Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating
Abstract
1. Introduction
2. Device Structure and Design
3. Device Performance and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Yin, X.B.; Ulin-Avila, E.; Geng, B.S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Huang, Z.N.; Liu, Z.Y.; Jiang, C.; Mou, C.B.; Liu, Y.Q. Tunable Broadband Mode Converter Based on Long-Period Fiber Gratings at 2-μm Waveband. J. Light. Technol. 2021, 39, 5134–5141. [Google Scholar] [CrossRef]
- Blau, M.; Marom, D.M. Spatial aperture-sampled mode multiplexer extended to higher mode count fibers. J. Light. Technol. 2015, 33, 4805–4814. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, W. Reconfigurable asymmetric optical burst switching for concurrent dwdm multimode switching: Architecture and research directions [topics in optical communications]. IEEE Commun. Mag. 2010, 48, 57–65. [Google Scholar] [CrossRef]
- Hao, Y.L.; Wu, Y.M.; Yang, J.Y.; Jiang, X.Q.; Wang, M.H. Novel dispersive and focusing device configuration based on curved waveguide grating (CWG). Opt. Express 2006, 14, 8630–8637. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Hua, X.; Wei, C.; Huang, Y.; Yang, L.; Li, D.; Hao, Q.; Liu, P.; Jiang, X. LioeSim: A network simulator for hybrid opto-electronic networks-on-chip analysis. J. Light. Technol. 2014, 32, 4301–4310. [Google Scholar] [CrossRef]
- Ye, T.; Fu, Y.; Qiao, L.; Chu, T. Low-crosstalk Si arrayed waveguide grating with parabolic tapers. Opt. Express 2014, 22, 31899–31906. [Google Scholar] [CrossRef]
- Zou, J.; Le, Z.C.; Hu, J.H.; He, J.J. Performance improvement for silicon-based arrayed waveguide grating router. Opt. Express 2017, 25, 9963–9973. [Google Scholar] [CrossRef]
- Okamoto, K.; Ishida, K. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Opt. Lett. 2013, 38, 3530–3533. [Google Scholar] [CrossRef]
- Doerr, C.R.; Zhang, L.; Winzer, P.J. Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating. J. Light. Technol. 2010, 29, 536–541. [Google Scholar] [CrossRef]
- Takada, K.; Yamada, H.; Inoue, Y. Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexers. J. Light. Technol. 1996, 14, 1677–1689. [Google Scholar] [CrossRef]
- Lu, S.; Yang, C.X.; Yan, Y.B.; Jin, G.F.; Zhou, Z.Y.; Wong, W.H.; Pun, E. Design and fabrication of a polymeric flat focal field arrayed waveguide grating. Opt. Express 2005, 13, 9982–9994. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sheng, Z.; Li, L.; Pang, A.; Wu, A.; Li, W.; Wang, X.; Zou, S.; Qi, M.; Gan, F. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt. Express 2014, 22, 9395–9403. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Joo, J.; Kwack, M.J.; Kim, G.; Han, S.P.; Kim, S. Three-dimensional wavelength-division multiplexing interconnects based on a low-loss SixNy arrayed waveguide grating. Opt. Express 2021, 29, 35261–35270. [Google Scholar] [CrossRef]
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Bogaerts, W.; Selvaraja, S.K.; Dumon, P.; Brouckaert, J.; De Vos, K.; Van Thourhout, D.; Baets, R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 33–44. [Google Scholar] [CrossRef]
- Won, R. Integrating silicon photonics. Nat. Photonics 2010, 4, 498–499. [Google Scholar] [CrossRef]
- Atabaki, A.H.; Eftekhar, A.A.; Askari, M.; Adibi, A. Accurate post-fabrication trimming of ultra-compact resonators on silicon. Opt. Express 2013, 21, 14139–14145. [Google Scholar] [CrossRef]
