Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zeolite Synthesis
2.2. Characterization
2.3. Catalytic Deoxygenation
3. Results
3.1. Materials Characterisation
3.2. Catalytic Deoxygenation of Oleic Acid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bezergianni, S.; Dimitriadis, A.; Kalogianni, A.; Pilavachi, P.A. Hydrotreating of waste cooking oil for biodiesel production. Part I: Effect of temperature on product yields and heteroatom removal. Bioresour. Technol. 2010, 101, 6651–6656. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Cui, C.; Liu, S.; Qiu, Q.; Ding, Y.; Wu, Y.; Zhang, B. Catalytic hydroprocessing of microalgae-derived biofuels: A review. Green Chem. 2016, 18, 3684–3699. [Google Scholar] [CrossRef]
- Othman, M.F.; Adam, A.; Najafi, G.; Mamat, R. Green fuel as alternative fuel for diesel engine: A review. Renew. Sustain. Energy Rev. 2017, 80, 694–709. [Google Scholar] [CrossRef]
- Hermida, L.; Abdullah, A.Z.; Mohamed, A.R. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renew. Sustain. Energy Rev. 2015, 42, 1223–1233. [Google Scholar] [CrossRef]
- Kiatkittipong, W.; Phimsen, S.; Kiatkittipong, K.; Wongsakulphasatch, S.; Laosiripojana, N.; Assabumrungrat, S. Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process. Technol. 2013, 116, 16–26. [Google Scholar] [CrossRef]
- Santillan-Jimenez, E.; Crocker, M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J. Chem. Technol. Biotechnol. 2012, 87, 1041–1050. [Google Scholar] [CrossRef]
- Mo, N.; Savage, P.E. Hydrothermal Catalytic Cracking of Fatty Acids with HZSM-5. ACS Sustain. Chem. Eng. 2014, 2, 88–94. [Google Scholar] [CrossRef]
- Corma, A.; Navarro, M. From micro to mesoporous molecular sieves: Adapting composition and structure for catalysis. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2002; Volume 142, pp. 487–501. [Google Scholar]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef]
- Serrano, D.P.; Melero, J.A.; Morales, G.; Iglesias, J.; Pizarro, P. Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catal. Rev. 2018, 60, 1–70. [Google Scholar] [CrossRef]
- Feliczak-Guzik, A. Hierarchical zeolites: Synthesis and catalytic properties. Microporous Mesoporous Mater. 2018, 259, 33–45. [Google Scholar] [CrossRef]
- Hartmann, M.; Machoke, A.G.; Schwieger, W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chem. Soc. Rev. 2016, 45, 3313–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, S.; Pinar, A.B.; Kenvin, J.; Crivelli, P.; Kärger, J.; Pérez-Ramírez, J. Structural analysis of hierarchically organized zeolites. Nat. Commun. 2015, 6, 8633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Ostraat, M.L. Innovations in hierarchical zeolite synthesis. Catal. Today 2016, 264, 3–15. [Google Scholar] [CrossRef]
- Serrano, D.P.; Escola, J.M.; Pizarro, P. Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev. 2013, 42, 4004–4035. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Rodriguez, J.M.; Peral, A. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. J. Mater. Chem. 2008, 18, 4210–4218. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Rodríguez, J.M.; Peral, Á. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chem. Mater. 2006, 18, 2462–2464. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Morales, G.; Rodriguez, J.M.; Peral, A.; Thommes, M.; Epping, J.D.; Chmelka, B.F. Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater. 2009, 21, 641–654. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.P.; Rodríguez, J.M. Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds. Microporous Mesoporous Mater. 2008, 115, 504–513. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.P.; Escola, J.M.; Peral, A. Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties. J. Anal. Appl. Pyrolysis 2009, 85, 352–358. [Google Scholar] [CrossRef]
