Strain Modulation of Selectively and/or Globally Grown Ge Layers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Growth Mechanism
3.2. Strain Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radamson, H.H.; Zhu, H.; Wu, Z.; He, X.; Lin, H.; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; et al. State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials 2020, 10, 1555. [Google Scholar] [CrossRef] [PubMed]
- Radamson, H.H.; Zhang, Y.; He, X.; Cui, H.; Li, J.; Xiang, J.; Liu, J.; Gu, S.; Wang, G. The Challenges of Advanced CMOS Process from 2D to 3D. Appl. Sci. 2017, 7, 1047. [Google Scholar] [CrossRef]
- Radamson, H. Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements; Academic Press: Cambridge, MA, USA; Elsevier BV: Amsterdam, The Netherlands, 2015; ISBN 978-012-419-975-0. [Google Scholar]
- Bao, S.; Kim, D.; Onwukaeme, C.; Gupta, S.; Saraswat, K.; Lee, K.H.; Kim, Y.; Min, D.; Jung, Y.; Qiu, H.; et al. Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Elbaz, A.; El Kurdi, M.; Aassime, A.; Sauvage, S.; Checoury, X.; Sagnes, I.; Bœuf, F.; Boucaud, P. Solving thermal issues in tensile-strained Ge microdisks. Opt. Express 2018, 26, 28376–28384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Moeen, M.; Toprak, M.S.; Wang, G.; Luo, J.; Ke, X.; Li, Z.; Liu, D.; Wang, W.; Zhao, C.; et al. Design impact on the performance of Ge PIN photodetectors. J. Mater. Sci. Mater. Electron. 2019, 31, 18–25. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photon 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Gupta, S.; Srinivasan, S.A.; Pantouvaki, M.; Chen, H.; Verheyen, P.; Lepage, G.; Van Thourhout, D.; Roelkens, G.; Saraswat, K.; Absil, P.; et al. 50 GHz Ge Waveguide Electro-Absorption Modulator Integrated in a 220nm SOI Photonics Platform. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers; The Optical Society: Washington, DC, USA, 2015; p. Tu2A.4. [Google Scholar]
- Fujikata, J.; Noguchi, M.; Kawashita, K.; Katamawari, R.; Takahashi, S.; Nishimura, M.; Ono, H.; Shimura, D.; Takahashi, H.; Haegashi, H.; et al. High-speed Ge/Si electro-absorption optical modulator in C-band operation-wavelength. Opt. Express 2020, 28, 33123–33134. [Google Scholar] [CrossRef]
- Wang, G. Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond; Springer Nature: Singapore, 2019; Volume 9. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, J.; Han, G.; Kanyang, R.; Peng, Y.; Li, J.; Wang, H.; Liu, Y.; Zhang, J.; Sun, Q.-Q.; et al. Frequency dependence of performance in Ge negative capacitance PFETs achieving sub-30 mV/decade swing and 110 mV hysteresis at MHz. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 4–6 December 2017; pp. 15.5.1–15.5.4. [Google Scholar] [CrossRef]
- Zhou, J.; Han, G.; Li, J.; Peng, Y.; Liu, Y.; Zhang, J.; Sun, Q.-Q.; Zhang, D.W.; Hao, Y. Comparative Study of Negative Capacitance Ge pFETs With HfZrOxPartially and Fully Covering Gate Region. IEEE Trans. Electron Devices 2017, 64, 4838–4843. [Google Scholar] [CrossRef]
- Brammertz, G.; Caymax, M.; Meuris, M.; Heyns, M.; Mols, Y.; DeGroote, S.; Leys, M. GaAs on Ge for CMOS. Thin Solid Films 2008, 517, 148–151. [Google Scholar] [CrossRef]
- Du, Y.; Xu, B.; Wang, G.; Gu, S.; Li, B.; Kong, Z.; Yu, J.; Bai, G.; Li, J.; Wang, W.; et al. Growth of high-quality epitaxy of GaAs on Si with engineered Ge buffer using MOCVD. J. Mater. Sci. Mater. Electron. 2021, 32, 6425–6437. [Google Scholar] [CrossRef]
