Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy
Abstract
1. Introduction
2. Model Design and Simulation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia, M.D.; Girault, P.; Joly, S.; Oyhenart, L.; Raimbault, V.; Dejous, C.; Bechou, L. An Analytical Approach to Predict Maximal Sensitivity of Microring Resonators for Absorption Spectroscopy. J. Lightwave Technol. 2019, 37, 5500–5506. [Google Scholar] [CrossRef]
- Yong, Z.; Zhang, S.; Gong, C.; He, S. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 2016, 6, 24063. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Charipar, N.A.; Salman, J.; Pique, A.; Kats, M.A. Nanosecond mid-infrared pulse generation via modulated thermal emissivity. Light Sci. Appl. 2019, 8, 51. [Google Scholar] [CrossRef]
- Tsuda, S.; Yamaguchi, S.; Kanamori, Y.; Yugami, H. Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes. Opt. Express 2018, 26, 6899–6915. [Google Scholar] [CrossRef]
- Arbabi, A.; Arbabi, E.; Kamali, S.M.; Horie, Y.; Han, S.; Faraon, A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 2016, 7, 13682. [Google Scholar] [CrossRef]
- Azad, A.K.; Mort-Kamp, W.J.M.; Sykora, M.; Weisse-Bernstein, N.R.; Luk, T.S.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.-T. Metasurface Broadband Solar Absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef] [PubMed]
- Jalil, S.A.; Lai, B.; ElKabbash, M.; Zhang, J.; Garcell, E.M.; Singh, S.; Guo, C. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light Sci. Appl. 2020, 9, 14. [Google Scholar] [CrossRef]
- Rana, A.S.; Zubair, M.; Danner, A.; Mehmood, M.Q. Revisiting tantalum based nanostructures for efficient harvesting of solar radiation in STPV systems. Nano Energy 2021, 80, 105520. [Google Scholar] [CrossRef]
- Lenert, A.; Bierman, D.M.; Nam, Y.; Chan, W.R.; Celanovic, I.; Soljacic, M.; Wang, E.N. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 2014, 9, 126–130. [Google Scholar] [CrossRef]
- Ramos, F.J.; Oliva-Ramírez, M.; Nazeeruddin, M.K.; Graetzel, M.; González-Elipe, A.R.; Ahmad, S. Light management: Porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells. J. Mater. Chem. A 2016, 4, 4962–4970. [Google Scholar] [CrossRef]
- Liu, J.; Yao, M.; Shen, L. Third generation photovoltaic cells based on photonic crystals. J. Mater. Chem. C 2019, 7, 3121–3145. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Shen, S.; Zhou, L.; Wu, S.; Zhou, Y.; Chen, L. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt. Express 2017, 25, 16715–16724. [Google Scholar] [CrossRef]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Jen, Y.J.; Yang, K.B.; Lin, P.C.; Chung, M.H. Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber. Sci. Rep. 2020, 10, 22269. [Google Scholar] [CrossRef]
- Jen, Y.J.; Liu, W.C.; Chen, T.K.; Lin, S.W.; Jhang, Y.C. Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber. Sci. Rep. 2017, 7, 3076. [Google Scholar] [CrossRef] [PubMed]
- Hubarevich, A.; Kukhta, A.; Demir, H.V.; Sun, X.; Wang, H. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Opt. Express 2015, 23, 9753–9761. [Google Scholar] [CrossRef]
- Zhu, P.; Jay Guo, L. High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl. Phys. Lett. 2012, 101, 241116. [Google Scholar] [CrossRef]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef] [PubMed]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qu, Y.; Du, K.; Bai, S.; Tian, J.; Pan, M.; Ye, H.; Qiu, M.; Li, Q. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals. Appl. Phys. Lett. 2017, 110, 101101. [Google Scholar] [CrossRef]
- Matsumori, K.; Fujimura, R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Opt. Lett. 2018, 43, 2981–2984. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, R.J.; Wang, S.Y.; Chen, X.; Lu, M.; Zheng, Y.X.; Ye, L.Y.; Wang, C.Z.; Ho, K.M. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep. 2015, 5, 7810. [Google Scholar] [CrossRef]
- Spinelli, P.; Verschuuren, M.A.; Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 2012, 3, 692. [Google Scholar] [CrossRef]
