Fabrication of Self-Assembling Carbon Nanotube Forest Fishnet Metamaterials
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Pendry, S.J. Metamaterials and the control of electromagnetic fields. In Conference on Coherence and Quantum Optics; Optical Society of America: Washington, DC, USA, 2007. [Google Scholar]
- Sparavigna, A.C. Vibrations of a one-dimensional host-guest system. Mater. Sci. Appl. 2011, 2, 314–318. [Google Scholar] [CrossRef][Green Version]
- Shalaev, V.M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.; Koschny, T.; Soukoulis, C.M. Magnetic response of metamaterials at 100 terahertz. Science 2004, 306, 1351–1353. [Google Scholar] [CrossRef]
- Fang, A.; Huang, Z.; Koschny, T.; Soukoulis, C.M. Overcoming the losses of a split ring resonator array with gain. Opt. Express 2011, 19, 12688–12699. [Google Scholar] [CrossRef] [PubMed]
- Roppo, V.; Centini, M.; de Ceglia, D.; Vicenti, M.A.; Haus, J.W.; Akozbek, N.; Bloemer, M.J.; Scalora, M. Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses. Metamaterials 2008, 2, 135–144. [Google Scholar] [CrossRef]
- Suchowski, H.; O’Brien, K.; Wong, Z.J.; Salandrino, A.; Yin, X.; Zhang, X. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 2013, 342, 1223–1226. [Google Scholar] [CrossRef] [PubMed]
- Furuta, H.; Kawaharamura, T.; Furuta, M.; Kawabata, K.; Hirao, T.; Komukai, T.; Yoshihara, K.; Shimomoto, Y.; Oguchi, T. Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement. Appl. Phys. Express 2010, 3, 105101. [Google Scholar] [CrossRef]
- Furuta, H.; Kawaharamura, T.; Kawabata, K.; Furuta, M.; Matsuda, T.; Li, C.; Hirao, T. High-density short-height directly grown CNT patterned emitter on glass. e-J. Surf. Sci. Nanotechnol. 2010, 8, 336–339. [Google Scholar] [CrossRef][Green Version]
- Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- De Heer, W.A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180. [Google Scholar] [CrossRef]
- Nikolaenko, A.E.; De Angelis, F.; Boden, S.A.; Papasimakis, N.; Ashburn, P.; Di Fabrizio, E.; Zheludev, N.I. Carbon Nanotubes in a Photonic Metamaterial. Phys. Rev. Lett. 2010, 104, 153902. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.J.; Wang, S.G.; Zhang, Q.; Sellin, P.J.; Chen, G. Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 2004, 329, 207–213. [Google Scholar] [CrossRef]
- Murakami, Y.; Einarsson, E.; Edamura, T.; Maruyama, S. Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology. Carbon 2005, 43, 2664–2676. [Google Scholar] [CrossRef]
- Ichida, M.; Mizuno, S.; Kataura, H.; Achiba, Y.; Nakamura, A. Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer. Appl. Phys. A 2004, 78, 1117–1120. [Google Scholar] [CrossRef]
- Avouris, P.; Chen, J.; Freitag, M.; Perebeinos, V.; Tsang, J.C. Carbon nanotube optoelectronics. Phys. Status Solidi 2006, 243, 3197–3203. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Windeler, R.S.; Digiovanni, D.J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 2007, 15, 9176–9183. [Google Scholar] [CrossRef]
- Bahena-Garrido, S.; Shimoi, N.; Abe, D.; Hojo, T.; Tanaka, Y.; Tohji, K. Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters. Rev. Sci. Instrum. 2014, 85, 104704. [Google Scholar] [CrossRef]
- Zhang, T.-F.; Li, Z.-P.; Wang, J.-Z.; Kong, W.-Y.; Wu, G.-A.; Zheng, Y.-Z.; Zhao, Y.-W.; Yao, E.-X.; Zhuang, N.-X.; Luo, L.-B. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 2016, 6, 38569. [Google Scholar] [CrossRef]
- Butt, H.; Dai, Q.; Farah, P.; Butler, T.; Wilkinson, T.D.; Baumberg, J.J.; Amaratunga, G.A.J. Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl. Phys. Lett. 2010, 97, 163102. [Google Scholar] [CrossRef]
- Butt, H.; Dai, Q.; Rajesekharan, R.; Wilkinson, T.D.; Amaratunga, G.A.J. Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials. ACS Nano 2011, 5, 9138–9143. [Google Scholar] [CrossRef]
- Butt, H.; Yetisen, A.K.; Ahmed, R.; Yun, S.H.; Dai, Q. Carbon nanotube biconvex microcavities. Appl. Phys. Lett. 2015, 106, 121108. [Google Scholar] [CrossRef]