- Liu, H.; Feng, J.; Ge, J.; Zhuang, S.; Yuan, S.; Chen, Y.; Li, X.; Tan, Q.; Yu, Q.; Zeng, H. Tilted Nano-Grating Based Ultra-Compact Broadband Polarizing Beam Splitter for Silicon Photonics. Nanomaterials 2021, 11, 2645. [Google Scholar] [CrossRef]
- Nishi, H.; Tsuchizawa, T.; Kou, R.; Shinojima, H.; Yamada, T.; Kimura, H.; Ishikawa, Y.; Wada, K.; Yamada, K. Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver. Opt. Express 2012, 20, 9312–9321. [Google Scholar] [CrossRef]
- Song, G.Y.; Wang, S.X.; Zou, J.; Lang, T.T.; He, J.J. Silicon-based cyclic arrayed waveguide grating routers with improved loss uniformity. Opt. Commun. 2018, 427, 628–634. [Google Scholar] [CrossRef]
- Xia, X.; Lang, T.T.; Zhang, L.B.; Yu, Z.H. Reduction of non-uniformity for a 16 × 16 arrayed waveguide grating router based on silica waveguides. Appl. Opt. 2019, 58, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Piels, M.; Bauters, J.F.; Davenport, M.L.; Heck, M.J.R.; Bowers, J.E. Low-Loss Silicon Nitride AWG Demultiplexer Heterogeneously Integrated With Hybrid III–V/Silicon Photodetectors. J. Light. Technol. 2014, 32, 817–823. [Google Scholar] [CrossRef]
- Yu, R.; Cheung, S.; Li, Y.; Okamoto, K.; Proietti, R.; Yin, Y.; Yoo, S.J.B. A scalable silicon photonic chip-scale optical switch for high performance computing systems. Opt. Express 2013, 21, 32655–32667. [Google Scholar] [CrossRef] [PubMed]
- Alexoudi, T.; Terzenidis, N.; Pitris, S.; Moralis-Pegios, M.; Maniotis, P.; Vagionas, C.; Mitsolidou, C.; Mourgias-Alexandris, G.; Kanellos, G.T.; Miliou, A. Optics in computing: From photonic network-on-chip to chip-to-chip interconnects and disintegrated architectures. J. Light. Technol. 2019, 37, 363–379. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, H.Y.; Shin, S.K.; Chung, Y.C. A Review of the Polarization-Nulling Technique for Monitoring Optical-Signal-to-Noise Ratio in Dynamic WDM Networks. J. Light. Technol. 2006, 24, 4162–4171. [Google Scholar] [CrossRef]
- Sakamaki, Y.; Kamei, S.; Hashimoto, T.; Kitoh, T.; Takahashi, H. Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method. J. Light. Technol. 2009, 27, 5710–5715. [Google Scholar] [CrossRef]
- Hashimoto, T.; Saida, T.; Ogawa, I.; Kohtoku, M.; Shibata, T.; Takahashi, H. Optical circuit design based on a wavefront-matching method. Opt. Lett. 2005, 30, 2620–2622. [Google Scholar] [CrossRef]
- Sakamaki, Y.; Saida, T.; Hashimoto, T.; Takahashi, H. New optical waveguide design based on wavefront matching method. J. Light. Technol. 2007, 25, 3511–3518. [Google Scholar] [CrossRef]
- Takiguchi, K.; Okamoto, K.; Sugita, A. Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channels. Opt. Lett. 2006, 31, 459–461. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.X.; Lang, T.T.; He, J.J. Uniform-loss cyclic arrayed waveguide grating router using a mode-field converter based on a slab coupler and auxiliary waveguides. Opt. Lett. 2019, 44, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Kamei, S.; Ishii, M.; Kaneko, A.; Shibata, T.; Itoh, M. N × N Cyclic-Frequency Router With Improved Performance Based on Arrayed-Waveguide Grating. J. Lightwave Technol. 2009, 27, 4097–4104. [Google Scholar] [CrossRef]
- Pathak, S.; Vanslembrouck, M.; Dumon, P.; Van Thourhout, D.; Bogaerts, W. Optimized silicon AWG with flattened spectral response using an MMI aperture. J. Light. Technol. 2013, 31, 87–93. [Google Scholar] [CrossRef]
