Room Temperature Operation of UV Photocatalytic Functionalized AlGaN/GaN Heterostructure Hydrogen Sensor
Abstract
:1. Introduction
2. Experiment and Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Das, D. Advances in biohydrogen production process: An approach towards commercialization. Int. J. Hydrogen Energy 2009, 34, 7349–7357. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, S.J. Recent Progress in Hydrogen Flammability Prediction for the Safe Energy System. Energies 2020, 13, 6263. [Google Scholar] [CrossRef]
- Wang, X.; La, C.K. An analysis of the explosion limit of hydrogen oxygen mixtures. J. Chem. Phys. 2013, 138, 134305. [Google Scholar]
- Steinberg, M.; Cheng, H.C. Modern and prospective technologies for hydrogen production from fossil fuels. Int. J. Hydrogen Energy 1989, 14, 797–820. [Google Scholar] [CrossRef]
- Sharman, B.; Kim, J.S. MEMS based highly sensitive dual FET gas sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection. Sci. Rep. 2018, 8, 5902. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.J.; Hong, S.B.; Jung, G.W.; Jeong, Y.J.; Park, J.W.; Kim, D.H.; Jang, D.K.; Park, B.G.; Lee, J.H. Improved signal-to-noise-ratio of FET-type gas sensors using body bias control and embedded micro-heater. Sens. Actuators B Chem. 2021, 329, 129166. [Google Scholar] [CrossRef]
- Hong, S.B.; Wu, M.; Hong, Y.; Joeng, Y.J.; Jung, G.W.; Shin, W.J.; Park, J.W.; Kim, D.H.; Jang, D.K.; Lee, J.H. FET-type gas sensors: A-review. Sens. Actuators B Chem. 2021, 330, 129240. [Google Scholar] [CrossRef]
- Jin, H.; Qin, L.; Zhang, L.; Zeng, X.; Yang, R. Review of wide band-gap semiconductors technology. MATEC Web Conf. 2016, 40, 01006. [Google Scholar] [CrossRef] [Green Version]
- Vuong, T.A.; Kim, H. Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with without SiNx post-passivation. J. IKEE 2019, 23, 1033–1037. [Google Scholar]
- ChiChibu, S.F.; Uedono, A.; Kolima, K.; Ikeda, H.; Fujito, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S. The origins and properties of intrinsic nonradiative recombination centers in wide bandgap GaN and AlGaN. J. Appl. Phys. 2018, 123, 161413. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Jo, M.G.; Han, S.W.; Kim, H.; Jang, S.; Kim, S.H.; Kim, J.S.; Cha, H.Y. Hydrogen sensors Pd-functionalised AlGaN/GaN heterostructure with high sensitivity and low-power consumption. Electron. Lett. 2017, 53, 1200–1202. [Google Scholar] [CrossRef]
- Burk, A.A. Jr.; O’Loughlin, M.J.; Siergiej, R.R.; Agarwal, A.K.; Sriram, S.; Clarke, R.C.; MacMillan, M.R.; Balakrishna, V.; Brandt, C.D. SiC and GaN wide bandgap semiconductor materials and devices. Solid-State Electron. 1999, 43, 1459–1464. [Google Scholar] [CrossRef]
- Chen, J.T.; Persson, I.; Nilsson, D.; Hsu, C.W.; Palisaitis, J.; Forsberg, U.; Persson, P.O.Å.; Janzen, E. Room temperature mobility above 2200 cm2/V·s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure. Appl. Phys. Lett. 2015, 106, 251601. [Google Scholar] [CrossRef] [Green Version]
- Chow, T.P.; Tyagi, R. Wide band compound semiconductors for superior high-voltage power devices. In Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs, Monterey, CA, USA, 18–20 May 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 84–88. [Google Scholar]