- Hong, J.T.; Park, D.J.; Yim, J.H.; Park, J.K.; Park, J.-Y.; Lee, S.; Ahn, Y.H. Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices. J. Phys. Chem. Lett. 2013, 4, 3950–3957. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, Y.; Tang, Y.; Huang, Y.; Liu, G.; Sun, W.; Xie, P.; Pan, D.; Liu, C.; Guo, Z. Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid. Mater. 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Qi, G.; Liu, Y.; Chen, L.; Xie, P.; Pan, D.; Shi, Z.; Quan, B.; Zhong, Y.; Liu, C.; Fan, R.; et al. Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid. Mater. 2021, 4, 1226–1238. [Google Scholar] [CrossRef]
- Pander, A.; Takano, K.; Hatta, A.; Nakajima, M.; Furuta, H. Shape-dependent infrared reflectance properties of CNT forest metamaterial arrays. Opt. Express 2020, 28, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Pander, A.; Takano, K.; Hatta, A.; Nakajima, M.; Furuta, H. The influence of the inner structure of CNT forest metamaterials in the infrared regime. Diam. Relat. Mater. 2017, 80, 99–107. [Google Scholar] [CrossRef]
- Ponsinet, V.; Baron, A.; Pouget, E.; Okazaki, Y.; Oda, R.; Barois, P. Self-assembled nanostructured metamaterials(a). Europhys. Lett. 2017, 119, 14004. [Google Scholar] [CrossRef][Green Version]
- Pawlak, D.A.; Turczynski, S.; Gajc, M.; Kolodziejak, K.; Diduszko, R.; Rozniatowski, K.; Smalc, J.; Vendik, I. How far are we from making metamaterials by self-organization? the microstructure of highly anisotropic particles with an SRR-like geometry. Adv. Funct. Mater. 2010, 20, 1116–1124. [Google Scholar] [CrossRef]
- Volgin, V.M.; Lyubimov, V.V.; Gnidina, I.V.; Kabanova, T.B.; Davydov, A.D. Modeling of Electrochemical Machining Through a Monolayer Colloidal Crystal Mask for Metal Surfaces Nanostructuring. Procedia CIRP 2016, 42, 350–355. [Google Scholar] [CrossRef]
- Gómez-Castaño, M.; Zheng, H.; García-Pomar, J.L.; Vallée, R.; Mihi, A.; Ravaine, S. Tunable index metamaterials made by bottom-up approaches. Nanoscale Adv. 2019, 1, 1070–1076. [Google Scholar] [CrossRef]
- Ho, C.C.; Chen, P.Y.; Lin, K.H.; Juan, W.T.; Lee, W.L. Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface. ACS Appl. Mater. Interfaces 2011, 3, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Lai, Y.; Chi, L. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36–61. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Wang, L.; Chao, X.; Velankar, S.S.; Asher, S.A. Vertical spreading of two-dimensional crystalline colloidal arrays. J. Mater. Chem. C 2013, 1, 6099–6102. [Google Scholar] [CrossRef]
- Park, Y.-S.; Yoon, S.Y.; Lee, J.S. Wetting behavior on hexagonally close-packed polystyrene bead arrays with different topographies.pdf. Soft Matter 2016, 12, 674–677. [Google Scholar] [CrossRef]
- Tan, S.; Yan, F.; Xu, N.; Zheng, J.; Wang, W.; Zhang, W. Broadband terahertz metamaterial absorber with two interlaced fishnet layers. AIP Adv. 2018, 8, 025020. [Google Scholar] [CrossRef]
- Shen, J.; Li, Q.; Townsend, S.; Zhou, S.; Huang, X.; Xie, Y.M. Design of fishnet metamaterials with broadband negative refractive index in the visible spectrum. Opt. Lett. 2014, 39, 2415–2418. [Google Scholar] [CrossRef]
- Torres, V.; Rodríguez-Ulibarri, P.; Navarro-Cía, M.; Beruete, M. Fishnet metamaterial from an equivalent circuit perspective. Appl. Phys. Lett. 2012, 101, 244101. [Google Scholar] [CrossRef]
- Beruete, M.; Navarro-Cía, M.; Sorolla, M.; Campillo, I. Planoconcave lens by negative refraction of stacked subwavelength hole arrays. Opt. Express 2008, 16, 9677. [Google Scholar] [CrossRef]
- Navarro-Cia, M.; Beruete, M.; Campillo, I.; Sorolla, M. Millimeter-wave left-handed extraordinary transmission metamaterial demultiplexer. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 212–215. [Google Scholar] [CrossRef]
- Navarro-Cía, M.; Beruete, M.; Sorolla, M.; Campillo, I. Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial. Appl. Phys. Lett. 2009, 94, 144107. [Google Scholar] [CrossRef]
- Wang, Y.; Maspoch, D.; Zou, S.; Schatz, G.C.; Smalley, R.E.; Mirkin, C.A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. USA 2006, 103, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Minami, N.; Zhu, W.; Kazaoui, S.; Azumi, R.; Matsumoto, M. Langmuir-Blodgett Films of Single-Wall Carbon Nanotubes: Layer-by-Layer Deposition and In-plane Orientation of Tubes. Jpn. J. Appl. Phys. 2003, 42, 7629–7634. [Google Scholar] [CrossRef]