- Sheng, Z.; Dai, D.; He, S. Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides. J. Light. Technol. 2007, 25, 3001–3007. [Google Scholar] [CrossRef]
- Smit, M.K.; Van Dam, C. PHASAR-based WDM-devices: Principles, design and applications. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 236–250. [Google Scholar] [CrossRef]
- Zou, J.; Ma, X.; Xia, X.; Hu, J.; Wang, C.; Zhang, M.; Lang, T.; He, J.-J. High resolution and ultra-compact on-chip spectrometer using bidirectional edge-input arrayed waveguide grating. J. Light. Technol. 2020, 38, 4447–4453. [Google Scholar] [CrossRef]
- Chen, Y.S.; Feng, J.J.; Chen, J.; Liu, H.P.; Yuan, S.; Guo, S.; Yu, Q.H.; Zeng, H.P. Optical Bistability in a Tunable Gourd-Shaped Silicon Ring Resonator. Nanomaterials 2022, 12, 2447. [Google Scholar] [CrossRef]
- Xiao, S.; Khan, M.H.; Shen, H.; Qi, M. Multiple-channel silicon micro-resonator based filters for WDM applications. Opt. Express 2007, 15, 7489–7498. [Google Scholar] [CrossRef]
- Pan, P.; An, J.; Zhang, J.; Wang, Y.; Wang, H.; Wang, L.; Yin, X.; Wu, Y.; Li, J.; Han, Q. Flat-top AWG based on InP deep ridge waveguide. Opt. Commun. 2015, 355, 376–381. [Google Scholar] [CrossRef]
Design Parameter | ||
---|---|---|
Number of channels | 8 | 16 |
Center wavelength (nm) | 1556 | 1556 |
Channel spacing (nm) | 1.6 | 1.6 |
Free spectral range (nm) | 23.39 | 25.99 |
Single mode waveguide width (nm) | 500 | 500 |
Diffraction order | 40 | 36 |
Length increment (μm) | 25.34 | 22.80 |
Pitch of adjacent arrayed waveguides (μm) | 1.4 | 1.4 |
Length of star coupler (μm) | 30 | 50 |
Number of arrayed waveguides | 26 | 24 |
Number of nanowires | 2 | 2 |
Spacing between nanowires and arrayed waveguides (nm) | 165 | 165 |
Width of nanowires (nm) | 230 | 230 |
Length of nanowires (μm) | 3.5 | 3.5 |
Structures | Non-Uniformity | Channels | Additional Insertion Loss | Cross-Talk | Year |
---|---|---|---|---|---|
Conventional [8] | 3 | 15 | 3.5 dB | −19 dB | 2017 |
Optical Combiner Structures [30] | 1.8 | 32 | 4.65 dB | −38 dB | 2009 |
AWG with MMI [33] | 0.8 dB | 12 | 2.07 dB | −19.5 dB | 2013 |
Parabolic MMI [39] | 1.4 dB | 10 | 2 dB | −25.4 dB | 2015 |
Dual-tapered assisted waveguides [21] | 1.9 dB | 15 | 1.1 dB | −15 dB | 2018 |
Cyclic Arrayed waveguides [22] | 1.02 dB | 16 | 2.45 dB | 22 dB | 2019 |
Mode field converters [31] | 0.5 dB | 16 | 1.524 dB | −32 dB | 2019 |
This work | 0.24/0.63 dB | 8/16 | 0 dB | −27/−20.7 dB | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Feng, J.; Yu, Z.; Chen, J.; Liu, H.; Chen, Y.; Guo, S.; Huang, F.; Akimoto, R.; Zeng, H. Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating. Nanomaterials 2023, 13, 182. https://doi.org/10.3390/nano13010182
Yuan S, Feng J, Yu Z, Chen J, Liu H, Chen Y, Guo S, Huang F, Akimoto R, Zeng H. Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating. Nanomaterials. 2023; 13(1):182. https://doi.org/10.3390/nano13010182
Chicago/Turabian StyleYuan, Shuo, Jijun Feng, Zhiheng Yu, Jian Chen, Haipeng Liu, Yishu Chen, Song Guo, Fengli Huang, Ryoichi Akimoto, and Heping Zeng. 2023. "Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating" Nanomaterials 13, no. 1: 182. https://doi.org/10.3390/nano13010182
APA StyleYuan, S., Feng, J., Yu, Z., Chen, J., Liu, H., Chen, Y., Guo, S., Huang, F., Akimoto, R., & Zeng, H. (2023). Silicon Nanowire-Assisted High Uniform Arrayed Waveguide Grating. Nanomaterials, 13(1), 182. https://doi.org/10.3390/nano13010182