- Trivedi, M.; Shenai, K. Performance evaluation of high-power wide band gap semiconductor rectifiers. J. Appl. Phys. 1999, 85, 6889. [Google Scholar] [CrossRef]
- Trivedi, M.; Shenai, K. Practical limits of high-voltage thyristors on wide band-gap materials. J. Appl. Phys. 2000, 88, 7313. [Google Scholar] [CrossRef]
- Safarik, D.K.; Schwarz, R.B.; Paglieri, S.N.; Quintana, R.L.; Tuggle, D.G.; Byler, D.D. Composition dependence of the elastic constants of β-phase and (α+β)-phase PdHx. Ultrasonics 2010, 50, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Khanuja, M.; Shrestha, S.; Metha, B.R.; Kala, S.; Kruis, F.E. Magnitude and time response of electronic and topographical changes during hydrogen sensing in size selected palladium nanoparticles. J. Appl. Phys. 2011, 110, 014318. [Google Scholar] [CrossRef]
- Fisser, M.; Badcock, A.B.; Teal, P.D.; Hunze, A. Optimizing the sensitivity of palladium based hydrogen sensors. Sens. Actuators B Chem. 2018, 259, 10–19. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, H.; Cha, H.Y. Improved Stability of AlGaN/GaN Heterojunction Schottky-diode-type Hydrogen Sensor Using Constant Current Source Operation. J. Semicond. Technol. Sci. 2020, 20, 430–435. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.J.; Shin, H.; Koo, W.T.; Jang, J.S.; Kang, J.Y.; Jeong, Y.J.; Kim, I.D. High-Resolution, Fast, and Shape-Conformable Hydorgen Sensor Platform: Polymer Nanofiber Yarn Couple with Nanograined Pd@Pt. ACS Nano 2019, 13, 6071–6082. [Google Scholar] [CrossRef]
- Lee, C.T.; Yan, J.T. Sensing mechanism of Pt/β-Ga2O3/GaN hydrogen sensor diodes. Sens. Actuators B Chem. 2010, 147, 723–729. [Google Scholar] [CrossRef]
- Lechuga, L.M.; Calle, A.; Golmayo, D.; Briones, F. Hydrogen sensor based on Pt/GaAs Schottky diode. Sens. Actuators B Chem. 1991, 4, 515–518. [Google Scholar] [CrossRef]
- Jung, S.; Baik, K.H.; Ren, F.; Pearton, S.J.; Jang, S. Pt-AlGaN/GaN Hydorgen Sensor with Water-Blocking PMMA Layer. IEEE Electron. Device Lett. 2017, 38, 657–660. [Google Scholar] [CrossRef]
- Tsukada, K.; Kiwa, T.; Ymaguchi, T.; Migitaka, S.; Goto, Y.; Yokosawa, K. A study of fast response characteristics for hydrogen sensing platinum FET sensor. Sens. Actuators B Chem. 2006, 114, 158–163. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Wang, M.; Li, M. High-temperature hydrogen sensor based on platinum nanoparticle-decorated SiC nanowire device. Sens. Actuators B Chem. 2014, 201, 402–406. [Google Scholar] [CrossRef]
- Choo, T.F.; Saidin, N.U.; Kok, K.Y. Hydrogen sensing enhancement of zincoxide nanorode via voltage biasing. R. Soc. Open Sci. 2018, 5, 172372. [Google Scholar] [CrossRef] [Green Version]
- Kadhim, I.H.; Hassan, A.H.; Abdullah, Q.N. Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 2015, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yao, Z.; Haidry, A.A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-type hydrogen gas sensor based on TiO2: A review. Int. J. Hydrogen Energy 2018, 43, 21114–21132. [Google Scholar] [CrossRef]