- Bezares, F.J.; Long, J.P.; Glembocki, O.J.; Guo, J.; Rendell, R.W.; Kasica, R.; Shirey, L.; Owrutsky, J.C.; Caldwell, J.D. Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays. Opt. Express 2013, 21, 27587–27601. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Chen, X.; Yi, Z.; Tang, Y.; Yang, H.; Zhou, Z.; Duan, T.; Cheng, S.; Zhang, J.; Yi, Y. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 2019, 97, 109400. [Google Scholar] [CrossRef]
- Li, H.; Niu, J.; Zhang, C.; Niu, G.; Ye, X.; Xie, C. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals. Nanomaterials 2020, 10, 552. [Google Scholar] [CrossRef]
- Gao, H.; Peng, W.; Cui, W.; Chu, S.; Yu, L.; Yang, X. Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt. Mater. 2019, 97, 109377. [Google Scholar] [CrossRef]
- Liu, J.; Ma, W.-Z.; Chen, W.; Yu, G.-X.; Chen, Y.-S.; Deng, X.-C.; Yang, C.-F. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared. Opt. Express 2020, 28, 23748–23760. [Google Scholar] [CrossRef]
- Shuvo, M.M.K.; Hossain, M.I.; Mahmud, S.; Rahman, S.; Topu, M.T.H.; Hoque, A.; Islam, S.S.; Soliman, M.S.; Almalki, S.H.A.; Islam, M.S.; et al. Polarization and angular insensitive bendable metamaterial absorber for UV to NIR range. Sci. Rep. 2022, 12, 4857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yu, X.; Yang, X.; Th Tee, C.A.; Yuan, W.; Yu, Y. Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays. Opt. Lett. 2019, 44, 963–966. [Google Scholar] [CrossRef]
- Werner, W.S.M.; Glantschnig, K.; Ambrosch-Draxl, C. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data 2009, 38, 1013–1092. [Google Scholar] [CrossRef]
- Pflüger, J.; Fink, J. Chapter 13—Determination of Optical Constants by High-Energy, Electron-Energy-Loss Spectroscopy (EELS). In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Boston, MA, USA, 1998; pp. 293–311. [Google Scholar]
- Pflüger, J.; Fink, J.; Weber, W.; Bohnen, K.P.; Crecelius, G. Dielectric properties of TiCx, TiNx, VCx, and VNx from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys. Rev. B 1984, 30, 1155–1163. [Google Scholar] [CrossRef]
- Gao, L.; Lemarchand, F.; Lequime, M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 2012, 20, 15734–15751. [Google Scholar] [CrossRef] [PubMed]
- Malitson, I.H. Refraction and Dispersion of Synthetic Sapphire. J. Opt. Soc. Am. 1962, 52, 1377–1379. [Google Scholar] [CrossRef]
- Sai, H.; Yugami, H. Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Appl. Phys. Lett. 2004, 85, 3399–3401. [Google Scholar] [CrossRef]
- Yeng, Y.X.; Ghebrebrhan, M.; Bermel, P.; Chan, W.R.; Joannopoulos, J.D.; Soljacic, M.; Celanovic, I. Enabling high-temperature nanophotonics for energy applications. Proc. Natl. Acad. Sci. USA 2012, 109, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Park, J.H.; Kim, S.I.; Park, B.J.; Ma, Z.; Choi, J.; Ju, B.K. Nanopatterning by laser interference lithography: Applications to optical devices. J. Nanosci. Nanotechnol. 2014, 14, 1521–1532. [Google Scholar] [CrossRef]
- Fan, P.; Zhong, M.; Li, L.; Huang, T.; Zhang, H. Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser. Opt. Express 2013, 21, 11628–11637. [Google Scholar] [CrossRef]
- Kodigala, S.R. Chapter 5—Optical Properties of I–III–VI2 Compounds. In Thin Films and Nanostructures; Kodigala, S.R., Ed.; Academic Press: New York, NY, USA, 2010; Volume 35, pp. 195–317. [Google Scholar]
- Wirgin, A.; López-Ríos, T. Can surface-enhanced raman scattering be caused by waveguide resonances? Opt. Commun. 1984, 48, 416–420. [Google Scholar] [CrossRef]
- Lalanne, P.; Astilean, S.; Chavel, P.; Cambril, E.; Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 1984, 23, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Hooper, I.R.; Sambles, J.R. Surface plasmon polaritons on narrow-ridged short-pitch metal gratings. Phys. Rev. B 2002, 66, 205408. [Google Scholar] [CrossRef]