- Kohen, D.; Bao, S.; Lee, K.H.; Lee, K.E.K.; Tan, C.S.; Yoon, S.F.; Fitzgerald, E.A. The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200mm GaAs virtual substrate. J. Cryst. Growth 2015, 421, 58–65. [Google Scholar] [CrossRef]
- Loo, R.; Wang, G.; Orzali, T.; Waldron, N.; Merckling, C.; Leys, M.R.; Richard, O.; Bender, H.; Eyben, P.; Vandervorst, W.; et al. Selective Area Growth of InP on On-Axis Si(001) Substrates with Low Antiphase Boundary Formation. J. Electrochem. Soc. 2012, 159, H260–H265. [Google Scholar] [CrossRef]
- Merckling, C.; Waldron, N.; Jiang, S.; Guo, W.; Richard, O.; Douhard, B.; Moussa, A.; Vanhaeren, D.; Bender, H.; Collaert, N.; et al. Selective area growth of InP in shallow trench isolation on large scale Si(001) wafer using defect confinement technique. J. Appl. Phys. 2013, 114, 033708. [Google Scholar] [CrossRef]
- Zhou, Y.; Miao, Y.; Ojo, S.; Tran, H.; Abernathy, G.; Grant, J.M.; Amoah, S.; Salamo, G.; Du, W.; Liu, J.; et al. Electrically injected GeSn lasers on Si operating up to 100 K. Optica 2020, 7, 924. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, Y.; Hu, H.; Liu, X.; Su, H.; Zhang, J.; Yang, J.; Tang, Z.; Wu, X.; Song, J.; et al. Characterization of crystalline GeSn layer on tensile-strained Ge buffer deposited by magnetron sputtering. Mater. Sci. Semicond. Process. 2018, 85, 134–140. [Google Scholar] [CrossRef]
- Radamson, H.H.; Noroozi, M.; Jamshidi, A.; Thompson, P.E.; Östling, M. Strain Engineering in GeSnSi Materials. ECS Trans. 2013, 50, 527–531. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Wang, J.A.; Chen, G.B.; Tang, Z.H.; Tan, K.Z.; Cui, W. Growth of high quality Ge-on-Si layer by using an ultra-thin LT-Si buffer in RPCVD. IOP Conf. Ser. Mater. Sci. Eng. 2019, 1, 504. [Google Scholar] [CrossRef]
- Chen, D.; Xue, Z.; Wei, X.; Wang, G.; Ye, L.; Zhang, M.; Wang, D.; Liu, S. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD. Appl. Surf. Sci. 2014, 299, 1–5. [Google Scholar] [CrossRef]
- Chong, H.; Wang, Z.; Chen, C.; Xu, Z.; Wu, K.; Wu, L.; Xu, B.; Ye, H. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers. J. Cryst. Growth 2018, 488, 8–15. [Google Scholar] [CrossRef]
- Du, Y.; Kong, Z.; Toprak, M.; Wang, G.; Miao, Y.; Xu, B.; Yu, J.; Li, B.; Lin, H.; Han, J.; et al. Investigation of the Heteroepitaxial Process Optimization of Ge Layers on Si (001) by RPCVD. Nanomaterials 2021, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Bao, S.; Wang, B.; Wang, C.; Yoon, S.F.; Michel, J.; Fitzgerald, E.A.; Tan, C.S. Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer. AIP Adv. 2016, 6, 025028. [Google Scholar] [CrossRef]
- Chen, D.; Wei, X.; Xue, Z.; Bian, J.; Wang, G.; Zhang, M.; Di, Z.; Liu, S. Ultrathin low temperature Si0.75Ge0.25/Si buffer layer for the growth of high quality Ge epilayer on Si (100) by RPCVD. J. Cryst. Growth 2014, 386, 38–42. [Google Scholar] [CrossRef]
- Skibitzki, O.; Zoellner, M.H.; Rovaris, F.; Schubert, M.A.; Yamamoto, Y.; Persichetti, L.; Di Gaspare, L.; De Seta, M.; Gatti, R.; Montalenti, F.; et al. Reduction of threading dislocation density beyond the saturation limit by optimized reverse grading. Phys. Rev. Mater. 2020, 4, 103403. [Google Scholar] [CrossRef]
- Nayfeh, A.; Chui, C.O.; Saraswat, K.C.; Yonehara, T. Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality. Appl. Phys. Lett. 2004, 85, 2815–2817. [Google Scholar] [CrossRef]
- Hartmann, J.; Abbadie, A.; Barnes, J.; Fédéli, J.; Billon, T.; Vivien, L. Impact of the H2 anneal on the structural and optical properties of thin and thick Ge layers on Si; Low temperature surface passivation of Ge by Si. J. Cryst. Growth 2010, 312, 532–541. [Google Scholar] [CrossRef]