- Yao, I.C.; Lin, P.; Tseng, T.Y. Hydrogen Gas Sensors Using ZnO-SnO2 Core-Shell Nanostructure. J. Comput. Theor. Nanosci. 2010, 3, 548–553. [Google Scholar]
- Larin, A.; Womble, P.C.; Dobrokhotov, V. Hybrid SnO2/TiO2 Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds. Sensors 2016, 16, 1373. [Google Scholar] [CrossRef]
- Ren, Q.; Cao, Y.Q.; Arulrj, D.; Liu, C.; Wu, D.; Li, W.M.; Li, A.D. Review-Resistive-Type Hydrogen Sensors Based on Zinc Oxide Nanostructures. J. Electrochem. Soc. 2020, 167, 167528. [Google Scholar] [CrossRef]
- Chachuli, S.A.M.; Hamidon, M.N.; Mamat, Md.S.; Ertugrul, M.; Abdullah, N.H. A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate. Sensors 2018, 18, 2483. [Google Scholar] [CrossRef] [Green Version]
- Choi, P.G.; Izu, N.; Shirahata, N.; Masuda, Y. Fabrication and H2-Sensing Properties of SnO2 Nanosheet Gas Sensors. ACS Omega 2018, 3, 14592–14596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, N.; Zhang, Q.; Zhang, S.; Zong, P.; Yang, F. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers. Sensors 2017, 17, 2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakzewska, K.; Radecka, M. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions. Nanoscale Res. Lett. 2017, 12, 1–8. [Google Scholar]
- Haviar, S.; Capek, J.; Batkova, S.; Kumar, N.; Dvorak, F.; Duchon, T.; Fialova, M.; Zeman, P. Hydrogen gas sensing properties of WO3 sputter-deposited thin films enhanced by on-top deposited CuO nanoclusters. Int. J. Hydrogen Energy 2018, 43, 22756–22764. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, J.H.; Kim, H.W.; Kim, S.S. Gasochromic WO3 Nanostructure for the Detection of Hydrogen Gas: An Overview. Appl. Sci. 2019, 9, 1775. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yan, S.; Wu, Z.; Li, H.; Wang, J.; Shen, W.; Wang, Z.; Fu, Y. Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit. Int. J. Hydrogen Energy 2018, 43, 22746–22755. [Google Scholar] [CrossRef]
- Hara, K.; Nishida, N. H2 sensors using Fe2O3-based thin film. Sens. Actuators B Chem. 1994, 20, 181–186. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorijai, G.A. Catalytic hydrogen production from methane: A review on recent progress and prospect. Catalyst 2020, 10, 858. [Google Scholar] [CrossRef]
- Marchenkov, E.A.; Shipul, V.P. Thermal expansion of semiconductor materials. J. Eng. Thermophys. Rus. 1944, 66, 547–551. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Kumar, R.; Savu, R.; Moshkalev, S.; Kawamura, G.; Matsuda, A.; Shafiei, M. Hydrogen gas sensing properties of microwave-assisted 2D Hybrid Pd/rGO: Effect of temperature, humidity and UV illumination. Int. J. Hydrogen Energy 2021, 46, 7653–7665. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Rajamani, S.; Ranwa, S.; Fanetti, M.; Valant, M.; Kumar, M. Efficient room temperature hydrogen sensor based on UV-activated ZnO-network. Nanotechnology 2017, 28, 365502. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef]
- Su, X.; Duan, G.; Xu, Z.; Zhou, F.; Cai, W. Structure and thickness-dependent gas sensing response to NO2 under UV irradiation for the multilayered ZnO micro/nanostructured porous thin films. J. Colloid Interface Sci. 2017, 503, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Luo, Y.; Zheng, B.; Zhang, C. Photon assisted room-temperature hydrogen sensors using PdO load WO3 nanohybrids. Int. J. Hydrogen Energy 2017, 42, 6425–6434. [Google Scholar] [CrossRef]