- Hassan, M.M.; Islam, F.; Baten, M.Z.; Subrina, S. Analysis and design of InAs nanowire array based ultra broadband perfect absorber. RSC Adv. 2021, 11, 37595–37603. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Liu, Y.; Yue, C. Design and Analysis of Ultra Broadband Nano-absorber for Solar Energy Harvesting. Plasmonics 2017, 13, 475–481. [Google Scholar] [CrossRef]
- Mirshafieyan, S.S.; Guo, J. Silicon colors: Spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Opt. Express 2014, 22, 31545–31554. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiong, M.; Chen, M.; Deng, S.; Liu, H.; Teng, C.; Yang, H.; Deng, H.; Yuan, L. Ultra-broadband perfect solar energy absorber based on tungsten ring arrays. Eng. Res. Express 2021, 3, 4. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, B. Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared. Surf. Interfaces 2022, 33, 102244. [Google Scholar] [CrossRef]
- Wu, J. Absorption enhancement in thin-film solar cells based on periodically chirped structure. Sol. Energy 2018, 165, 85–89. [Google Scholar] [CrossRef]
- Fan, S. Thermal Photonics and Energy Applications. Joule 2017, 1, 264–273. [Google Scholar] [CrossRef]
- Liu, H.; Xie, M.; Ai, Q.; Yu, Z. Ultra-broadband selective absorber for near-perfect harvesting of solar energy. J. Quant. Spectrosc. Radiat. Transf. 2021, 266, 107575. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zhou, J.; Liu, Z.; Liu, G.; Pan, P.; Liu, X.; Tang, C.; Liu, Z.; Wang, J. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Opt. Express 2020, 28, 36476–36486. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Prasad Sivan, V.; Mitchell, A.; Rosengarten, G.; Phelan, P.; Wang, L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 2015, 137, 235–242. [Google Scholar] [CrossRef]
- Kim, J.; Han, K.; Hahn, J.W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 6740. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, T.; Lu, Z.; Sun, Q.; Fu, Y.; Yu, W. Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting. Adv. Opt. Mater. 2013, 1, 43–49. [Google Scholar] [CrossRef]
- Wu, P.C.; Liao, C.Y.; Chen, J.-W.; Tsai, D.P. Isotropic Absorption and Sensor of Vertical Split-Ring Resonator. Adv. Opt. Mater. 2017, 5, 1600581. [Google Scholar] [CrossRef]
Layer | Radius (nm) | Height (nm) |
---|---|---|
Al2O3 | H = 200 | |
Ti | H3 = 14 | |
SiO2 | H4 = 60 | |
TiN | H5 = 400 |
Layer | Radius (nm) | Height (nm) |
---|---|---|
Al2O3 | H = 200 | |
Air | R1 = 120 | H1 = 100 |
Ti | R2 = 95 | H2 = 100 |
Ti | H3 = 14 | |
SiO2 | H4 = 60 | |
TiN | H5 = 400 |
Refs. | Surface Structure | Bandwidth (Absorption > 90%) | Average Absorption in This Region |
---|---|---|---|
[19] | titanium-silica cubes | 712 nm (354 nm–1066 nm) | 97% |
[28] | Titanium nitride ring-square | 1000 nm (200 nm–1200 nm) | 94.85% |
[29] | titanium-silica cubes | 1100 nm (405 nm–1505 nm) | 95.14% |
[30] | Circular-ring cell | 1300 nm (300 nm–1600 nm) | 95.77% |
[31] | nanodisk–nanohole hybrid | 400 nm (400 nm–800 nm) | >90% |
Our work | nanopillar hybrid structure | 1700 nm (300 nm–2000 nm) | 94.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.-H.; Meng, Y.-L.; Li, Y.; Li, Y.; Li, Y.-S.; Pan, G.-M.; Kang, J.; Zhan, C.-L.; Gao, H.; Hu, B.; et al. Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy. Nanomaterials 2022, 12, 3515. https://doi.org/10.3390/nano12193515
Wu J-H, Meng Y-L, Li Y, Li Y, Li Y-S, Pan G-M, Kang J, Zhan C-L, Gao H, Hu B, et al. Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy. Nanomaterials. 2022; 12(19):3515. https://doi.org/10.3390/nano12193515
Chicago/Turabian StyleWu, Jing-Hao, Yan-Long Meng, Yang Li, Yi Li, Yan-Song Li, Gui-Ming Pan, Juan Kang, Chun-Lian Zhan, Han Gao, Bo Hu, and et al. 2022. "Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy" Nanomaterials 12, no. 19: 3515. https://doi.org/10.3390/nano12193515
APA StyleWu, J.-H., Meng, Y.-L., Li, Y., Li, Y., Li, Y.-S., Pan, G.-M., Kang, J., Zhan, C.-L., Gao, H., Hu, B., & Jin, S.-Z. (2022). Ultra-Broadband, Omnidirectional, High-Efficiency Metamaterial Absorber for Capturing Solar Energy. Nanomaterials, 12(19), 3515. https://doi.org/10.3390/nano12193515