- Serrano, D.P.; Pinnavaia, T.J.; Aguado, J.; Escola, J.M.; Peral, A.; Villalba, L. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catal. Today 2014, 227, 15–25. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Peral, A.; Morales, G.; Abella, E. Synthesis of hierarchical ZSM-5 by silanization and alkoxylation of protozeolitic units. Catal. Today 2011, 168, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Vuong, G.-T.; Do, T.-O. A new route for the synthesis of uniform nanozeolites with hydrophobic external surface in organic solvent medium. J. Am. Chem. Soc. 2007, 129, 3810–3811. [Google Scholar] [CrossRef] [PubMed]
- Vuong, G.-T.; Do, T.-O. Synthesis of silylated nanozeolites in the presence of organic phase: Two-phase and single-phase methods. Microporous Mesoporous Mater. 2009, 120, 310–316. [Google Scholar] [CrossRef]
- Vuong, G.-T.; Hoang, V.-T.; Nguyen, D.-T.; Do, T.-O. Synthesis of nanozeolites and nanozeolite-based FCC catalysts, and their catalytic activity in gas oil cracking reaction. Appl. Catal. A Gen. 2010, 382, 231–239. [Google Scholar] [CrossRef]
- Ali, M.A.; Brisdon, B.; Thomas, W.J. Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios. Appl. Catal. A Gen. 2003, 252, 149–162. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, J.; Zhang, K.; Feng, W.; Liu, S.; Ding, C.; Liu, P. Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics. Microporous Mesoporous Mater. 2017, 247, 103–115. [Google Scholar] [CrossRef]
- Nandan, D.; Saxena, S.K.; Viswanadham, N. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor. J. Mater. Chem. A 2014, 2, 1054–1059. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, Y.-M.; Jae, J.; Sung, B.H.; Jung, S.-C.; Kim, S.C.; Jeon, J.-K.; Park, Y.-K. Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5. J. Anal. Appl. Pyrolysis 2016, 122, 282–288. [Google Scholar] [CrossRef]
- Lappas, A.; Bezergianni, S.; Vasalos, I. Production of biofuels via co-processing in conventional refining processes. Catal. Today 2009, 145, 55–62. [Google Scholar] [CrossRef]
- Mihalcik, D.J.; Mullen, C.A.; Boateng, A.A. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis 2011, 92, 224–232. [Google Scholar] [CrossRef]
- Carlson, T.R.; Vispute, T.P.; Huber, G.W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem Chem. Sustain. Energy Mater. 2008, 1, 397–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choo, M.-Y.; Juan, J.C.; Oi, L.E.; Ling, T.C.; Ng, E.-P.; Rahman Noorsaadah, A.; Centi, G.; Lee, K.T. The role of nanosized zeolite Y in the H2-free catalytic deoxygenation of triolein. Catal. Sci. Technol. 2019, 9, 772–782. [Google Scholar] [CrossRef]
- Zhao, T.; Li, F.; Yu, H.; Ding, S.; Li, Z.; Huang, X.; Li, X.; Wei, X.; Wang, Z.; Lin, H. Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins. Appl. Catal. A Gen. 2019, 575, 101–110. [Google Scholar] [CrossRef]
- Abdelrahman, O.A.; Vinter, K.P.; Ren, L.; Xu, D.; Gorte, R.J.; Tsapatsis, M.; Dauenhauer, P.J. Simple quantification of zeolite acid site density by reactive gas chromatography. Catal. Sci. Technol. 2017, 7, 3831–3841. [Google Scholar] [CrossRef]