- Choi, J.H.; Park, T.H.; Hur, J.H.; Cha, H.Y. AlGaN/GaN Heterojunction Hydrogen Sensor Using ZnO-Nanoparticles/Pd Dual Catalyst Layer. Sens. Actuators B Chem. 2020, 325, 128946. [Google Scholar] [CrossRef]
- Sahai, A.; Goswami, N. Probing the dominance of interstitial oxygen defects in ZnO nanoparticles through structural and optical characterizations. Ceram. Int. 2014, 40, 14569–14578. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, S.; Li, X.; Gorbaciova, J.; Gillin, W.; Krause, S.; Briscoe, J. Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. J. Mater. Chem. C 2018, 6, 1815–1821. [Google Scholar] [CrossRef] [Green Version]
- Khokhra, R.; Bharti, B.; Lee, H.-N.; Kumar, R. Visible and UV photo-detection in ZnO nanostructured films via simple tuning of solution method. Sci. Rep. 2017, 7, 15032. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Anh, V.T.; Kim, H.; Cha, H.Y. High-Sensitivity Hydrogen Sensor Based on AlGaN/GaN Heterojunction Field-Effect Transistor. J. Nanosci. Nanotechnol. 2020, 20, 4404–4408. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.-W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106. [Google Scholar] [CrossRef]
- Baik, K.H.; Kim, J.; Jang, S. Highly sensitive nonpolar a-plane GaN based hydrogen diode sensor with textured active area using photo-chemical etching. Sens. Actuators B Chem. 2017, 238, 462–467. [Google Scholar] [CrossRef]
- Chung, G.; Cha, H.Y.; Kim, H. Enhanced hydrogen sensitivity of AlGaN/GaN heterojunction gas sensors by GaN-cap layer. Electron. Lett. 2018, 54, 896–897. [Google Scholar] [CrossRef]
- Lim, W.; Wright, J.S.; Gila, B.P.; Johnson, J.L.; Ural, A.; Anderson, T.; Ren, F.; Pearton, S.J. Room temperature hydrogen detection using Pd-coated GaN nanowires. Appl. Phys. Lett. 2018, 93, 072109. [Google Scholar] [CrossRef]
- Cho, H.J.; Chen, V.T.; Qiao, S.; Koo, W.T.; Penner, R.M. Pt-Functionalized PdO Nanowires for Room Temperature Hydrogen Gas Sensor. ACS Sens. 2018, 3, 2152–2158. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Jiang, T.; Xu, X.; Wang, C. Ultrasensitive Hydrogen Sensor Based on Pd0-Loaded SnO2 Electrospun Nanofibers at Room Temperature. ACS Mater. Interfaces 2013, 5, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Shaikh, M.O.A. Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles. Sensors 2015, 15, 14286–14297. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 2005, 86, 243503. [Google Scholar] [CrossRef]
- Cheng, W.; Ju, Y.; Payamyar, P.; Primc, D.; Rao, J.; Willa, C.; Koziej, D.; Niedeberger, M. Large-Area Alignment of Tungsten Oixde Nanowires over Flat and Patterned Substrates for Room-Temperature Gas Sensing. Angew. Chem. Int. Ed. 2015, 54, 340–344. [Google Scholar] [CrossRef]
- Simo, A.; Mwakikunga, B.; Sone, B.T.; Julies, B.; Madjoe, R.; Maaza, M. VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing. Int. J. Hydrogen Energy 2014, 39, 8147–8157. [Google Scholar] [CrossRef]
