoski, A.; Hu, G.; Wang, C. Strong Bidentate Coordination for Surface Passivation and Ligand-Shell Engineering of Lead Halide Perovskite Nanocrystals in the Strongly Quantum-Confined Regime. J. Phys. Chem. C 2021, 125, 24521–24530. [Google Scholar] [CrossRef]
- Zaccaria, F.; Zhang, B.; Goldoni, L.; Imran, M.; Zito, J.; van Beek, B.; Lauciello, S.; Trizio, L.D.; Manna, L.; Infante, I. The Reactivity of CsPbBr3 Nanocrystals toward Acid/Base Ligands. ACS Nano 2022, 16, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.K.; Scheidt, R.A.; Nag, A.; Kuno, M.; Kamat, P.V. To Exchange or Not to Exchange. Suppressing Anion Exchange in Cesium Lead Halide Perovskites with PbSO4–Oleate Capping. ACS Energy Lett. 2018, 3, 1049–1055. [Google Scholar] [CrossRef]
- Bhosale, S.S.; Narra, S.; Jokar, E.; Manikandan, A.; Chueh, Y.-L.; Diau, E.W.-G. Functionalized Hybrid Perovskite Nanocrystals with Organic Ligands Showing a Stable 3D/2D Core/Shell Structure for Display and Laser Applications. J. Mater. Chem. C 2021, 9, 17341–17348. [Google Scholar] [CrossRef]
- Chang, C.-W.; Chou, C.K.; Chang, I.-J.; Lee, Y.-P.; Diau, E.W.-G. Relaxation Dynamics of Ruthenium Complexes in Solution, PMMA and TiO2 Films: The Roles of Self-Quenching and Interfacial Electron Transfer. J. Phys. Chem. C 2007, 111, 13288–13296. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Hamaguchi, H.-O. Convenient Method of Measuring the Chirp Structure of Femtosecond White-Light Continuum Pulses. Appl. Spectrosc. 1995, 49, 1513–1515. [Google Scholar] [CrossRef]
- Elliott, R.J. Intensity of Optical Absorption by Excitons. Phys. Rev. 1957, 108, 1384–1389. [Google Scholar] [CrossRef]
- Awasthi, K.; Du, K.-B.; Wang, C.-Y.; Tsai, C.-L.; Hamada, M.; Narra, S.; Diau, E.W.-G.; Ohta, N. Electroabsorption Studies of Multicolored Lead Halide Perovskite Nanocrystalline Solid Films. ACS Photonics 2018, 5, 2408–2417. [Google Scholar] [CrossRef]
- Narra, S.; Bhosale, S.S.; Kharade, A.K.; Chang, S.; Diau, E.W.-G. Retarded Charge Recombination to Enhance Photocatalytic Performance for Water-Free CO2 Reduction Using Perovskite Nanocrystals as Photocatalysts. J. Phys. Chem. Lett. 2022, 13, 9134–9139. [Google Scholar] [CrossRef]
- Tsai, I.-H.; Narra, S.; Bhosale, S.S.; Diau, E.W.-G. Energy and Charge Transfer Dynamics in Red-Emitting Hybrid Organo-Inorganic Mixed Halide Perovskite Nanocrystals. J. Phys. Chem. Lett. 2023, 14, 2580–2587. [Google Scholar] [CrossRef]
- Giovanni, D.; Righetto, M.; Zhang, Q.; Lim, J.W.M.; Ramesh, S.; Sum, T.C. Origins of the Long-Range Exciton Diffusion in Perovskite Nanocrystal Films: Photon Recycling vs Exciton Hopping. Light Sci. Appl. 2021, 10, 2. [Google Scholar] [CrossRef]
- Chirvony, V.S.; González-Carrero, S.; Suárez, I.; Galian, R.E.; Sessolo, M.; Bolink, H.J.; Martínez-Pastor, J.P.; Pérez-Prieto, J. Delayed Luminescence in Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C 2017, 121, 13381–13390. [Google Scholar] [CrossRef]
- Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications. J. Am. Chem. Soc. 2014, 136, 11610–11613. [Google Scholar] [CrossRef] [PubMed]
- Price, M.B.; Butkus, J.; Jellicoe, T.C.; Sadhanala, A.; Briane, A.; Halpert, J.E.; Broch, K.; Hodgkiss, J.M.; Friend, R.H.; Deschler, F. Hot-Carrier Cooling and Photoinduced Refractive Index Changes in Organic–Inorganic Lead Halide Perovskites. Nat. Commun. 2015, 6, 8420. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fu, J.; Xu, Q.; Han, G.; Wu, B.; Huan, C.H.A.; Leek, M.L.; Sum, T.C. Hot Carrier Cooling Mechanisms in Halide Perovskites. Nat. Commun. 2017, 8, 1300. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rossi, D.; Wang, H.; Dong, Y.; Qiao, T.; Qian, X.; Son, D.H. Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots. ACS Nano 2018, 12, 12436–12443. [Google Scholar] [CrossRef] [PubMed]
- Knowles, K.E.; Malicki, M.; Weiss, E.A. Dual-Time Scale Photoinduced Electron Transfer from PbS Quantum Dots to a Molecular Acceptor. J. Am. Chem. Soc. 2012, 134, 12470–12473. [Google Scholar] [CrossRef]
- Tao, S.; Schmidt, I.; Brocks, G.; Jiang, J.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute Energy Level Positions in Tin- and Lead-Based Halide Perovskites. Nat. Commun. 2019, 10, 2560. [Google Scholar] [CrossRef][Green Version]
Sample | τ1 (ps) | τ2 (ps) |
---|---|---|
Std. | 0.5 | 108 |
CHA | 0.6 | 42 |
PEA | 0.5 | 45 |
TFB | 0.5 | 22 |
Sample | τ1 (ps) | τ2 (ps) |
---|---|---|
Std. | 0.1 | 168 |
CHA | 0.1 | 92 |
PEA | 0.2 | 100 |
TFB | 0.1 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narra, S.; Liao, P.-S.; Bhosale, S.S.; Diau, E.W.-G. Effect of Acidic Strength of Surface Ligands on the Carrier Relaxation Dynamics of Hybrid Perovskite Nanocrystals. Nanomaterials 2023, 13, 1718. https://doi.org/10.3390/nano13111718
Narra S, Liao P-S, Bhosale SS, Diau EW-G. Effect of Acidic Strength of Surface Ligands on the Carrier Relaxation Dynamics of Hybrid Perovskite Nanocrystals. Nanomaterials. 2023; 13(11):1718. https://doi.org/10.3390/nano13111718
Chicago/Turabian StyleNarra, Sudhakar, Po-Sen Liao, Sumit S. Bhosale, and Eric Wei-Guang Diau. 2023. "Effect of Acidic Strength of Surface Ligands on the Carrier Relaxation Dynamics of Hybrid Perovskite Nanocrystals" Nanomaterials 13, no. 11: 1718. https://doi.org/10.3390/nano13111718
APA StyleNarra, S., Liao, P.-S., Bhosale, S. S., & Diau, E. W.-G. (2023). Effect of Acidic Strength of Surface Ligands on the Carrier Relaxation Dynamics of Hybrid Perovskite Nanocrystals. Nanomaterials, 13(11), 1718. https://doi.org/10.3390/nano13111718