- Reding, G.; Mäurer, T.; Kraushaar-Czarnetzki, B. Comparing synthesis routes to nano-crystalline zeolite ZSM-5. Microporous Mesoporous Mater. 2003, 57, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Rownaghi, A.A.; Hedlund, J. Synthesis of mesoporous ZSM-5 zeolite crystals by conventional hydrothermal treatment. RSC Adv. 2013, 3, 15596–15599. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Tang, Y. One-step hydrothermal synthesis of surface organosilanized nanozeolite under microwave irradiation. Chem. Commun. 2010, 46, 3875–3877. [Google Scholar] [CrossRef] [PubMed]
- Tonle, I.K.; Diaco, T.; Ngameni, E.; Detellier, C. Nanohybrid kaolinite-based materials obtained from the interlayer grafting of 3-aminopropyltriethoxysilane and their potential use as electrochemical sensors. Chem. Mater. 2007, 19, 6629–6636. [Google Scholar] [CrossRef]
- Karge, H.G. Characterization by IR spectroscopy. In Verified Syntheses of Zeolitic Materials; Elsevier: Amsterdam, The Netherlands, 2001; pp. 69–71. [Google Scholar]
- Xia, K.; Gao, Q.; Jiang, J.; Hu, J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 2008, 46, 1718–1726. [Google Scholar] [CrossRef]
- Pereira, C.; Gorte, R.J. Method for distinguishing Brønsted-acid sites in mixtures of H-ZSM-5, H-Y and silica-alumina. Appl. Catal. A Gen. 1992, 90, 145–157. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, L.; Julson, J.; Qiao, Q.; Dubey, A.; Anderson, G. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. New Biotechnol. 2015, 32, 300–312. [Google Scholar] [CrossRef]
- Ramya, G.; Sudhakar, R.; Joice, J.A.I.; Ramakrishnan, R.; Sivakumar, T. Liquid hydrocarbon fuels from jatropha oil through catalytic cracking technology using AlMCM-41/ZSM-5 composite catalysts. Appl. Catal. A Gen. 2012, 433–434, 170–178. [Google Scholar] [CrossRef]
Sample | Si:Al Atomic Ratio a | C:Si Atomic Ratio b | Crystallite Size/nm c |
---|---|---|---|
h-HZSM-5 | 20 | 5.3 | 24 |
c-HZSM-5 | 17 | 1.5 | 27 |
HZSM-5 | 15 | 1.9 | 19 |
Sample | S*BET a /m2g−1 | SMIC b /m2g−1 | SMES c /m2g−1 | VMIC b /cm3g−1 | VMES c /cm3g−1 | VTOT d /cm3g−1 | Total Acid Site Loading e /mmol·g−1 |
---|---|---|---|---|---|---|---|
h-HZSM-5 | 750 | 330 | 259 | 0.14 | 0.78 | 1.03 | 1.2 (0.002) |
c-HZSM-5 | 595 | 444 | 173 | 0.19 | 0.59 | 1.26 | 0.7 (0.001) |
HZSM-5 | 643 | 518 | 132 | 0.22 | 0.49 | 0.52 | 0.8 (0.001) |
Catalyst a | Hydrocarbon Yield /% | Productivity b /mmol min−1 g−1 | Alkene/Alkane Product Selectivity /% | Mass Balance c /% | |
---|---|---|---|---|---|
C8–C12 | C13–C17 | ||||
h-HZSM-5 | 65 | 0.70 | 22 | 78 | 80 |
c-HZSM-5 | 24 | 0.26 | 28 | 72 | 78 |
HZSM-5 | 20 | 0.21 | 22 | 78 | 83 |
Blank | 4 | - | 13 | 87 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumugam, M.; Goh, C.K.; Zainal, Z.; Triwahyono, S.; Lee, A.F.; Wilson, K.; Taufiq-Yap, Y.H. Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels. Nanomaterials 2021, 11, 747. https://doi.org/10.3390/nano11030747
Arumugam M, Goh CK, Zainal Z, Triwahyono S, Lee AF, Wilson K, Taufiq-Yap YH. Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels. Nanomaterials. 2021; 11(3):747. https://doi.org/10.3390/nano11030747
Chicago/Turabian StyleArumugam, Mahashanon, Chee Keong Goh, Zulkarnain Zainal, Sugeng Triwahyono, Adam F. Lee, Karen Wilson, and Yun Hin Taufiq-Yap. 2021. "Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels" Nanomaterials 11, no. 3: 747. https://doi.org/10.3390/nano11030747
APA StyleArumugam, M., Goh, C. K., Zainal, Z., Triwahyono, S., Lee, A. F., Wilson, K., & Taufiq-Yap, Y. H. (2021). Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels. Nanomaterials, 11(3), 747. https://doi.org/10.3390/nano11030747