- Walters, D.A.; Casavant, M.J.; Qin, X.C.; Huffman, C.B.; Boul, P.J.; Ericson, L.M.; Haroz, E.H.; O’Connell, M.J.; Smith, K.; Colbert, D.T.; et al. In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett. 2001, 338, 14–20. [Google Scholar] [CrossRef]
- Xin, H.; Woolley, A.T. Directional orientation of carbon nanotubes on surfaces using a gas flow cell. Nano Lett. 2004, 4, 1481–1484. [Google Scholar] [CrossRef]
- Kocabas, C.; Meitl, M.A.; Gaur, A.; Shim, M.; Rogers, J.A. Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation. Nano Lett. 2004, 4, 2421–2426. [Google Scholar] [CrossRef]
- Collins, P.G.; Arnold, M.S.; Avouris, P. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science 2001, 292, 706–709. [Google Scholar] [CrossRef]
- Gao, J.; Yu, A.; Itkis, M.E.; Bekyarova, E.; Zhao, B.; Niyogi, S.; Haddon, R.C. Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 2004, 126, 16698–16699. [Google Scholar] [CrossRef]
- Meitl, M.A.; Zhou, Y.; Gaur, A.; Jeon, S.; Usrey, M.L.; Strano, M.S.; Rogers, J.A. Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Lett. 2004, 4, 1643–1647. [Google Scholar] [CrossRef]
- Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J.H.; Lee, S.; Kim, D.H. Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices. Adv. Funct. Mater. 2017, 27, 1704353. [Google Scholar] [CrossRef]
- Ghai, V.; Bedi, H.S.; Bhinder, J.; Chauhan, A.; Singh, H.; Agnihotri, P.K. Catalytic-free growth of VACNTs for energy harvesting. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 907–912. [Google Scholar] [CrossRef]
- Matsuno, Y.; Sakurai, A. Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings. Opt. Commun. 2017, 385, 118–123. [Google Scholar] [CrossRef]
- Udorn, J.; Hatta, A.; Furuta, H. Carbon Nanotube (CNT) Honeycomb Cell Area-Dependent Optical Reflectance. Nanomaterials 2016, 6, 202. [Google Scholar] [CrossRef] [PubMed]
- Oseli, A.; Vesel, A.; Mozetič, M.; Žagar, E.; Huskić, M.; Slemenik Perše, L. Nano-mesh superstructure in single-walled carbon nanotube/polyethylene nanocomposites, and its impact on rheological, thermal and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105972. [Google Scholar] [CrossRef]
- Nemati, A.; Wang, Q.; Hong, M.; Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 2018, 1, 18000901–18000925. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef]
- Muralidharan, N.; Teblum, E.; Westover, A.S.; Schauben, D.; Itzhak, A.; Muallem, M.; Nessim, G.D.; Pint, C.L. Carbon Nanotube Reinforced Structural Composite Supercapacitor. Sci. Rep. 2018, 8, 17662. [Google Scholar] [CrossRef]
- Ding, P.; Liang, E.J.; Hu, W.Q.; Zhang, L.; Zhou, Q.; Xue, Q.Z. Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure. Photonics Nanostruct. Fundam. Appl. 2009, 7, 92–100. [Google Scholar] [CrossRef]
- Pander, A.; Ishimoto, K.; Hatta, A.; Furuta, H. Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method. Vacuum 2018, 154, 285–295. [Google Scholar] [CrossRef]
- Pander, A.; Hatta, A.; Furuta, H. Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method. Appl. Surf. Sci. 2016, 371, 425–435. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pander, A.; Onishi, T.; Hatta, A.; Furuta, H. Fabrication of Self-Assembling Carbon Nanotube Forest Fishnet Metamaterials. Nanomaterials 2022, 12, 464. https://doi.org/10.3390/nano12030464
Pander A, Onishi T, Hatta A, Furuta H. Fabrication of Self-Assembling Carbon Nanotube Forest Fishnet Metamaterials. Nanomaterials. 2022; 12(3):464. https://doi.org/10.3390/nano12030464
Chicago/Turabian StylePander, Adam, Takatsugu Onishi, Akimitsu Hatta, and Hiroshi Furuta. 2022. "Fabrication of Self-Assembling Carbon Nanotube Forest Fishnet Metamaterials" Nanomaterials 12, no. 3: 464. https://doi.org/10.3390/nano12030464
APA StylePander, A., Onishi, T., Hatta, A., & Furuta, H. (2022). Fabrication of Self-Assembling Carbon Nanotube Forest Fishnet Metamaterials. Nanomaterials, 12(3), 464. https://doi.org/10.3390/nano12030464