- Kadhim, I.H.; Hassan, H.A. Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin fim using sol-gel spin coating technique. J. Mater. Sci. Mater. Electron. 2018, 27, 4356–4362. [Google Scholar] [CrossRef]
- Fields, L.L.; Zheng, J.P.; Cheng, Y.; Xiong, P. Room-temperature low-power hydrogen sensor single tin dioxide nanobelt. Appl. Phys. Lett. 2006, 88, 263102. [Google Scholar] [CrossRef]
- Xiang, C.; She, Z.; Zou, Y.; Cheng, J.; Chu, H.; Qiu, S.; Zhang, H.; Sun, L.; Xu, F. A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram. Int. 2014, 40, 16343–16348. [Google Scholar] [CrossRef]
- Tsai, Y.Y.; Lin, K.W.; Lu, C.T.; Chen, H.I.; Chuang, H.M.; Chen, C.Y.; Cheng, C.C.; Liu, W.C. Investigation of Hydrogen-Sensing Properties of Pd/AlGaAs-Based Schottky Diodes. IEEE Trans. Electron. Devices 2003, 50, 2532–2539. [Google Scholar] [CrossRef]
- Liu, I.P.; Chang, C.H.; Ke, B.Y.; Lin, K.W. Study of a GaN Schottky diode based hydrogen sensor with a hydrogen peroxide oxidation approach and platinum catalytic metal. Int. J. Hydrogen Energy 2019, 44, 32351–32361. [Google Scholar] [CrossRef]
Sensor Type | Catalyst | Catalyst Structure | Hydrogen Concentration | Response Time | Recovery Time | Sensor Response | Ref |
---|---|---|---|---|---|---|---|
Resistive | Au/ZnO | Nanoparticle | 0.0005% | 4 s | 24 s | 21.5% | [44] |
Resistive | ZnO | Nanoline | 0.01% | ~12 min | ~20 min | 19% | [53] |
Resistive | Pd | Nanowire | 0.15% | ~10 min | ~10 min | 9.1% | [56] |
Resistive | Pt | Nanoparticle/nanowire | 0.2% | - | - | 62% | [57] |
Resistive | Pd | Nanoparticle/nanofiber | 0.1% | ~6 s | ~3 s | 12.09% | [58] |
Resistive | Pt/SnO2 | Nanoparticle/nanoparticle | 0.1% | ~20 s | ~80 s | 10,500% | [59] |
Resistive | ZnO | Nanorod | 0.05% | ~15 min | ~20 s | 4.2% | [60] |
Resistive | W18O4 | Nanowire | 0.0002% | - | - | ~1% | [61] |
Resistive | VO2 | Nanobelts | 0.014% | ~840 s | ~455 s | ~1800% | [62] |
Resistive | SnO2 | Nanoparticle | 0.1% | 205 s | 116 s | 600% | [63] |
Resistive | SnO2 | Nanobelts | 2% | ~220 s | ~220 s | 50% | [64] |
Resistive | Pd | Nanoparticle/nanotube | 1% | 2 min | 1.5 min | 9.5% | [65] |
Diode (AlGaAs MOS) | Pd | Thin film | 1% | 58 s | - | 155.9% | [66] |
Diode (AlGaAs Schottky) | Pd | Thin film | 1% | 400 s | - | ~5% | |
Diode (GaN Schottky) | Pt | Thin film | 1% | 15 s | 19 s | 1 × 105% | [67] |
FET (AlGaN/GaN) | ZnO/Pd | Nanoparticle/thin film | 4% | 8 s | 11 s | 25% | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-H.; Park, T.; Hur, J.; Cha, H.-Y. Room Temperature Operation of UV Photocatalytic Functionalized AlGaN/GaN Heterostructure Hydrogen Sensor. Nanomaterials 2021, 11, 1422. https://doi.org/10.3390/nano11061422
Choi J-H, Park T, Hur J, Cha H-Y. Room Temperature Operation of UV Photocatalytic Functionalized AlGaN/GaN Heterostructure Hydrogen Sensor. Nanomaterials. 2021; 11(6):1422. https://doi.org/10.3390/nano11061422
Chicago/Turabian StyleChoi, June-Heang, Taehyun Park, Jaehyun Hur, and Ho-Young Cha. 2021. "Room Temperature Operation of UV Photocatalytic Functionalized AlGaN/GaN Heterostructure Hydrogen Sensor" Nanomaterials 11, no. 6: 1422. https://doi.org/10.3390/nano11061422