- Liu, Z.; Hao, X.; Ho-Baillie, A.; Tsao, C.-Y.; Green, M.A. Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering. Thin Solid Films 2015, 574, 99–102. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Park, J.-H.; Okyay, A.K.; Saraswat, K.C. Selective-Area High-Quality Germanium Growth for Monolithic Integrated Optoelectronics. IEEE Electron Device Lett. 2012, 33, 579–581. [Google Scholar] [CrossRef]
- Radamson, H.H.; Kolahdouz, M. Selective epitaxy growth of Si1−xGex layers for MOSFETs and FinFETs. J. Mater. Sci. Mater. Electron. 2015, 26, 4584–4603. [Google Scholar] [CrossRef]
- Wang, G.L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C.L.; Zhu, H.L.; Yan, J.; Yin, H.Z.; Li, J.F.; et al. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS). J. Appl. Phys. 2013, 114, 123511. [Google Scholar] [CrossRef]
- Sammak, A.; De Boer, W.; Nanver, L.K. Ge-on-Si: Single-Crystal Selective Epitaxial Growth in a CVD Reactor. ECS Trans. 2013, 50, 507–512. [Google Scholar] [CrossRef]
- Yako, M.; Ishikawa, Y.; Abe, E.; Wada, K. Defects and their reduction in Ge selective epitaxy and coalescence layer on Si with semicylindrical voids on SiO2 masks. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1. [Google Scholar] [CrossRef]
- McMahon, W.E.; Vaisman, M.; Zimmerman, J.D.; Tamboli, A.C.; Warren, E.L. Perspective: Fundamentals of coalescence-related dislocations, applied to selective-area growth and other epitaxial films. APL Mater. 2018, 6, 120903. [Google Scholar] [CrossRef]
- Bharathan, J.; Narayan, J.; Rozgonyi, G.; Bulman, G.E. Defect Characterization in Ge/(001)Si Epitaxial Films Grown by Reduced-Pressure Chemical Vapor Deposition. J. Electron. Mater. 2013, 42, 2888–2896. [Google Scholar] [CrossRef]
- Radamson, H.; Joelsson, K.; Ni, W.-X.; Hultman, L.; Hansson, G. Characterization of highly boron-doped Si, Si1 − xGex and Ge layers by high-resolution transmission electron microscopy. J. Cryst. Growth 1995, 157, 80–84. [Google Scholar] [CrossRef]
- Hansson, G.V.; Radamsson, H.H.; Ni, W.-X. Strain and relaxation in Si-MBE structures studied by reciprocal space mapping using high resolution X-ray diffraction. J. Mater. Sci. Mater. Electron. 1995, 6, 292–297. [Google Scholar] [CrossRef]
Sample | Strain Calculated by HRXRD | Strain Calculated by TEM | Ge PL Position | Extracted TDD in Ge by TEM (cm−2) |
---|---|---|---|---|
Global Ge | +0.25% | +0.35% | 0.768 eV | 2.9 × 107 |
SEG Ge | +0.25% −0.12% | +0.35% −0.34% | 0.781 eV | 3.2 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Wang, G.; Miao, Y.; Xu, B.; Li, B.; Kong, Z.; Yu, J.; Zhao, X.; Lin, H.; Su, J.; et al. Strain Modulation of Selectively and/or Globally Grown Ge Layers. Nanomaterials 2021, 11, 1421. https://doi.org/10.3390/nano11061421
Du Y, Wang G, Miao Y, Xu B, Li B, Kong Z, Yu J, Zhao X, Lin H, Su J, et al. Strain Modulation of Selectively and/or Globally Grown Ge Layers. Nanomaterials. 2021; 11(6):1421. https://doi.org/10.3390/nano11061421
Chicago/Turabian StyleDu, Yong, Guilei Wang, Yuanhao Miao, Buqing Xu, Ben Li, Zhenzhen Kong, Jiahan Yu, Xuewei Zhao, Hongxiao Lin, Jiale Su, and et al. 2021. "Strain Modulation of Selectively and/or Globally Grown Ge Layers" Nanomaterials 11, no. 6: 1421. https://doi.org/10.3390/nano11061421
APA StyleDu, Y., Wang, G., Miao, Y., Xu, B., Li, B., Kong, Z., Yu, J., Zhao, X., Lin, H., Su, J., Han, J., Liu, J., Dong, Y., Wang, W., & Radamson, H. H. (2021). Strain Modulation of Selectively and/or Globally Grown Ge Layers. Nanomaterials, 11(6), 1421. https://doi.org/10.3390/nano11061421